Радиус описанной окружности равностороннего треугольника
— сторона треугольника
— высота
— радиус описанной окружности
Формула радиуса описанной окружности равностороннего треугольника через его сторону:
Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
Формула радиуса описанной окружности равностороннего треугольника через высоту:
Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
- Подробности
-
Автор: Administrator
-
Опубликовано: 09 сентября 2011
-
Обновлено: 13 августа 2021
Формулы для определения радиуса описанной окружности
Найти радиус описанной окружности если известны стороны треугольника
Найти радиус описанной окружности если известны стороны треугольника
a , b , c — стороны треугольника
s — полупериметр
P = (a+b+c)/2
O — центр окружности
Формула радиуса описанной окружности треугольника ( R ) :
Вычислить радиус описанной окружности равностороннего треугольника по стороне или высоте
a — сторона треугольника
h — высота
R — радиус описанной окружности
Формула радиуса описанной окружности равностороннего треугольника если известна его высота:
R = 2h/3
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.
-
Формулы вычисления радиуса описанной окружности
- Произвольный треугольник
- Прямоугольный треугольник
- Равносторонний треугольник
- Примеры задач
Формулы вычисления радиуса описанной окружности
Произвольный треугольник
Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.
Равносторонний треугольник
Радиус описанной около правильного треугольника окружности вычисляется по формуле:
где a – сторона треугольника.
Примеры задач
Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.
Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:
Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:
Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.
Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:
Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.
Радиус описанной окружности около равностороннего треугольника онлайн
С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника, в том числе радиус окружности около равностороннего треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор
1. Радиус окружности описанной около равностороннего треугольника, если известна сторона a
Пусть известна сторона a равностороннего треугольника. Найдем радиус описанной окружности около треугольника. На странице Радиус окружности описанной около треугольника вычисляется из формулы:
(1) |
где p вычисляется из формулы:
(2) |
Учитывая, что у нас треугольник равносторонний, т.е. a=b=c, имеем:
( small p= frac<large 3a><large 2>, ) | (3) |
( small p-a=p-b=p-c= frac< large a>< large 2>. ) | (4) |
Подставляя (3),(4) в (1) и учитывая, что a=b=c, получим:
( small R=frac<large a^3><large 4 cdot sqrt<frac<3><2>a left( frac <2>right)^3>> ) ( small =frac<large a^3><large 4 cdot sqrt< frac<3a^4><16>>> ) ( small =frac<large a>< large sqrt< 3>> )
( small R=frac<large a>< large sqrt< 3>>=frac<large a sqrt<3>>< large 3>. ) | (5) |
Пример 1. Известна сторона ( small a=frac<7> <2>) равностороннего треугольника. Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (5).
Подставим значение ( small a=frac<7> <2>) в (5):
Ответ:
2. Радиус окружности описанной около равностороннего треугольника, если известна высота треугольника
Пусть известна высота h равностороннего треугольник (Рис.1):
Найдем радиус описанной окружности около равностороннего треугольника. Из теоремы синусов имеем:
( small frac<large a>< large sin 90°>=frac<large h >< large sin C>. ) | (6) |
Уситывая, что сумма углов треугольника равна 180° и что у равностороннего треугольника все углы равны, имеем: ( small angle A= angle B=angle C=60°. ) Тогда из (6) получим:
(7) |
Подставляя (7) в (5), получим:
(8) |
Пример 2. Высота равностороннего треугольника равна:( small h=15 .) Найти радиус окружности описанной около равностороннего треугольника.
Решение. Для нахождения радиуса окружности описанной около равностороннего треугольника воспользуемся формулой (8). Подставим значения ( small h=15 ) в (8):
Ответ:
3. Радиус окружности описанной около равностороннего треугольника, если известна площадь треугольника
Пусть известна площадьS равностороннего треугольника. Найдем радиус окружности, описанной около треугольника. На странице Площадь равностороннего треугольника онлайн была выведена формула площади равностороннего треугольника по радиусу описанной окружности:
(9) |
В формуле (9) найдем R:
(10) |
Пример 3. Площадь равностороннего треугольника равна:( small S=14.5 .) Найти радиус окружности описанной около равностороннего треугольника.
Решение. Для нахождения радиуса окружности описанной около равностороннего треугольника воспользуемся формулой (10). Подставим значения ( small S=14.5 ) в (10):
Ответ:
Радиус описанной окружности равностороннего треугольника
— сторона треугольника
— высота
— радиус описанной окружности
Формула радиуса описанной окружности равностороннего треугольника через его сторону:
Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
Формула радиуса описанной окружности равностороннего треугольника через высоту:
Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
Нахождение радиуса описанной вокруг треугольника окружности
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.
Формулы вычисления радиуса описанной окружности
Произвольный треугольник
Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.
Равносторонний треугольник
Радиус описанной около правильного треугольника окружности вычисляется по формуле:
где a – сторона треугольника.
Примеры задач
Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.
Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:
Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:
Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.
Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:
Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.
http://www-formula.ru/2011-09-22-04-51-34
Радиус описанной около треугольника окружности
Анна Кирпиченкова
Эксперт по предмету «Калькуляторы»
Задать вопрос автору статьи
В этой статье приведены формулы для расчёта радиуса описанной около треугольника окружности для различных случаев, а именно: для прямоугольного, равнобедренного и равностороннего треугольников.
Также приведена формула для описанной около треугольника окружности в общей форме и добавлены онлайн-калькуляторы для быстрого расчёта.
Определение 1
Описанной около треугольника окружностью называется окружность, внутри которой расположен треугольник, причём все три вершины этого треугольника лежат на окружности.
Ниже приведён онлайн-калькулятор для расчёта радиуса описанной окружности для любого треугольника. Для того чтобы воспользоваться им — введите имеющиеся данные в поля для ввода онлайн-калькулятора.
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Радиус описанной около треугольника окружности через стороны
Чтобы определить радиус описанной вокруг треугольника окружности, нужно воспользоваться формулой:
$R = frac{acdot b cdot c}{4 cdot sqrt{P cdot(P — a)cdot(P — c) cdot(P — b)}}$ (1), причём
$P$ — это полупериметр треугольника.
Он определяется по формуле:
$P = frac12 cdot (a + b + c)$, где
$a, b, c$ — стороны треугольника.
Рассмотрим пример на поиск радиуса описанной около треугольника окружности.
Пример 1
Задача
Дан треугольник со сторонами $3, 4, 5$ см. Найдите, чему равен радиус описанной вокруг него окружности.
Решение:
Сосчитаем полупериметр:
$P = frac12 cdot (3 + 4 + 5) = 6$ см.
Теперь воспользуемся формулой (1):
$R = frac{3 cdot 4 cdot 5} {4 cdot sqrt{6 cdot (6 — 3) cdot (6 — 4) cdot (6 — 5)}} = 2,5$ см.
Результат совпадает с ответом онлайн-калькулятора, следовательно, задача решена правильно.
Также существуют формулы для расчёта радиуса описанной около прямоугольного и равнобедренного треугольников окружностей.
Радиус описанной около прямоугольного треугольника окружности через стороны
Для прямоугольного треугольника радиус описанной окружности вычисляется по формуле:
$R = frac12 cdot sqrt{d^2 + b^2}$, здесь
$d, b$ — катеты прямоугольного треугольника.
Радиус описанной около равнобедренного треугольника окружности через стороны
В этом случае радиус окружности определяется по формуле:
$R = frac{d^2}{sqrt{4d^2 — b^2}}$, здесь
$d$ — длина боковой стороны равнобедренного треугольника;
$b$ — длина основания.
Радиус описанной около равностороннего треугольника окружности через сторону
В этом случае радиус определяется через формулу:
$R = frac{a}{sqrt3}$, здесь
$a$ — сторона равностороннего треугольника.
Рассмотрим в качестве второго примера поиск радиуса описанной окружности через сторону равностороннего треугольника.
Пример 2
Задача
В равностороннем треугольнике сторона $a$ равна $3$ см. Чему равен радиус описанной вокруг него окружности?
Решение:
$R = frac{a}{sqrt3} = 1, 73$ см.
Ответ совпадает с ответом онлайн-калькулятора, а значит, решение найдено верно.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата написания статьи: 18.06.2019