Как найти радиус окружности магнитного поля

Движение заряженной частицы в магнитном поле: формулы. Движение заряженных частиц в однородном магнитном поле

Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы FB, которую поле оказывает на частицу при ее движении в нем со скоростью v.

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν = у 2 + νz 2 ).

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

Масс-спектрометр

Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

и затем, используя уравнение v=E/B, мы находим, что

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т — время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один «удар» через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы — ν = qBR /m. Следовательно, ее кинетическая энергия

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.

Магнитное поле и его характеристики

теория по физике 🧲 магнетизм

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

  • Магнитное поле порождается электрическим током (движущимися зарядами).
  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
  • Магнитное поле существует независимо от нас, от наших знаний о нем.

Вектор магнитной индукции

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как → B . Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B = F A m a x I l . .

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Напряженность магнитного поля

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.

  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.

Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B = μ μ 0 I 2 π r . .

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B = μ μ 0 I N l . . = μ μ 0 I d . .

Модуль напряженности магнитного поля в центральной части соленоида:

H = I N l . . = I d . .

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

  1. Вспомнить, как взаимодействуют магниты.
  2. Определить исходное положение полюсов.
  3. Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.

Алгоритм решения

  1. Определить направление тока в соленоиде.
  2. Определить полюса соленоида.
  3. Установить, как будет взаимодействовать соленоид с магнитом.
  4. Установить, как будет себя вести магнит после замыкания электрической цепи.

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Как найти радиус окружности магнитного поля

Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции :

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Индукцию проводника с током можно представить как векторную сумму элементарных индукций создаваемых отдельными участками проводника. На опыте невозможно выделить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад в магнитную индукцию результирующего магнитного поля, создаваемый малым участком Δ проводника с током .

Здесь – расстояние от данного участка Δ до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:

которая уже приводилась в § 1.16.

Рисунок 1.17.1.

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле

где – радиус кругового проводника. Для определения направления вектора также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.

Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользаоваться теоремой о циркуляции вектора магнитной индукции , которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δ этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 1.17.2).

Рисунок 1.17.2.

Циркуляцией вектора называют сумму произведений Δ, взятую по всему контуру :

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур в то время, как другие токи могут находиться в стороне от контура.

Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:

В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи 2 и 3 пронизывают контур в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, , а . Ток 1 не пронизывает контур .

Теорема о циркуляции в данном примере выражается соотношением:

Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.

Простейшим примером применения теоремы о циркуляции является вывод формулы для магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур целесообразно выбрать в виде окружности некоторого радиуса , лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор направлен по касательной , а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:

откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее.

Этот пример показывает, что теорема о циркуляции вектора магнитной индукции может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.

Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 1.17.3).

Рисунок 1.17.3.

Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса изображена на рис. 1.17.3. Применим теорему о циркуляции к контуру в виде окружности, совпадающей с изображенной на рис. 1.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора одинаков вдоль всей этой линии. По теореме о циркуляции можно записать:

где – полное число витков, а – ток, текущий по виткам катушки. Следовательно,

Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса . Если сердечник катушки тонкий, то есть , то магнитное поле внутри катушки практически однородно. Величина = представляет собой число витков на единицу длины катушки. В этом случае

В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае . Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами . Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.

На рис. 1.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри него.

Рисунок 1.17.4.

В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 1.17.5.

Как найти радиус магнитного поля?

Мы можем найти радиус кривизны r непосредственно из уравнения r=mvqB r = m v q B , так как все остальные величины в нем заданы или известны.

Что такое радиус магнитного поля?

Ответ: Радиальное магнитное поле магнитное поле, при котором плоскость катушки остается параллельной направлению магнитного поля во всех положениях. … Радиальное магнитное поле также параллельно плоскости катушки гальванометра, что создает постоянный крутящий момент независимо от вращения катушки.

Каков путь электрона в магнитном поле?

Отрицательно заряженная частица движется в круговой путь по часовой стрелке в однородном магнитном поле, параллельном плоскости страницы.

Каков путь магнитного поля?

Если поле находится в вакууме, магнитное поле является доминирующим фактором, определяющим движение. Поскольку магнитная сила перпендикулярна направлению движения, заряженная частица идет по кривой дорожке в магнитном поле. Частица продолжает следовать по этому изогнутому пути, пока не образует полный круг.

Смотрите также, как связаны все живые существа

Как найти радиус пути?

Формула радиуса окружности пути заряженной частицы в однородном магнитном поле. г=mvqBsinθ. г=mvsinθqB.

Каков радиус кругового пути?

Расстояние вокруг окружности эквивалентно длине окружности и рассчитывается как 2•pi•R где R — радиус. Время одного оборота по окружности называется периодом и обозначается символом T. Таким образом, средняя скорость объекта, движущегося по окружности, определяется выражением 2•pi•R / T.

Как радиус кругового пути заряженной частицы в магнитном поле связан с импульсом частицы?

С использованием F = ма, получаем: Таким образом, радиус орбиты зависит от импульса частицы, mv, и произведения заряда и напряженности магнитного поля. Таким образом, измеряя кривизну траектории частицы в известном магнитном поле, можно сделать вывод об импульсе частицы, если известен ее заряд.

Каков радиус кругового пути, который проходит заряженная частица в магнитном поле?

гирорадиус: радиус кругового движения заряженной частицы в присутствии однородного магнитного поля. циклотронная частота: частота заряженной частицы, движущейся перпендикулярно направлению однородного магнитного поля B (постоянной величины и направления).

Как найти радиус круга в физике?

р = м v 2 F с . Это означает, что для данной массы и скорости большая центростремительная сила вызывает малый радиус кривизны, то есть крутую кривую, как на (рис.).

Каков путь заряженной частицы в магнитном поле?

Движение заряженной частицы в электрическом и магнитном поле. F = q (v x B). Здесь магнитная сила становится центростремительной силой из-за ее направления к круговому движению частицы. Следовательно, если поле и скорость перпендикулярны друг другу, то частица движется по окружности.

Каков радиус кривизны пути протона с энергией 3,0 кэВ в перпендикулярном магнитном поле величиной 0,80 Тл?

Ответ, который я должен получить, 9,9 мм.

Чему равен R радиус кривизны движения протона, когда он находится в области, содержащей магнитное поле?

В магнитном поле направление движения заряда меняется, но величина скорости заряженной частицы остается неизменной. Таким образом, радиус кривизны протона равен 1,38 м .

Как найти угол между магнитным полем и скоростью?

Уравнение F = qv X B можно разбить на две части: величину и направление. Величина определяется F = qvB sin(тета), где тета — это угол между v (скоростью) и B (магнитным полем).

Какой будет путь электрона в магнитном поле, если он войдет в него со скоростью v, составив угол 90 градусов с магнитным полем?

эллиптическая траектория. Заряженная частица входит перпендикулярно полю, затем выходит, образуя сферическую часть на другом конце. Если частица образует угол, отличный от 90 градусов, она скорее будет следовать эллиптический путь при отклонении в магнитном поле.

Смотрите также, каков жизненный цикл коалы

Чему равно магнитное поле в пустом пространстве, ограниченном тороидальным соленоидом радиуса R*?

поэтому магнитное поле нуль.

Что такое радиус кривой?

В дифференциальной геометрии радиус кривизны R равен обратная величина кривизны. Для кривой он равен радиусу дуги окружности, которая наилучшим образом соответствует кривой в этой точке. Для поверхностей радиус кривизны — это радиус окружности, который лучше всего соответствует нормальному сечению или их комбинациям.

Чему равен радиус кривизны электрона в поле?

Мы можем найти радиус кривизны r непосредственно из уравнения г=mvqB, так как все остальные величины в нем заданы или известны. 5,9 г=0. 683 мм.

Что такое коэффициент радиуса?

Вычислить: Чтобы рассчитать коэффициент радиуса, разделить каждый радиус на исходный радиус (2,0 м). Чтобы рассчитать коэффициент ускорения, разделите каждое значение ускорения на исходное ускорение (50,00 м/с2).

Каков радиус круговой орбиты протона?

65 см. Протон движется по круговой орбите радиусом 65 см перпендикулярно однородному магнитному полю магнитудой 0,75 Тл.

Каков радиус дуги окружности, по которой движется этот протон?

Протон сначала ускоряется из состояния покоя через разность потенциалов V, а затем попадает в однородное магнитное поле напряженностью 0,750 Тл, ориентированное перпендикулярно его пути. В этом поле протон движется по дуге окружности с радиусом кривизны 1,84 см.

Почему траектория заряженной частицы искривляется?

Путь заряженной частицы изгибается потому что частица отталкивается от отрицательно заряженной пластины и притягивается к положительно заряженной пластине. … Чем больше величина зарядов, тем сильнее электростатическое отталкивание или притяжение. По мере увеличения заряда пластин изгиб будет увеличиваться.

Почему заряженные частицы движутся по круговой траектории?

С магнитная сила перпендикулярна направлению движения, заряженная частица движется по криволинейной траектории в магнитном поле. … Магнитная сила перпендикулярна скорости, поэтому скорость изменяется по направлению, но не по величине. В результате получается равномерное круговое движение.

Как найти радиус винтовой траектории?

Применяя второй закон Ньютона и уравновешивая центростремительную силу магнитной силой, мы получаем формулу для радиуса винтовой траектории как F знак равно м а р q v ⊥ B знак равно м v ⊥ 2 р ⇒ р знак равно м v ⊥ q B знак равно м v грех ⁡ θ q B begin{align*} F&=m,a_r q,v_{bot},B&=m,frac{v_{bot}^{2}}R Rightarrow R&=frac{m,v_{bot}}{q …

Каков радиус круговой орбиты электрона со скоростью 5,0·106 м/с, если предположить, что электрон движется в плоскости, перпендикулярной магнитному полю?

радиус круговой орбиты равен 0,569 м.

Когда частица движется по круговой траектории, радиус кривизны равен?

Объяснение: Когда частица движется по прямой траектории, радиус кривизны бесконечно велико. Это означает, что v2/r равно нулю. Объяснение: Когда частица движется с постоянной скоростью, то dv/dt будет равно нулю.

Каково отношение радиусов кривизны протона и электрона, проходящих через этот аппарат?

Отношение радиусов кривизны протона и электрона, проходящих через этот аппарат, равно 42.79.

Как найти радиус по обороту и расстоянию?

Используйте формулу: с = 2_pi_r, где c — длина окружности, r — радиус, а pi может быть приблизительно равно 3.14. Следуя примеру, если колесо автомобиля имеет радиус 0,3 метра, то длина окружности равна: 0,3 х 3,14 х 2 = 1,89 метра. Вычислите скорость вращения колеса в оборотах в минуту.

Как найти радиус периода?

Так г = д/2. Обратите также внимание на символ периода: T. С помощью этого уравнения, учитывая скорость объекта на орбите и радиус окружности, вы можете рассчитать период объекта.

Как движение по восьмиугольной траектории близко к круговому движению?

Ответ: так как восьмиугольный путь имеет 8 сторон и выглядит почти как круг, то его движение также почти круговое

Каков путь заряженной частицы в магнитном поле с начальной скоростью?

Заряженная частица, движущаяся в однородном магнитном поле с начальной скоростью, перпендикулярной полю, следует круговой путь. Сила, действующая на заряженную частицу со стороны магнитного поля, обеспечивает центростремительную силу.

Каков путь заряженной частицы в однородном магнитном поле, если ее скорость не перпендикулярна магнитному полю?

Если заряженная частица движется в области однородного магнитного поля так, что ее скорость не перпендикулярна магнитному полю, то скорость частицы делится на две составляющие. Одна компонента параллельна полю, а другая перпендикулярна полю.

Каков путь заряженной частицы, движущейся под прямым углом к ​​однородному магнитному полю?

Заряженная частица движется под прямым углом к ​​однородному магнитному полю и начинает движение по дуге окружности радиуса кривизны «r». В полевых условиях он теперь проникает через слой свинца и теряет 3/4 своей первоначальной кинетической энергии.

Как найти радиус протона?

Маленькие частицы, такие как электроны, могут выстрелить в протон, и, измерив, как электроны рассеиваются, можно сделать вывод о размере протона. В соответствии с методом спектроскопии это дает радиус протона около (8,775±0,005)×10−16 м (или 0,8775 фм).

Каковы заряд и масса электрона?

электрон, самая легкая из известных стабильных субатомных частиц. Он несет отрицательный заряд 1,602176634 × 10-19 Кл, что считается основной единицей электрического заряда. Остальная масса электрон равен 9,1093837015 × 10−31 кг., что составляет всего 1/1,836масса протона.

Смотрите также вы то, что вы едите видео

Круговые траектории в магнитном поле – определение радиуса и периода

Магнитные силы и магнитные поля

Круговой путь заряда в магнитном поле

Частицы в магнитном поле — IGCSE Physics

Радиуса движения заряженной частицы в магнитном поле

r = mv /(qB)

r — радиус
m — масса
v — скорость
q — заряд
B — магнитная индукция



Найти

  • r
  • m
  • v
  • q
  • B


  Известно, что:


=
  



Вычислить ‘r

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с  самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

Изображение магнитного поля при помощи силовых линий

Изображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

Правило правой руки

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

основные формулы электричество и магнетизм

Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

Правило левой руки для силы Ампера

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

магнетизм основные понятия и формулы

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

Определение направления силы Лоренца

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

формулы по теме магнетизм

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

магнетизм формулы по физике

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

электричество и магнетизм формулы

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

Соленоид

Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

магнетизм формулы

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.

электричество и магнетизм формулы

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.

Магнитный поток

При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.

электричество и магнетизм формулы

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

электричество и магнетизм формулы

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

электричество и магнетизм формулы

Формула для ЭДС самоиндукции:

электричество и магнетизм формулы

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

электричество и магнетизм формулы

Объемная плотность энергии поля:

электричество и магнетизм формулы

Конечно, это не все основные формулы раздела физики «электричество и магнетизм», однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.

Автор статьи

Виталий Викторович Карабут

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Французские ученые Ж. Био и Ф. Савар изучали магнитные поля, создаваемые постоянными токами разной формы. Результаты их работы обобщил известный математик и физик П. Лаплас.

Применение закона Био – Савара – Лапласа к вычислению магнитного поля кругового тока

Закон Био-Савара–Лапласа описывает порождение магнитного поля током $I$ на элементе проводника длиной $dl$ в некоторой точке пространства ($mu$ — магнитная проницаемость вещества в котором локализовано поле):

$dvec{B}=frac{mu_{0}mu }{4pi }frac{Ileft[ dvec{l}vec{r}right]}{r^{3}}left( 1 right)$

где $d vec l ⃗$ — вектор, длина которого равна длине элемента проводника $dl$, направленный по току; $vec r$ – радиус-вектор, который проведен от элемента $dl$ в точку, в которой исследуется магнитное поле. Поскольку в правой части формулы (1) находится векторное произведение, очевидно, что индукция элементарного магнитного поля будет направлена перпендикулярно плоскости, в которой находятся векторы $vec r$ и $vec l$ и при этом является касательной к силовой линии поля.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Величину вектора $vec{dB}$ из выражения (1) найдем как:

$dB=frac{mu_{0}mu }{4pi }frac{Idlsin alpha }{r^{2}}left( 2 right)$.

где $ alpha $– угол между векторами $vec r$ и $vec l$ .

Конкретное направление $vec{dB}$ находят по правилу буравчика (правилу правой руки):

Если правый винт вращать так, что его поступательное движение будет совпадать с направлением течения тока в избранном элементе, то вращение его головки укажет направление $vec{dB}$.

Магнитные поля подчиняются принципу суперпозиции:

Суммарную магнитную индукцию поля, создаваемого несколькими источниками, находят как геометрическую сумму векторов магнитной индукции отдельных полей:

$vec{B}=sumlimits_{i=1}^N vec{B}_{i} left( 3 right). $

Если распределение токов можно считать непрерывным, то принцип суперпозиции можно записать:

$vec{B}=int {dvec{B}_{i}} left( 4 right).$

Вычисление магнитной индукции поля с применением закона Био-Савара-Лапласа довольно сложная процедура. Но при существовании определенной симметрии в распределении токов, используя, рассмотренный нами закон и принцип суперпозиции, рассчитать конкретные поля просто. В любом случае следует придерживаться следующей схемы действий:

«Магнитное поле кругового тока» 👇

  1. Выделить на проводнике с током элементарный отрезок $dl$.
  2. Записать для исследуемой точки поля закон Био – Савара – Лапласа.
  3. Определить направление элементарного поля $vec{dB}$ в избранной точке.
  4. Воспользоваться принципом суперпозиции для магнитных полей (учесть, что суммируются векторы).

Магнитное поле кругового тока в его центре

Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ

Рассмотрим круговой проводник, по которому течет постоянный ток $I$ (рис.1). Выделим на этом проводнике элемент $dl$, который можно считать прямолинейным. Если перейти к другому элементу этого же тока, затем к третьему и так далее, применить правило правого винта, то очевидно, что все магнитные поля, созданные этими элементами в центре, направлены вдоль одной прямой, перпендикуляру к плоскости кольца. Это означает, применяя принцип суперпозиции, мы векторное сложение заменим алгебраическим.

Запишем закон Био-Савара-Лапласа для модуля вектора индукции поля, создаваемого элементом d$l_1$:

$dB=frac{mu_{0}mu }{4pi }frac{Idl_{1}sin alpha }{r^{2}}left( 5right).$

Из рис.1 мы видим:

  1. что расстояние от элементарного тока до центра витка равно его радиусу ($R$) и будет одинаковым для всех элементов на этом витке,
  2. элемент $dl$ (как и все остальные элементы) будут нормальны к радиус-вектору $vec r$.

Учитывая сказанное выражение (5) представим в виде:

$dB=frac{mu_{0}mu }{4pi }frac{Idl_{1}}{R^{2}}left( 6 right)$.

Обезличивая витки с током, положим далее $dl_1=dl$.

Поскольку наш ток является непрерывным, то для нахождения полного поля в его центре, мы проинтегрируем (6), имеем:

$B=ointlimits_L {dB=} frac{mu_{0}mu }{4pi}frac{I}{R^{2}}ointlimits_L {dl} =frac{mu_{0}mu }{4pi}frac{I}{R^{2}}2pi Rto$

$B=mu_{0}mu frac{I}{2R}left( 7 right)$.

Замечание 1

$L=2πR$ — длина окружности витка.

Индукция магнитного поля кругового тока на его оси

Найдем индукцию магнитного поля на оси кругового тока, если ток, текущий по нему равен $I$, радиус витка — $R$ (рис.2).

Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ

Как основу для выполнения поставленной задачи возьмем закон Био-Савара-Лапласа (1), где из рис.2 мы видим, что:

  • $vec{r}=vec{R}+vec{h}$,

  • $dvec{l}times vec{r}=dvec{l}times vec{R}+dvec{l}times vec{h}(9).$

Используя принцип суперпозиции закон (1) для нашего тока и формулы (8-9) запишем:

$vec{B}=ointlimits_L {dB=}$$frac{mu mu_{0}}{4pi }Iointlimits_L frac{dvec{l}timesvec{r}}{r^{3}} $
$=frac{mu mu_{0}}{4pi }frac{I}{r^{3}}left( ointlimits_L{dvec{l}times vec{R}+} ointlimits_L {dvec{l}times vec{h}}right)left( 10 right).$

В выражении (10) при записи интеграла, мы учли, что величина вектора $vec{r}$ не изменяется. Кроме этого вектор $vec h$, определяющий положение точки, в которой мы ищем поле, не изменяется при движении по нашему контуру, поэтому:

$ointlimits_L {dvec{l}times vec{h}} =(ointlimits_L {dvec{l})timesvec{h}} =0, left( 11 right),$

так как ( $ointlimits_L {dvec{l})=0.}$

Вычислим интеграл: $ointlimits_L {dvec{l}times vec{R}.}$ Введем единичный вектор ($vec n$), нормальный к плоскости витка с током.

$ointlimits_L {dvec{l}times vec{R}=ointlimits_L {vec{n}Rdl=vec{n}R}} ointlimits_L {dl=vec{n}R} 2pi R=2pi R^{2}vec{n}left( 12 right)$.

Подставляем результаты интегрирования из (12) в (10), имеем:

$vec{B}=frac{mu mu_{0}}{4pi }frac{I}{r^{3}}2pi R^{2}vec{n}=frac{mumu_{0}I}{2}frac{R^{2}}{left( R^{2}+h^{2}right)^{frac{3}{2}}}vec{n}left( 13 right)$

где при записи окончательного результата мы учли, что:

$r^{3}=left( R^{2}+h^{2} right)^{frac{3}{2}}$.

Кольца Гельмгольца

Кольцами Гельмгольца считают пару проводников в виде колец одного радиуса, расположенных в параллельных плоскостях (рис.3) на одной оси. Расстояние между плоскостями колец равно их радиусу.

Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ

Рассмотрим магнитное поле на оси этих колец.

Декартову систему координат разместим так, что ее начало совпадает с центром нижнего кольца с током. Ось Z нашей системы будет направлена по оси колец (рис.3).

Запишем индукцию магнитного поля в точке с координатой $z$ на оси колец. Используем формулу (13):

$B_{z}=frac{mu mu_{0}I}{2}R^{2}left[ frac{1}{left( R^{2}+z^{2}right)^{frac{3}{2}}}+frac{1}{left[ left( z-d right)^{2}+R^{2}right]^{frac{3}{2}}} right]left( 14right)$.

Исследуем полученное поле. Считается, что магнитное поле на оси колец Гельмгольца на посередине между ними является однородным.

Неоднородность в первом приближении характеризуют первой производной:

$frac{partial B_{z}}{partial z}=frac{3mu mu_{0}I}{2}R^{2}left[frac{-z}{left( R^{2}+z^{2} right)^{frac{5}{2}}}+frac{z-d}{left[ left(z-d right)^{2}+R^{2} right]^{frac{5}{2}}} right]left( 15 right)$.

Если $z=frac{d}{2}quad$ , подставим в (15), имеем:

$frac{partial B_{z}}{partial z}=0.$

Найдем $frac{partial^{2}B_{z}}{partial z^{2}}:$

$frac{partial^{2}B_{z}}{partial z^{2}}=frac{3mu mu_{0}I}{2}R^{2}left( frac{5z^{2}}{left( R^{2}+z^{2}right)^{frac{7}{2}}}-frac{1}{left( R^{2}+z^{2}right)^{frac{5}{2}}}+frac{5left( z-d right)^{2}}{left[ left( z-d right)^{2}+R^{2} right]^{frac{7}{2}}}-frac{1}{left[ left( z-dright)^{2}+R^{2} right]^{frac{5}{2}}} right)left( 16 right)$

По условию для колец Гельмгольца, имеем:
$d=R.$

На середине их общей оси ($z=frac{d}{2})$, получаем:

$frac{partial^{2}B_{z}}{partial z^{2}}=0, left( 17 right)$.

Равенство нулю второй производной от $B_z$ по координате $z$, показывает, что в на середине оси колец магнитное поле является однородным с высокой степенью точности.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:
  • Как в консультанте найти собрание законодательства
  • Как найти площадь в пск
  • Как исправить проблему в bluestacks
  • Как исправить входящее смс
  • Как найти стартовую обмотку в двигателе