Как найти радиус окружности вектора

Что такое радиус-вектор

Радиус-вектор – это вектор, начало которого совпадает с точкой (0 ; 0) — началом координат.

Почему радиус-вектор так называют

Если начертить окружность с центром в точке (0 ; 0), этот вектор станет её радиусом.

Любой вектор можно превратить в радиус-вектор. Для этого сдвигаем его так, чтобы начало этого вектора совместить с точкой (0 ; 0).

При этом, помним: перемещать вектор можно, а поворачивать его нельзя!

Чем радиус-вектор удобен для использования

Чтобы найти координаты вектора, нужно найти разности соответственных координат точек, расположенных в конце и начале вектора.

Для радиус-вектора вычислять координаты не нужно. Можно воспользоваться правилом:

Координаты радиус-вектора — это координаты его конечной точки.

Сравните координаты конечной точки и координаты вектора на рисунке 2.

Как найти радиус окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Как найти окружность вектора

Координаты вектора в декартовой системе координат (ДСК)

Для начала дадим определение координат вектора в заданной системе координат. Чтобы ввести данное понятие, определим что мы называем прямоугольной или декартовой системой координат.

Прямоугольная система координат представляет из себя прямолинейную систему координат с взаимно перпендикулярными осями на плоскости или в пространстве.

С помощью введения прямоугольной системы координат на плоскости или в трехмерном пространстве становится возможным описывание геометрических фигур вместе с их свойствами при помощи уравнений и неравенств, то есть использовать алгебраические методы при решении геометрических задач.

Тем самым, мы можем привязать к заданной системе координат векторы. Это значительно расширит наши возможности при решении определенных задач

Прямоугольная система координат на плоскости обычно обозначается O x y , где O x и O y – оси коорднат. Ось O x называют осью абсцисс, а ось O y – осью ординат (в пространстве появляется ещё одна ось O z , которая перпендикулярна и O x и O y ).

Итак, нам дана прямоугольная декартова система координат O x y на плоскости если мы отложим от начала координат векторы i → и j → , направление которых соответственно совпадет с положительными направлениями осей O x и O y , и их длина будет равна условной единице, мы получим координатные векторы. То есть в данном случае i → и j → являются координатными векторами.

Координатные векторы

Векторы i → и j → называются координатными векторами для заданной системы координат.

Откладываем от начала координат произвольный вектор a → . Опираясь на геометрическое определение операций над векторами, вектор a → может быть представлен в виде a → = a x · i → + a y · j → , где коэффициенты a x и a y — единственные в своем роде, их единственность достаточно просто доказать методом от противного.

Разложение вектора

Разложением вектора a → по координатным векторам i → и j → на плоскости называется представление вида a → = a x · i → + a y · j → .

Коэффициенты a x и a y называются координатами вектора в данной системе координат на плоскости.

Координаты вектора в данной системе координат принято записывать в круглых скобках, через запятую, при этом заданные координаты следует отделять от обозначения вектора знаком равенства. К примеру, запись a → = ( 2 ; — 3 ) означает, что вектор a → имеет координаты ( 2 ; — 3 ) в данной системе координат и может быть представлен в виде разложения по координатным векторам i → и j → как a → = 2 · i → — 3 · j → .

Следует обратить внимание, что порядок записи координат, имеет важное значение, если вы запишите координаты вектора в другом порядке, вы получите совершенно другой вектор.

Опираясь на определения координат вектора и их разложения становится очевидным, что единичные векторы i → и j → имеют координаты ( 1 ; 0 ) и ( 0 ; 1 ) соответственно, и они могут быть представлены в виде следующих разложений i → = 1 · i → + 0 · j → ; j → = 0 · i → + 1 · j → .

Также имеет место быть нулевой вектор 0 → с координатами ( 0 ; 0 ) и разложением 0 → = 0 · i → + 0 · j → .

Равные и противоположные векторы

Векторы a → и b → равны тогда, когда их соответствующие координаты равны.

Противоположным вектором называется вектор противоположный данному.

Отсюда следует, что координаты такого вектора будут противоположны координатам данного вектора, то есть, — a → = ( — a x ; — a y ) .

Все вышеизложенное можно аналогично определить и для прямоугольной системы координат, заданной в трехмерном пространстве. В такой системе координат имеет место быть тройка координатных векторов i → , j → , k → , а произвольный вектор a → раскладывается не по двум, а уже по трем координатам, причем единственным образом и имеет вид a → = a x · i → + a y · j → + a z · k → , а коэффициенты этого разложения ( a x ; a y ; a z ) называются координатами вектора в данной (трехмерной) системе координат.

Следовательно, координатные векторы в трехмерном пространстве принимают также значение 1 и имеют координаты i → = ( 1 ; 0 ; 0 ) , j → = ( 0 ; 1 ; 0 ) , k → = ( 0 ; 0 ; 1 ) , координаты нулевого вектора также равны нулю 0 → = ( 0 ; 0 ; 0 ) , и в таком случае два вектора будут считаться равными, если все три соответствующие координаты векторов между собой равны a → = b → ⇔ a x = b x , a y = b y , a z = b z , и координаты противоположного вектора a → противоположны соответствующим координатам вектора a → , то есть, — a → = ( — a x ; — a y ; — a z ) .

Координаты радиус-вектора точки

Чтобы ввести данное определение, требуется показать в данной системе координат связь координат точки и координат вектора.

Пусть нам дана некоторая прямоугольная декартова система координат O x y и на ней задана произвольная точка M с координатами M ( x M ; y M ) .

Вектор O M → называется радиус-вектором точки M .

Определим, какие координаты в данной системе координат имеет радиус-вектор точки

Вектор O M → имеет вид суммы O M → = O M x → + O M y → = x M · i → + y M · j → , где точки M x и M y это проекции точки М на координатные прямые Ox и Oy соответственно (данные рассуждения следуют из определения проекция точки на прямую), а i → и j → — координатные векторы, следовательно, вектор O M → имеет координаты ( x M ; y M ) в данной системе координат.

Иначе говоря, координаты радиус-вектора точки М равны соответствующим координатам точки М в прямоугольной декартовой системе координат.

Аналогично в трехмерном пространстве радиус-вектор точки M ( x M ; y M ; z M ) разлагается по координатным векторам как O M → = O M x → + O M y → + O M z → = x M · i → + y M · j → + z M · k → , следовательно, O M → = ( x M ; y M ; z M ) .

Что такое радиус-вектор

Радиус-вектор – это вектор, начало которого совпадает с точкой (0 ; 0) — началом координат.

Почему радиус-вектор так называют

Если начертить окружность с центром в точке (0 ; 0), этот вектор станет её радиусом.

Любой вектор можно превратить в радиус-вектор. Для этого сдвигаем его так, чтобы начало этого вектора совместить с точкой (0 ; 0).

При этом, помним: перемещать вектор можно, а поворачивать его нельзя!

Чем радиус-вектор удобен для использования

Чтобы найти координаты вектора, нужно найти разности соответственных координат точек, расположенных в конце и начале вектора.

Для радиус-вектора вычислять координаты не нужно. Можно воспользоваться правилом:

Координаты радиус-вектора — это координаты его конечной точки.

Сравните координаты конечной точки и координаты вектора на рисунке 2.

Линейная алгебра для разработчиков игр

Эта статья является переводом цикла из четырёх статей «Linear algebra for game developers», написанных David Rosen и посвящённых линейной алгебре и её применению в разработке игр. С оригинальными статьями можно ознакомиться тут: часть 1, часть 2, часть 3 и часть 4. Я не стал публиковать переводы отдельными топиками, а объединил все статьи в одну. Думаю, что так будет удобнее воспринимать материал и работать с ним. Итак приступим.

Зачем нам линейная алгебра?

Одним из направлений в линейной алгебре является изучение векторов. Если в вашей игре применяется позиционирование экранных кнопок, работа с камерой и её направлением, скоростями объектов, то вам придётся иметь дело с векторами. Чем лучше вы понимаете линейную алгебру, тем больший контроль вы получаете над поведением векторов и, следовательно, над вашей игрой.

Что такое вектор?

В играх вектора используются для хранения местоположений, направлений и скоростей. Ниже приведён пример двухмерного вектора:

Вектор местоположения (также называемый «радиус-вектором») показывает, что человек стоит в двух метрах восточнее и в одном метре к северу от исходной точки. Вектор скорости показывает, что за единицу времени самолёт перемещается на три километра вверх и на два — влево. Вектор направления говорит нам о том, что пистолет направлен вправо.

Как вы можете заметить, вектор сам по себе всего лишь набор цифр, который обретает тот или иной смысл в зависимости от контекста. К примеру, вектор (1, 0) может быть как направлением для оружия, как показано на картинке, так и координатами строения в одну милю к востоку от вашей текущей позиции. Или скоростью улитки, которая двигается вправо со скоростью в 1 милю в час (прим. переводчика: довольно быстро для улитки, 44 сантиметра в секунду).

Важно отслеживать единицы измерения. Допустим у нас есть вектор V (3,5,2). Это мало что говорит нам. Три чего, пять чего? В нашей игре Overgrowth расстояния указываются в метрах, а скорости в метрах в секунду. Первое число в этом векторе — это направление на восток, второе — направление вверх, третье — направление на север. Отрицательные числа обозначают противоположные направления, на запад, вниз и на юг. Местоположение, определяемое вектором V (3,5,2), находится в трёх метрах к востоку, в пяти метрах вверху и в двух метрах к северу, как показано на картинке ниже.

Итак, мы изучили основы работы с векторами. Теперь узнаем как вектора использовать.

Сложение векторов

Чтобы сложить вектора, нам надо просто сложить каждую их составляющую друг с другом. Например:

(0, 1, 4) + (3, -2, 5) = (0+3, 1-2, 4+5) = (3, -1, 9)

Зачем нам нужно складывать вектора? Наиболее часто сложение векторов в играх применяется для физического интегрирования. Любой физический объект будет иметь вектора для местоположения, скорости и ускорения. Для каждого кадра (обычно это одна шестидесятая часть секунды), мы должны интегрировать два вектора: добавить скорость к местоположению и ускорение к скорости.

Давайте рассмотрим пример с прыжками Марио. Он начинает с позиции (0, 0). В момент начала прыжка его скорость (1, 3), он быстро двигается вверх и вправо. Его ускорение равно (0, -1), так как гравитация тянет его вниз. На картинке показано, как выглядит его прыжок, разбитый на семь кадров. Чёрным текстом показана его скорость в каждом фрейме.

Давайте рассмотрим первые кадры поподробнее, чтобы понять как всё происходит.

Для первого кадра, мы добавляем скорость Марио (1, 3) к его местоположению (0, 0) и получаем его новые координаты (1, 3). Затем мы складываем ускорение (0, -1) с его скоростью (1, 3) и получаем новое значение скорости Марио (1, 2).

Делаем то-же самое для второго кадра. Добавляем скорость (1, 2) к местоположению (1, 3) и получаем координаты (2, 5). Затем добавляем ускорение (0, -1) к его скорости (1, 2) и получаем новую скорость (1, 1).

Обычно игрок контролирует ускорение игрового персонажа с помощью клавиатуры или геймпада, а игра, в свою очередь, рассчитывает новые значения для скоростей и местоположения, используя физическое сложение (через сложение векторов). Это та-же задача, которая решается в интегральном исчислении, просто мы его сильно упрощаем для нашей игры. Я заметил, что мне намного проще внимательно слушать лекции по интегральному исчислению, думая о практическом его применении, которое мы только что описали.

Вычитание векторов

Вычитание рассчитывается по тому-же принципу что и сложение — вычитаем соответствующие компоненты векторов. Вычитание векторов удобно для получения вектора, который показывает из одного местоположения на другое. Например, пусть игрок находится по координатам (1, 2) с лазерным ружьём, а вражеский робот находится по координатам (4, 3). Чтобы определить вектор движения лазерного луча, который поразит робота, нам надо вычесть местоположение игрока из местоположения робота. Получаем:

(4, 3) — (1, 2) = (4-1, 3-2) = (3, 1).

Умножение вектора на скаляр

Когда мы говорим о векторах, мы называем отдельные числа скалярами. Например (3, 4) — вектор, а 5 — это скаляр. В играх, часто бывает нужно умножить вектор на число (скаляр). Например, моделируя простое сопротивление воздуха путём умножения скорости игрока на 0.9 в каждом кадре. Чтобы сделать это, нам надо умножить каждый компонент вектора на скаляр. Если скорость игрока (10, 20), то новая скорость будет:

0.9*(10, 20) = (0.9 * 10, 0.9 * 20) = (9, 18).

Длина вектора

Если у нас есть корабль с вектором скорости V (4, 3), нам также понадобится узнать как быстро он двигается, чтобы посчитать потребность в экранном пространстве или сколько потребуется топлива. Чтобы сделать это, нам понадобится найти длину (модуль) вектора V. Длина вектора обозначается вертикальными линиями, в нашем случае длина вектора V будет обозначаться как |V|.

Мы можем представить V как прямоугольный треугольник со сторонами 4 и 3 и, применяя теорему Пифагора, получить гипотенузу из выражения: x 2 + y 2 = h 2

В нашем случае — длину вектора H с компонентами (x, y) мы получаем из квадратного корня: sqrt(x 2 + y 2 ).

Итак, скорость нашего корабля равна:

|V| = sqrt(4 2 + 3 2 ) = sqrt(25) = 5

Этот подход используется и для трёхмерных векторов. Длина вектора с компонентами (x, y, z) рассчитывается как sqrt(x 2 + y 2 + z 2 )

Расстояние

Если игрок P находится в точке (3, 3), а взрыв произошёл в точке E по координатам (1, 2), нам надо определить расстояние между игроком и взрывом, чтобы рассчитать степень ущерба, нанесённого игроку. Это легко сделать, комбинируя две вышеописанных операции: вычитание векторов и их длину.
Мы вычитаем P — E, чтобы получить вектор между ними. А затем определяем длину этого вектора, что и даёт нам искомое расстояние. Порядок следования операндов тут не имеет значения, |E — P| даст тот-же самый результат.

Расстояние = |P — E| = |(3, 3) — (1, 2)| = |(2, 1)| = sqrt(2 2 +1 2 ) = sqrt(5) = 2.23

Нормализация

Когда мы имеем дело с направлениями (в отличие от местоположений и скоростей), важно, чтобы вектор направления имел длину, равную единице. Это сильно упрощает нам жизнь. Например, допустим орудие развёрнуто в направлении (1, 0) и выстреливает снаряд со скоростью 20 метров в секунду. Каков в данном случае вектор скорости для выпущенного снаряда?

Так как вектор направления имеет длину равную единице, мы умножаем направление на скорость снаряда и получаем вектор скорости (20, 0). Если-же вектор направления имеет отличную от единицы длину, мы не сможем сделать этого. Снаряд будет либо слишком быстрым, либо слишком медленным.

Вектор с длиной равной единице называется «нормализованным». Как сделать вектор нормализованным? Довольно просто. Мы делим каждый компонент вектора на его длину. Если, к примеру, мы хотим нормализовать вектор V с компонентами (3, 4), мы просто делим каждый компонент на его длину, то есть на 5, и получаем (3/5, 4/5). Теперь, с помощью теоремы Пифагора, мы убедимся в том, что его длина равна единице:

(3/5) 2 + (4/5) 2 = 9/25 + 16/25 = 25/25 = 1

Скалярное произведение векторов

Что такое скалярное произведение (записывается как •)? Чтобы рассчитать скалярное произведение двух векторов, мы должны умножить их компоненты, а затем сложить полученные результаты вместе

(a1, a2) • (b1, b2) = a1b1 + a2b2

Например: (3, 2) • (1, 4) = 3*1 + 2*4 = 11. На первый взгляд это кажется бесполезным, но посмотрим внимательнее на это:

Здесь мы можем увидеть, что если вектора указывают в одном направлении, то их скалярное произведение больше нуля. Когда они перпендикулярны друг другу, то скалярное произведение равно нулю. И когда они указывают в противоположных направлениях, их скалярное произведение меньше нуля.
В основном, с помощью скалярного произведения векторов можно рассчитать, сколько их указывает в одном направлении. И хоть это лишь малая часть возможностей скалярного произведения, но уже очень для нас полезная.

Допустим у нас есть стражник, расположенный в G(1, 3) смотрящий в направлении D(1,1), с углом обзора 180 градусов. Главный герой игры подсматривает за ним с позиции H(3, 2). Как определить, находится-ли главный герой в поле зрения стражника или нет? Сделаем это путём скалярного произведения векторов D и V (вектора, направленного от стражника к главному герою). Мы получим следующее:

V = H — G = (3, 2) — (1, 3) = (3-1, 2-3) = (2, -1)
D•V = (1, 1) • (2, -1) = 1*2 + 1*-1 = 2-1 = 1

Так как единица больше нуля, то главный герой находится в поле зрения стражника.

Мы уже знаем, что скалярное произведение имеет отношение к определению направления векторов. А каково его более точное определение? Математическое выражение скалярного произведения векторов выглядит так:

Где Θ (произносится как «theta») — угол между векторами A и B.

Это позволяет нам найти Θ (угол) с помощью выражения:

Как я говорил ранее, нормализация векторов упрощает нашу жизнь. И если A и B нормализованы, то выражение упрощается следующим образом:

Давайте опять рассмотрим сценарий со стражником. Пусть теперь угол обзора стражника будет равен 120 градусам. Получим нормализованные вектора для направления взгляда стражника (D’) и для направления от стражника к главному герою (V’). Затем определим угол между ними. Если угол более 60 градусов (половина от угла обзора), то главный герой находится вне поля зрения стражника.

D’ = D / |D| = (1, 1) / sqrt(1 2 + 1 2 ) = (1, 1) / sqrt(2) = (0.71, 0.71)
V’ = V / |V| = (2, -1) / sqrt(2 2 + (-1) 2 ) = (2,-1) / sqrt(5) = (0.89, -0.45)

Θ = acos(D’V’) = acos(0.71*0.89 + 0.71*(-0.45)) = acos(0.31) = 72

Угол между центром поля зрения стражника и местоположением главного героя составляет 72 градуса, следовательно стражник его не видит.

Понимаю, что это выглядит довольно сложно, но это потому, что мы всё делаем вручную. В программе это всё довольно просто. Ниже показано как я сделал это в нашей игре Overgrowth с помощью написанных мной С++ библиотек для работы с векторами:

Векторное произведение

Допустим у нас есть корабль с пушками, которые стреляют в правую и в левую стороны по курсу. Допустим, что лодка расположена вдоль вектора направления (2, 1). В каких направлениях теперь стреляют пушки?

Это довольно просто в двухмерной графике. Чтобы повернуть направление на 90 градусов по часовой стрелке, достаточно поменять местами компоненты вектора, а затем поменять знак второму компоненту.
(a, b) превращается в (b, -a). Следовательно у корабля, расположенного вдоль вектора (2, 1), пушки справа по борту будут стрелять в направлении (1, -2), а пушки с левого борта, будут стрелять в противоположном направлении. Меняем знаки у компонент вектора и получаем (-1, 2).

А что если мы хотим рассчитать это всё для трехмерной графики? Рассмотрим пример с кораблём.
У нас есть вектор мачты M, направленной прямо вверх (0, 1, 0) и направление ветра: север-северо-восток W (1, 0, 2). И мы хотим вычислить вектор направления паруса S, чтобы наилучшим образом «поймать ветер».

Для решения этой задачи мы используем векторное произведение: S = M x W.

Подставим теперь нужные нам значения:

S = MxW = (0, 1, 0) x (1, 0, 2) = ([1*2 — 0*0], [0*1 — 0*2], [0*0 — 1*1]) = (2, 0, -1)

Для расчётов вручную довольно сложно, но для графических и игровых приложений я рекомендую написать функцию, подобную той, что указана ниже и не вдаваться более в детали подобных расчётов.

Векторное произведение часто используется в играх, чтобы рассчитать нормали к поверхностям. Направления, в которых «смотрит» та или иная поверхность. Например, рассмотрим треугольник с векторами вершин A, B и С. Как мы найдем направление в котором «смотрит» треугольник, то есть направление перпендикулярное его плоскости? Это кажется сложным, но у нас есть инструмент для решения этой задачи.

Используем вычитание, для определения направления из A в С (C — A), пусть это будет «грань 1» (Edge 1) и направление из A в B (B — A), пусть это будет «грань 2» (Edge 2). А затем применим векторное произведение, чтобы найти вектор, перпендикулярный им обоим, то есть перпендикулярный плоскости треугольника, также называемый «нормалью к плоскости».

Вот так это выглядит в коде:

В играх основное выражение освещённости записывается как N • L, где N — это нормаль к освещаемой поверхности, а L — это нормализованный вектор направления света. В результате поверхность выглядит яркой, когда на неё прямо падает свет, и тёмной, когда этого не происходит.

Теперь перейдем к рассмотрению такого важного для разработчиков игр понятия, как «матрица преобразований» (transformation matrix).

Для начала изучим «строительные блоки» матрицы преобразований.

Базисный вектор

Допустим мы пишем игру Asteroids на очень старом «железе» и нам нужен простой двухмерный космический корабль, который может свободно вращаться в своей плоскости. Модель корабля выглядит так:

Как нам рисовать корабль, когда игрок поворачивает его на произвольный градус, скажем 49 градусов против часовой стрелки. Используя тригонометрию, мы можем написать функцию двухмерного поворота, которая принимает координаты точки и угол поворота, и возвращает координаты смещённой точки:

Применяя эту функцию ко всем трём точкам, мы получим следующую картину:

Операции с синусами и косинусами работают довольно медленно, но так как мы делаем расчёты лишь для трёх точек, это будет нормально работать даже на старом «железе» (прим. переводчика: в случаях, когда предполагается интенсивное использование тригонометрических функций, для ускорения вычислений, в памяти организуют таблицы значений для каждой функции и рассчитывают их во время запуска приложения. Затем при вычислении той или иной тригонометрической функции просто производится обращение к таблице).

Пусть теперь наш корабль выглядит вот так:

Теперь старый подход будет слишком медленным, так как надо будет поворачивать довольно большое количество точек. Одно из элегантных решений данной проблемы будет звучать так — «Что если вместо поворота каждой точки модели корабля, мы повернём координатную решётку нашей модели?»

Как это работает? Давайте посмотрим внимательнее, что собой представляют координаты.
Когда мы говорим о точке с координатами (3, 2), мы говорим, что её местоположение находится в трех шагах от точки отсчёта по координатной оси X, и двух шагах от точки отсчёта по координатной оси Y.

По-умолчанию координатные оси расположены так: вектор координатной оси X (1, 0), вектор координатной оси Y (0, 1). И мы получим расположение: 3(1, 0) + 2(0, 1). Но координатные оси не обязательно должны быть в таком положении. Если мы повернём координатные оси, в это-же время мы повернём все точки в координатной решётке.

Чтобы получить повернутые оси X и Y мы применим тригонометрические функции, о которых говорили выше. Если мы поворачиваем на 49 градусов, то новая координатная ось X будет получена путём поворота вектора (0, 1) на 49 градусов, а новая координатная ось Y будет получена путём поворота вектора (0, 1) на 49 градусов. Итак вектор новой оси X у нас будет равен (0.66, 0.75), а вектор новой оси Y будет (-0.75, 0.66). Сделаем это вручную для нашей простой модели из трёх точек, чтобы убедиться, что это работает так, как нужно:

Координаты верхней точки (0, 2), что означает, что её новое местоположение находится в 0 на новой (повёрнутой) оси X и 2 на новой оси Y:

0*(0.66,0.75) + 2*(-0.75, 0.66) = (-1.5, 1.3)

Нижняя левая точка (-1, -1), что означает, что её новое местоположение находится в -1 на повернутой оси X, и -1 на повернутой оси Y:

-1*(0.66,0.75) + -1*(-0.75, 0.66) = (0.1, -1.4)

Нижняя правая точка (1, -1), что означает её новое местоположение находится в 1 на повернутой оси X, и -1 на повернутой оси Y

1*(0.66,0.75) + -1*(-0.75, 0.66) = (1.4, 0.1)

Мы показали, как координаты корабля отображаются в другой координатной сетке с повернутыми осями (или «базисными векторами»). Это удобно в нашем случае, так как избавляет нас от необходимости применять тригонометрические преобразования к каждой из точек модели корабля.

Каждый раз, когда мы изменяем базисные вектора (1, 0) и (0, 1) на (a, b) и (c, d), то новая координата точки (x, y) может быть найдена с помощью выражения:

Обычно базисные вектора равны (1, 0) и (0, 1) и мы просто получаем x(1, 0) + y(0, 1) = (x, y), и нет необходимости заботиться об этом дальше. Однако, важно помнить, что мы можем использовать и другие базисные вектора, когда нам это нужно.

Матрицы

Матрицы похожи на двухмерные вектора. Например, типичная 2×2 матрица, может выглядеть так:

Когда вы умножаете матрицу на вектор, вы суммируете скалярное произведение каждой строки с вектором, на который происходит умножение. Например, если мы умножаем вышеприведённую матрицу на вектор (x, y), то мы получаем:

Будучи записанным по-другому, это выражение выглядит так:

Выглядит знакомо, не так-ли? Это в точности такое-же выражение, которые мы использовали для смены базисных векторов. Это означает, что умножая 2×2 матрицу на двухмерный вектор, мы тем самым меняем базисные вектора. Например, если мы вставим стандартные базисные вектора в (1, 0) и (0, 1) в колонки матрицы, то мы получим:

Это единичная матрица, которая не даёт эффекта, который мы можем ожидать от нейтральных базисных векторов, которые мы указали. Если-же мы повернём базисные вектора на 49-градусов, то мы получим:

Эта матрица будет поворачивать двухмерный вектор на 49 градусов против часовой стрелки. Мы можем сделать код нашей игры Asteriods более элегантным, используя матрицы вроде этой. Например, функция поворота нашего корабля может выглядеть так:

Однако, наш код будет ещё более элегантным, если мы сможем также включить в эту матрицу перемещение корабля в пространстве. Тогда у нас будет единая структура данных, которая будет заключать в себе и применять информацию об ориентации объекта и его местоположении в пространстве.

К счастью есть способ добиться этого, хоть это и выглядит не очень элегантно. Если мы хотим переместиться с помощью вектора (e, f), мы лишь включаем его в нашу матрицу преобразования:

И добавляем дополнительную единицу в конец каждого вектора, определяющего местоположение объекта, например так:

Теперь, когда мы перемножаем их, мы получаем:

(a, c, e) • (x, y, 1) + (b, d, f) • (x, y, 1) + (0, 0, 1) • (x, y, 1)

Что, в свою очередь, может быть записано как:

x(a, b) + y(c, d) + (e, f)

Теперь у нас есть полный механизм трансформации, заключённый в одной матрице. Это важно, если не принимать в расчёт элегантность кода, так как с ней мы теперь можем использовать все стандартные манипуляции с матрицами. Например перемножить матрицы, чтобы добавить нужный эффект, или мы можем инвертировать матрицу, чтобы получить прямо противоположное положение объекта.

Трехмерные матрицы

Матрицы в трехмерном пространстве работают так-же как и в двухмерном. Я приводил примеры с двухмерными векторами и матрицами, так как их просто отобразить с помощью дисплея, показывающего двухмерную картинку. Нам просто надо определить три колонки для базисных векторов, вместо двух. Если базисные вектора это (a,b,c), (d,e,f) and (g,h,i) то наша матрица будет выглядеть так:

Если нам нужно перемещение (j,k,l), то мы добавляем дополнительную колонку и строку, как говорили раньше:

И добавляем единицу [1] в вектор, как здесь:

Вращение в двухмерном пространстве

Так как в нашем случае у нас только одна ось вращения (расположенная на дисплее), единственное, что нам надо знать, это угол. Я говорил об этом ранее, упоминая, что мы можем применять тригонометрические функции для реализации функции двухмерного вращения наподобие этой:

Более элегантно это можно выразить в матричной форме. Чтобы определить матрицу, мы можем применить эту функцию к осям (1, 0) и (0, 1) для угла Θ, а затем включить полученные оси в колонки нашей матрицы. Итак, начнём с координатной оси X (1, 0). Если мы применим к ней нашу функцию, мы получим:

(1*cos(Θ) — 0*sin(Θ), 1*sin(Θ) + 0*cos(Θ)) = (cos(Θ), sin(Θ))

Затем, мы включаем координатную ось Y (0, 1). Получим:

(0*cos(Θ) — 1*sin(Θ), 0*sin(Θ) + 1*cos(Θ)) = (-sin(Θ), cos(Θ))

Включаем полученные координатные оси в матрицу, и получаем двухмерную матрицу вращения:

Применим эту матрицу к Сюзанне, мартышке из графического пакета Blender. Угол поворота Θ равен 45 градусов по часовой стрелке.

Как видите — это работает. Но что если нам надо осуществить вращение вокруг точки, отличной от (0, 0)?
Например, мы хотим вращать голову мартышки вокруг точки, расположенной в её ухе:

Чтобы сделать это, мы можем начать с создания матрицы перемещения (translation matrix) T, которая перемещает объект из начальной точки в точку вращения в ухе мартышки, и матрицу вращения R, для вращения объекта вокруг начальной точки. Теперь для вращения вокруг точки, расположенной в ухе, мы можем сперва переместить точку в ухе на место начальной точки, с помощью инвертирования матрицы T, записанной как T -1 . Затем, мы вращаем объект вокруг начальной точки, с помощью матрицы R, а затем применяем матрицу T для перемещения точки вращения назад, к своему исходному положению.
Ниже дана иллюстрация к каждому из описанных шагов:

Это важный шаблон, который мы будем применять позднее — применение вращения для двух противоположных трансформаций позволяет нам вращать объект в другом «пространстве». Что очень удобно и полезно.

Теперь рассмотрим трёхмерное вращение.

Трёхмерное вращение

Вращение вокруг оси Z работает по тому-же принципу, что и вращение в двухмерном пространстве. Нам лишь нужно изменить нашу старую матрицу, добавив к ней дополнительную колонку и строку:

Применим эту матрицу к трехмерной версии Сюзанны, мартышки из пакета Blender. Угол поворота Θ пусть будет равен 45 градусов по часовой стрелке.

То-же самое. Вращение только вокруг оси Z ограничивает нас, как насчёт вращения вокруг произвольной оси?

Вращение, определяемое осью и углом (Axis-angle rotation)

Представление вращения, определяемого осью и углом, также известно как вращение в экспоненциальных координатах, параметризованное вращением двух величин. Вектора, определяющего вращение направляющей оси (прямая линия) и угла, описывающего величину поворота вокруг этой оси. Вращение осуществляется согласно правилу правой руки.

Итак, вращение задаётся двумя параметрами (axis, angle), где axis — вектор оси вращения, а angle — угол вращения. Этот приём довольно прост и являет собой отправную точку для множества других операций вращения, с которыми я работаю. Как практически применить вращение, определяемое осью и углом?

Допустим мы имеем дело с осью вращения, показанной на рисунке ниже:

Мы знаем как вращать объект вокруг оси Z, и мы знаем как вращать объект в других пространствах. Итак, нам лишь надо создать пространство, где наша ось вращения будет являться осью Z. И если эта ось будет осью Z, то что будет являться осями X и Y? Займемся вычислениями сейчас.

Чтобы создать новые оси X и Y нам нужно лишь выбрать два вектора, которые перпендикулярны новой оси Z и перпендикулярны друг другу. Мы уже говорили ранее о векторном умножении, которое берёт два вектора и даёт в итоге перпендикулярный им вектор.

У нас есть один вектор сейчас, это ось вращения, назовём его A. Возьмём теперь случайный другой вектор B, который находится не в том-же направлении, что и вектор A. Пусть это будет (0, 0, 1) к примеру.

Теперь мы имеем ось вращения A и случайный вектор B, мы можем получить нормаль C, через векторное произведение A и B. С перпендикулярен векторам A и B. Теперь мы делаем вектор B перпендикулярным векторам A и C через их векторное произведение. И всё, у нас есть все нужные нам оси координат.

На словах это звучит сложно, но довольно просто выглядит в коде или будучи показанным в картинках.
Ниже показано, как это выглядит в коде:

Тут показана иллюстрация для каждого шага:

Теперь, имея информацию о новых координатных осях, мы можем составить матрицу M, включив каждую ось как колонку в эту матрицу. Нам надо убедиться, что вектор A является третьей колонкой, чтобы он был нашей новой осью координат Z.

Теперь это похоже на то, что мы делали для поворота в двухмерном пространстве. Мы можем применить инвертированную матрицу M, чтобы переместиться в новую систему координат, затем произвести вращение, согласно матрице R, чтобы повернуть объект вокруг оси Z, затем применить матрицу M, чтобы вернуться в исходное координатное пространство.

Теперь мы можем вращать объект вокруг произвольной оси. В конце концов мы можем просто создать матрицу T = T = M -1 RM и использовать её много раз, без дополнительных усилий с нашей стороны. Есть более эффективные способы конвертирования вращений, определяемых осью и углом во вращения, определяемые матрицами. Просто описанный нами подход показывает многое из того, о чём мы говорили ранее.

Вращение, определяемое осью и углом, возможно, самый интуитивно понятный способ. Применяя его, очень легко инвертировать поворот, поменяв знак у угла, и легко интерполировать, путём интерполяции угла. Однако тут есть серьёзное ограничение, и заключается оно в том, что такое вращение не является суммирующим. То есть вы не можете комбинировать два вращения, определяемых осью и углом в третье.
Вращение, определяемое осью и углом — хороший способ для начала, но оно должно быть преобразовано во что-то другое, чтобы использоваться в более сложных случаях.

Эйлеровские углы

Эйлеровские углы представляют собой другой способ вращения, заключающийся в трёх вложенных вращениях относительно осей X, Y и Z. Вы, возможно, сталкивались с их применением в играх, где камера показывает действие от первого лица, либо от третьего лица.

Допустим вы играете в шутер от первого лица и вы повернулись на 30 градусов влево, а затем посмотрели на 40 градусов вверх. В конце-концов в вас стреляют, попадают, и, в результате удара, камера поворачивается вокруг своей оси на 45 градусов. Ниже показано вращение с помощью углов Эйлера (30, 40, 45).

Углы Эйлера — удобное и простое в управлении средство. Но у этого способа есть два недостатка.

Первый, это вероятность возникновения ситуации под названием «блокировка оси» или «шарнирный замок» (gimbal lock). Представьте, что вы играете в шутер от первого лица, где вы можете посмотреть влево, вправо, вверх и вниз или повернуть камеру вокруг зрительной оси. Теперь представьте, что вы смотрите прямо вверх. В этой ситуации попытка взглянуть налево или направо будет аналогична попытке вращения камеры. Всё что мы можем вы этом случае, это вращать камеру вокруг своей оси, либо посмотреть вниз. Как вы можете представить, это ограничение делает непрактичным применение углов Эйлера в лётных симуляторах.

Второе — интерполяция между двумя эйлеровскими углами вращения не даёт кратчайшего пути между ними.
Например, у вас две интерполяции между двумя одинаковыми вращениями. Первая использует интерполяцию эйлеровского угла, вторая использует сферическую линейную интерполяцию (spherical linear interpolation (SLERP)), чтобы найти кратчайший путь.

Итак, что-же больше подойдет для интерполяции вращений? Может быть матрицы?

Вращение с помощью матриц

Как мы уже говорили ранее, матрицы вращения хранят в себе информацию о трёх осях. Это означает, что интерполяция между двумя матрицами лишь линейно интерполирует каждую ось. В результате это даёт нам эффективный путь, то так-же привносит новые проблемы. Например, тут показаны два вращения и одно интерполированное полу-вращение:

Как вы можете заметить, интерполированное вращение значительно меньше, чем любое из исходных вращений, и две оси более не перпендикулярны друг другу. Это логично, если вдуматься — середина отрезка, соединяющего любые две точки на сфере будет расположена ближе к центру сферы.

Это в свою очередь порождает известный «эффект фантика» (candy wrapper effect), при применении скелетной анимации. Ниже показана демонстрация этого эффекта на примере кролика из нашей игры Overgrowth (прим. переводчика: обратите внимание на середину туловища кролика).

Вращение, основанное на матричных операциях, очень полезно, так как они могут аккумулировать вращения без всяких проблем, вроде блокировки оси (gimbal lock), и может очень эффективно применяться к точкам сцены. Вот почему поддержка вращения на матрицах встроена в графические карты. Для любого типа трёхмерной графики матричный формат вращения — это всегда итоговый применяемый способ.

Однако, как мы уже знаем, матрицы не очень хорошо интерполируются, и они не столь интуитивно понятны.

Итак, остался только один главный формат вращения. Последний, но тем не менее, важный.

Кватернионы

Что-же такое кватернионы? Если очень кратко, то это альтернативный вариант вращения, основанный на оси и угле (axis-angle rotation), который существует в пространстве.

Подобно матрицам они могут аккумулировать вращения, то есть вы можете составлять из них цепочку вращений, без опаски получить блокировку оси (gimbal lock). И в то-же время, в отличие от матриц, они могут хорошо интерполироваться из одного положения в другое.

Являются-ли кватернионы лучшим решением, нежели остальные способы вращений (rotation formats)?
На сегодняшний день они комбинируют все сильные стороны других способов вращений. Но у них есть два слабых места, рассмотрев которые, мы придём к выводу, что кватернионы лучше использовать для промежуточных вращений. Итак, каковы недостатки кватернионов.

Во-первых кватернионы непросто отобразить на трёхмерном пространстве. И мы вынуждены всегда реализовывать вращение более простым способом, а затем конвертировать его. Во-вторых, кватернионы не могут эффективно вращать точки, и мы вынуждены конвертировать их в матрицы, чтобы повернуть значительное количество точек.

Это означает, что вы скорее всего не начнете или не закончите серию вращений с помощью кватернионов. Но с их помощью можно реализовать промежуточные вращения более эффективно, нежели при применении любого другого подхода.

«Внутренняя кухня» механизма кватернионов не очень понятна и не интересна мне. И, возможно, не будет интересна и вам, если только вы не математик. И я советую вам найти библиотеки, которые работают с кватернионами, чтобы облегчить вам решение ваших задач с их помощью.

Математические библиотеки «Bullet» или «Blender» будут хорошим вариантом для начала.

источники:

http://skysmart.ru/articles/mathematic/radius-okruzhnosti

http://b4.cooksy.ru/articles/kak-nayti-okruzhnost-vektora

Радиус-вектор

Можно встретить удачные и неудачные жилые массивы: в первых ветра практически нет, независимо от погоды, а во вторых, наоборот, есть почти всегда. Это зависит от того, были ли учтены при проектировании направление и сила ветра, который преимущественно дует в данном районе. Эту информацию нужно использовать при строительстве не только жилых районов, но и аэродромов, дорог и т. д.

Чтобы ее получить, на основании многолетних наблюдений, наносят направления ветра на так называемую розу ветров (см. рис. 1). Чем чаще дует ветер в данном направлении, тем дальше соответствующая точка от точки  (см. рис. 2).

Рис. 1. Роза ветров

Рис. 2. Чем чаще дует ветер в данном направлении, тем дальше соответствующая точка от точки

Рассмотрим декартову систему координат с центром в точке  на плоскости. Соединяя точку  с точкой розы ветров вдоль выбранного направления  получаем вектор, который называется радиус-вектором (см. рис. 3) (чем длиннее радиус-вектор, тем чаще ветер в данной местности дует вдоль его направления).

Рис. 3. Радиус-вектор

Название «радиус-вектор» понятно – как и радиус окружности, начало любого радиус-вектора зафиксировано в одной точке, центре (начале координат) (см. рис. 4).

Рис. 4. Начало любого радиус-вектора зафиксировано в начале координат

Координаты радиус-вектора

Как описать этот вектор алгебраически? Любой точке на плоскости будет соответствовать ровно один радиус-вектор (см. рис. 5) (говорят, что точка  и радиус-вектор  однозначно задают друг друга).

Рис. 5. Любой точке на плоскости соответствует ровно один радиус-вектор

Сама же точка однозначно задается своими координатами. Т. е. координаты  точки  задают и саму точку, и радиус-вектор  (см. рис. 6).

Рис. 6. Координаты  точки  задают и саму точку, и радиус-вектор

Но тогда почему бы координаты точки  не принять и за координаты радиус-вектора ? Именно так мы и поступим. Будем называть координатами радиус-вектора координаты  его конца :

Координаты произвольного вектора

Мы говорили, что векторы равны (см. рис. 7), если у них равны длины и они сонаправлены:

Рис. 7. Равные векторы  и

Понятно, что у равных векторов должны быть равны и координаты:

Рассмотрим произвольный вектор  (см. рис. 8).

Рис. 8. Произвольный вектор

Построим вектор  так, чтобы:

Получаем параллелограмм  (см. рис. 9) (по признаку – две противоположные стороны равны и параллельны).

Рис. 9. Параллелограмм

Векторы  (по построению), значит, координаты вектора  равны координатам радиус-вектора  и, соответственно, равны координатам точки :

Как видим, любому вектору на плоскости можно поставить в соответствие упорядоченную пару чисел – его координаты.

Однозначное определение координат вектора

Понятно, что координаты вектора должны однозначно определяться координатами его конца и начала (т. к. начало и конец задают сам вектор).Попробуем определить, как именно.

Пусть точки  и  из нашего предыдущего примера имеют координаты, соответственно,  и . Вычислим координаты точки , такой что радиус-вектор  (см. рис. 10).

Рис. 10. Радиус-вектор , где ,

Чтобы из точки  попасть в точку , нужно передвинуться на  единиц вправо и на  вверх (см. рис. 11).

Рис. 11. Путь из точки  в точку

Такое же перемещение из начала координат приведет нас в точку  (см. рис. 12).

Рис. 12. Путь из точки  в точку

Значит, координаты радиус-вектора . Тогда и координаты равного ему вектора .

Уберем вспомогательный радиус-вектор  и попробуем определить координаты вектора  без его помощи. Чтобы переместиться их точки  в точку , нам нужно переместиться на  единиц вправо и на  вверх – это и будут координаты вектора  (см. рис. 13).

Рис. 13. Чтобы переместиться их точки  в точку , нужно переместиться на  единиц вправо и на  вверх


Связанные и свободные векторы

Чтобы определить координаты радиус-вектора , нам было достаточно двух чисел – координат точки . Чтобы определить координаты произвольного вектора  – уже четыре числа: координаты точек  и . Есть ли в этом противоречие?

Конечно, нет. В определении радиус-вектора уже «спрятаны» две дополнительные координаты – его начало всегда совпадает с точкой , координаты которой мы знаем –. Если перемещение из точки  в точку  по горизонтали мы искали как разность: , то из точки  в точку , как . Но т. к. вычитание нуля не меняет число, то мы приравняли координаты радиус-вектора к координатам его конца (в этом удобство радиус-векторов).

Однако все же здесь есть о чем поговорить. Мы поставили в соответствие любому вектору на плоскости упорядоченную пару чисел – его координаты. Однако, вектор – направленный отрезок, который задается началом и концом. Но в этом случае, чтобы определить вектор, нужно знать четыре числа – координаты начала и конца. Так, набором из скольких чисел определяется вектор – из  или ?

Рассмотрим пример из физики. Если в задаче мы можем рассматривать тело как материальную точку, то суммируем силы, которые на него действуют, независимо от точек их приложения (см. рис. 14).

Рис. 14. Если тело можно рассматривать как материальную точку, то можно суммировать силы, которые на него действуют, независимо от точек их приложения

Если же тело нельзя рассматривать как материальную точку (например, при вычислении вращающего момента), то складывать силы без учета точек их приложения уже нельзя (см. рис. 15).

Рис. 15. Если тело нельзя рассматривать как материальную точку, то нельзя суммировать силы, которые на него действуют, без учета точек их приложения

В первом случае силу можно рассматривать как пример так называемого свободного вектора, у которого начальную точку можно выбирать произвольно (или, что то же самое, которую можно произвольно переносить параллельно самим себе).

А во втором – уже как пример связанного вектора, у которого начальная точка фиксирована.

Понятно, что свободные векторы  и   – это не просто равные, а одинаковые векторы. А связанные векторы  и  – нет (т. к. у них разные начала). Поэтому для задания свободного вектора нужно гораздо меньше информации, чем для задания связанного. Действительно, связанный вектор можно задать двумя элементами: точкой отсчета и свободным вектором, который от нее откладывается (отсюда  числа).

Все операции для свободных и связанных векторов определены одинаково. Единственное, для связанных векторов некоторые операции не определены, например сложение векторов с разными началами. Поэтому часто тип вектора явно не указывается.

В математике мы будем работать именно со свободными векторами (если не оговорено иное).


Нахождение координат вектора

Рассмотрим вектор  (см. рис. 16).

Рис. 16. Вектор

Движемся из начала в конец:  единица вправо и  единицы вверх. Координаты вектора (см. рис. 17):

Рис. 17. Вектор  

Чтобы попасть из точки  в точку , двигаемся на  единицы вправо и на  вниз. Направление вниз у нас отрицательное, следовательно, координаты вектора (см. рис. 18):

Рис. 18. Вектор

Чтобы попасть из точки  в точку , двигаемся на  единиц влево (а это отрицательное направление оси ) и на  вверх (положительное направление). Координаты вектора (см. рис. 19):

Рис. 19. Вектор

Правило определения координат вектора по координатам его концов

Как мы уже сказали, у равных векторов координаты равны. Поэтому при определении координат неважно, где находится вектор, важны его длина и направление.

Мы сказали, что вектор однозначно задается началом и концом. Значит, по координатам этих двух точек можно определить координаты вектора. Как это сделать?

Рассмотрим вектор , где , и найдем его координаты (см. рис. 20).

Рис. 20. Вектор ,

Движемся из точки  на  единицы вправо (положительное направление) и на  вверх (тоже положительное направление), получаем координаты вектора (см. рис. 21):

Рис. 21. Вектор

Абсцисса точки  равна , а точки  равна . Мы двигались вправо на  единицы, потому что . Это и есть первая координата вектора. Аналогично разность ординат двух точек: . Это и есть вторая координата.

Получаем правило определения координат вектора по координатам его концов: координаты вектора равны разности соответствующих координат конца и начала вектора:

Вернемся к трем рассмотренным векторам из предыдущего примера.

1. :

Тогда:

2. :

Тогда:

3. :

Тогда:

Итак, чтобы найти координаты вектора, надо из координат конца вычесть координаты начала.

Пользуясь этим алгоритмом, несложно найти координаты нуль-вектора (у которого, напомним, начало и конец совпадают) – они равны .

Пусть даны координаты вектора . Изобразим его (см. рис. 22).

Рис. 22. Вектор

Мы не знаем, где он находится. Начало этого вектора может быть в любой точке. Например, он может быть радиус-вектором и начинаться в точке . Тогда его конец будет в точке .

Рис. 23. Вектор , где

Или он может начинаться в точке . Прибавим к координатам начала координаты векторы:

Координаты точки  (см. рис. 24).

Рис. 24. Вектор , где

Обратите внимание, что мы пользуемся для нахождения координат конца следствием из сформулированного правила:

  

Теперь у нас есть две интерпретации вектора:

  1. геометрическая: вектор – это направленный отрезок;
  2. алгебраическая: если задана система координат, то вектор на плоскости – это упорядоченная пара чисел.

Теперь мы можем использовать обе интерпретации при работе с векторами.

Длина вектора

Раз вектор однозначно определяется своими координатами, то по ним можно вычислить и главную его характеристику – длину. Вспомним, что длина вектора равна длине отрезка с теми же концами.

Но на прошлом уроке мы доказывали, что длина отрезка , у которого , равна:

Но  – координаты вектора . Получаем, что длина вектора  равна квадратному корню из суммы квадратов его координат:

Эту же формулу можно получить и по-другому: если построить прямоугольный треугольник, у которого вектор – это гипотенуза, то его катеты – это длины проекций вектора на оси координат, т. е. модули координат вектора (см. рис. 25).

Рис. 25. Прямоугольный треугольник, у которого вектор – гипотенуза, а катеты – модули координат вектора

Тогда достаточно использовать теорему Пифагора, чтобы получить формулу:

Например, длина вектора  равна:

Координаты суммы векторов

Рассмотрим теперь различные операции с векторами. Мы уже умеем складывать векторы геометрически, используя правила треугольника или параллелограмма.

Вот два вектора (см. рис. 26): начало вектора  имеет координаты , а конец – ; начало вектора  имеет координаты , конец – .

Рис. 26. Векторы  и

Нетрудно посчитать координаты каждого вектора: из координат конца вычитаем координаты начала:

Чтобы сложить эти два вектора по правилу треугольника, нужно перенести их так, чтобы конец одного совместился с началом другого. Переместим вектор  так, чтобы его начало оказалось в начале координат. Его конец переместится тогда в точку  (см. рис. 27).

Рис. 27. Вектор  перемещен так, что его начало находится в начале координат

Переместим в эту точку начало вектора  (см. рис. 28).

Рис. 28. Начало вектора  перемещено в конец вектора  – точку

Получим новый вектор, равный сумме  по правилу треугольника (см. рис. 29).

Рис. 29. Сложение векторов по правилу треугольника

Т. к. новый вектор является радиус-вектором, то его координаты совпадают с координатами его конца. Как же найти эти координаты?

Найдем координаты конца вектора . Мы знаем координаты начала этого вектора – . Знаем координаты самого вектора . И знаем, что координаты вектора – это координаты конца минус координаты начала:

Тогда:

Получаем координаты точки . И, соответственно, координаты вектора:

Можно заметить, что координаты вектора суммы равны сумме координат исходных векторов: , . Это не случайность.

Пусть у нас есть произвольные векторы с координатами  и  (см. рис. 30).

Рис. 30. Произвольные векторы  и

Повторим те же операции, что и в рассмотренном примере: первый вектор отложим от начала координат, второй – от конца первого (см. рис. 31).

Рис. 31. Вектор  отложен от начала координат, вектор  – от конца вектора

Тогда точка , точка , координаты вектора :

Получаем:

Итак, чтобы найти координаты суммы двух векторов, нужно сложить их соответствующие координаты:

Пример 1. Найти сумму векторов  и .

Решение.

Сумма векторов:

Ответ: .

Несложно доказать, что координаты суммы нескольких векторов – это суммы соответствующих координат всех векторов (например, если складываем три вектора – складываем любые два из них, получаем сумму уже двух векторов, их координаты снова нужно сложить – в итоге получаем сумму координат всех трех векторов).

Пример 2. Найти сумму векторов ,  и .

Решение.

Получаем:

Ответ: .

Координаты разности векторов

С вычитанием дело обстоит ничуть не сложнее. Если для векторов  выполняется:

То:

При этом:

Аналогично:

Получаем, что координаты разности двух векторов равны разностям соответствующих координат векторов:

Пример 3. Найти разность векторов  и .

Решение.

Получаем:

Ответ: .

Координаты вектора, умноженного на число

Что происходит с координатами вектора при умножении их на число? Умножим вектор  на . Вектор  в два раза длиннее вектора  и направлен в ту же сторону. Нетрудно увидеть, что каждая его координата тоже в два раза больше, чем у вектора  (см. рис. 32):

Рис. 32. Вектор  в два раза длиннее вектора

Чтобы умножить вектор на число, нужно обе координаты вектора умножить на это число:

Это, скорее, геометрическое рассуждение. Но тот же результат можно получить и алгебраически:

Теперь мы можем сказать, что вектор:

Свойства операций с векторами

В качестве самостоятельного упражнения докажите следующие свойства операций с векторами:

  1.  

При объяснении попробуйте это сделать с двух точек зрения:

  1. геометрической (с помощью изображения векторов как направленных отрезков, правил треугольника и параллелограмма, геометрического смысла умножения вектора на число);
  2. алгебраической (с помощью координат, правил сложения координат векторов, умножения координат на число).

Чтобы проверить себя или узнать доказательство свойств, которые вызвали у вас затруднения, ознакомьтесь с доказательствами ниже.


Доказательство свойств

1. .

В координатах все просто:

Верно.

Геометрическое доказательство также не составит труда, если помнить, что у нуль-вектора начало и конец совпадают (дальше можно использовать правило треугольника для сложения векторов) (см. рис. 33):

Рис. 33. Правило треугольника

2. .

Геометрическое доказательство можно провести с использованием правила параллелограмма (совместив начала векторов) – в обоих случаях получится один и тот же параллелограмм, а значит, и диагонали будут одинаковыми (см. рис. 34).

Рис. 34. Правило параллелограмма

В координатах все тоже несложно:

3. .

Геометрическое доказательство можно провести, дважды используя правило треугольника (см. рис. 35).

Рис. 35. Использование правила треугольника дважды

По пути мы начали доказывать обобщение правила треугольника – правило многоугольника. Сумма векторов, конец каждого из которых является началом следующего, – это вектор, соединяющий начало первого вектора с концом последнего.

В координатах все легко:

Верно.

4. .

В координатах все легко:

Геометрически: при умножении на число векторы сонаправлены (значит, правый и левый векторы сонаправлены) (см. рис. 36).

Рис. 36. Сонаправленные векторы

Длины обоих векторов будут равны:

Значит, векторы равны (равны длины и сонаправлены).

5. .

В координатах:

Аналогично:

Геометрически: при умножении на число векторы сонаправлены (значит, левый и правый векторы сонаправлены). Длина левого вектора:

Длина правого вектора:

Значит, векторы равны (равны длины и сонаправлены).

6. .

Геометрически: сначала складываем векторы, затем умножаем на  – удлиняем диагональ в  раз. Справа – сначала удлиняем стороны параллелограмма, затем строим диагональ – получается та же диагональ, значит, векторы равны (см. рис. 37).

Рис. 37. Равные векторы  и

В координатах:


Список литературы

  1. Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия, 9 класс. Учебник. – М.: «Просвещение», 2017.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В./Под ред. Садовничего В.А. Геометрия, 9 класс. Учебник. – М.: «Просвещение», 2018.
  3. Мерзляк А.Г., Полонский В.Б., Якир М.С., Геометрия, 9 класс. Учебник. – М.: издательский центр «ВЕНТАНА-ГРАФ», 2018.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал yaklass.ru (Источник)
  2. Интернет-портал ru.solverbook.com (Источник)
  3. Интернет-портал cleverstudents.ru (Источник)

Домашнее задание

1. Найти координаты и длину вектора , если .

2. Найти координаты векторов, если .

3. Упростить выражение:

Радиус-вектор – это вектор, начало которого совпадает с точкой (0 ; 0) — началом координат.

Почему радиус-вектор так называют

Если начертить окружность с центром в точке (0 ; 0), этот вектор станет её радиусом.

Любой вектор можно превратить в радиус-вектор. Для этого сдвигаем его так, чтобы начало этого вектора совместить с точкой (0 ; 0).

Вектор, изображенный красным цветом, параллельным переносом сдвинули к началу координат, получили радиус-вектор, обозначенный черным цветом

Рис. 1. Вектор (красный) сдвинули параллельным переносом так, чтобы его начало совместилось с началом координат, получили радиус-вектор (черный)

При этом, помним: перемещать вектор можно, а поворачивать его нельзя!

Чем радиус-вектор удобен для использования

Чтобы найти координаты вектора, нужно найти разности соответственных координат точек, расположенных в конце и начале вектора.

Для радиус-вектора вычислять координаты не нужно. Можно воспользоваться правилом:

Координаты радиус-вектора  — это координаты его конечной точки.

Координаты конечной точки радиус-вектора численно совпадают с координатами радиус-вектора

Рис. 2. Координаты конечной точки вектора (левая часть рисунка) совпадают с координатами вектора (правая часть рисунка)

Сравните координаты конечной точки и координаты вектора на рисунке 2.

Кривые второго порядка

Контрольные
вопросы:

  1. Окружность.

  2. Эллипс.

  3. Гипербола.

  4. Парабола.

  5. Общее уравнение
    кривой второго порядка.

1. Окружность
– это множество всех точек плоскости,
равноудаленных от данной точки (центра)
на данное расстояние.

Если R
– радиус окружности, точка С
ее центр, то уравнение окружности имеет
вид

. (8)

Пример
4.
найти
координаты центра и радиус окружности
.

Решение.

Разделим исходное
уравнение на 2, сгруппируем выражения
относительно х
и у:

.

Дополним выражения,
стоящие в скобках до полных квадратов:

или

.

Таким образом,
координаты центра окружности
,
радиус окружности равен.

2.
Эллипсом
называется множество всех точек
плоскости, сумма расстояний которых до
двух данных точек, называемых фокусами,
есть величина постоянная (ее обозначают
через ),
причем эта постоянная больше расстояния
между фокусами.

Если оси координат
расположены по отношению к эллипсу так,
как на рисунке 11, а фокусы эллипса
находятся на оси Ох
на равных расстояниях от начала координат
в точках
и,
то получится простейшее (каноническое)уравнение
эллипса
:

. (9)

Здесь а
– большая, b
– малая полуось, причем а,
b
и с
– половина расстояния между фокусами)
связаны соотношением
.

Рис. 6

Форма эллипса
(мера его сжатия) характеризуется его
эксцентриситетом
.

Расстояния
некоторой точки эллипса М от его фокусов
называются фокальными
радиус-векторами

этой точки. Их обычно обозначают
и.
Для любой точки эллипса в силу определения.

Фокальные
радиус-векторы выражаются через абсциссу
точки эллипса по формулам:
(правый фокальный радиус-вектор),(левый фокальный радиус-вектор).

3.
Гиперболой

называется множество всех точек
плоскости, абсолютная величина разности
расстояний которых до двух данных точек,
называемых фокусами,
есть величина постоянная (ее обозначают
через ),
причем эта постоянная меньше расстояния
между фокусами.

Если поместить
фокусы гиперболы в точках
и,
то получимканоническое
уравнение гиперболы

, (10)

где
.
Гипербола состоит из двух ветвей и
расположена симметрично относительно
осей координат. Точкииназываются вершинами гиперболы. Отрезоктакой, что,
называетсядействительной
осью
гиперболы,
а отрезок
такой, что,
мнимой осью.
При этом
.

Прямая называется
асимптотой
гиперболы, если расстояние точки М(х;у)
гиперболы этой прямой стремится к нулю
при
или.
Гипербола имеет две асимптоты, уравнения
которых.

На рисунке 7 указано
взаимное расположение гиперболы и ее
асимптот. Отношение
называетсяэксцентриситетом
гиперболы
.

Рис.7

Фокальные
радиус-векторы правой ветви гиперболы:
(правый фокальный радиус-вектор),(левый фокальный радиус-вектор).

Фокальные
радиус-векторы левой ветви гиперболы:
(правый фокальный радиус-вектор),(левый фокальный радиус-вектор).

4.
Параболой

называется множество всех точек
плоскости, равноудаленных от данной
точки, называемой фокусом,
и данной прямой, называемой директрисой.

Если директрисой
параболы является прямая
,
а фокусом – точка,
то уравнение параболы имеет вид

. (11)

Эта парабола
расположена симметрично относительно
оси абсцисс (рис. 8, где
).
Приветви параболы обращены в положительную
сторону.

Рис. 8

Длина фокального
радиус-вектора параболы
определяется по формуле().

5.
Общее уравнение кривой второго порядка
имеет вид

, (12)

где A,
B,
C,
D,
E,
F
– произвольные действительные числа.
Оно определяет на плоскости Оху
эллипс, гиперболу или параболу (с
возможными случаями распада и вырождения
этих кривых) с осями симметрии,
параллельными осям координат:

1) если
,
тогда определяемая этим уравнением
кривая есть эллипс (действительный,
мнимый или выродившийся в точку);

  1. если
    ,
    тогда соответствующая кривая является
    гиперболой;

  2. если
    ,
    тогда уравнение определяет параболу.

Если кривая второго
порядка задана уравнением (12) то, применив
преобразование поворота осей координат
с использованием формул

,
,
(13)

следует при
соответствующем выборе α освободиться
в уравнении от члена с произведением
координат и свести исходное уравнение
к одному из трех вышеперечисленных
типов.

Пример 5.
Привести к каноническому виду уравнение

.

Решение.

1. Преобразуем
данное уравнение, использовав формулы
поворота осей координат:

или

Найдем α из условия
,
т.е. приравняем к нулю коэффициент при.
Получим уравнение.
Отсюда,.

Заметим, что эти
значения
соответствуют двум взаимно перпендикулярным
направлениям. Поэтому, взяввместо,
мы только меняем ролями осии(рис. 9).

Рис. 9

Пусть
,
тогда,;
возьмем положительные значенияsinα
и cosα.
Тогда уравнение принимает вид

или

2. Выражения, стоящие
в скобках, дополним до полных квадратов:

или

.

Приняв за новое
начало точку
,
применим формулы преобразования
координат,
получим

или
(уравнение эллипса).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Если окружность задана уравнением вида

    [{(x - a)^2} + {(y - b)^2} = {R^2},]

найти центр (a;b) и радиус R такой окружности несложно.

Примеры.

Определить по уравнению окружности координаты её центра и радиуса:

    [1){(x - 3)^2} + {(y - 7)^2} = 4;]

    [2){(x + 2)^2} + {(y - 5)^2} = 1;]

    [3){x^2} + {(y + 3)^2} = 9;]

    [4){(x - 6)^2} + {y^2} = 5;]

    [5){x^2} + {y^2} = 11.]

Решение:

    [1){(x - 3)^2} + {(y - 7)^2} = 4;]

a=3, b=7, R²=4.

Таким образом, центр данной окружности — точка (3;7), радиус R=2.

    [2){(x + 2)^2} + {(y - 5)^2} = 1;]

a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

    [3){x^2} + {(y + 3)^2} = 9;]

a=0, b=-3, R²=9.

Центр окружности — (0;-3), радиус R=3.

    [4){(x - 6)^2} + {y^2} = 5;]

a=6, b=0, R²=5.

Центр — в точке (6;0), радиус R=√5.

    [5){x^2} + {y^2} = 11.]

Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

Чтобы найти центр и радиус окружности, заданной уравнением вида

    [{x^2} + {y^2} - 2ax - 2by + c = 0,]

нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

Для этого сначала сгруппируем слагаемые

    [({x^2} - 2ax) + ({y^2} - 2by) + c = 0,]

затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

    [({x^2} - 2ax + {a^2}) - {a^2} + ({y^2} - 2by + {b^2}) - {b^2} + c = 0.]

Отсюда

    [{(x - a)^2} + {(y - b)^2} + c - {a^2} - {b^2} = 0,]

    [{(x - a)^2} + {(y - b)^2} = {a^2} + {b^2} - c.]

При a²+b²-c>0 это уравнение задаёт окружность с радиусом

    [R = sqrt {{a^2} + {b^2} - c} .]

При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

При a²+b²-c<0 нет ни одной точки, удовлетворяющей этому уравнению.

Примеры.

Найти координаты центра и радиус окружности:

    [1){x^2} + {y^2} + 10x - 6y - 15 = 0;]

    [2){x^2} + {y^2} - 5x + 4 = 0;]

    [3)3{x^2} + 3{y^2} - 4x - 9y + 4 = 0.]

Решение:

    [1){x^2} + {y^2} + 10x - 6y - 15 = 0]

Группируем слагаемые

    [({x^2} + 10x) + ({y^2} - 6y) - 15 = 0]

Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

    [{x^2} + 10x = ({x^2} + 2 cdot x cdot 5 + {5^2}) - {5^2}.]

Аналогично

    [{y^2} - 6y = ({y^2} - 2 cdot y cdot 3 + {3^2}) - {3^2}.]

Таким образом,

    [({x^2} + 2 cdot x cdot 5 + {5^2}) - {5^2} + ({y^2} - 2 cdot y cdot 3 + {3^2}) - {3^2} - 15 = 0]

    [{(x + 5)^2} + {(y - 3)^2} - 25 - 9 - 15 = 0]

    [{(x + 5)^2} + {(y - 3)^2} = 49]

Центром этой окружности является точка (-5;3), радиус R=7.

    [2){x^2} + {y^2} - 5x + 4 = 0]

    [({x^2} - 5x) + {y^2} + 4 = 0]

    [({x^2} - 2 cdot x cdot 2,5 + {2,5^2}) - {2,5^2} + {y^2} + 4 = 0]

    [{(x - 2,5)^2} + {y^2} + 4 - 6,25 = 0]

    [{(x - 2,5)^2} + {y^2} = 2,25]

Центр окружности — точка (2,5;0), радиус R=1,5.

    [3)3{x^2} + 3{y^2} - 4x - 9y + 4 = 0]

Разделим обе части уравнения на 3:

    [{x^2} + {y^2} - frac{4}{3}x - 3y + frac{4}{3} = 0]

Далее — аналогично

    [({x^2} - frac{4}{3}x) + ({y^2} - 3y) + frac{4}{3} = 0]

    [({x^2} - 2 cdot x cdot frac{2}{3} + {(frac{2}{3})^2}) - {(frac{2}{3})^2} + ({y^2} - 2 cdot y cdot frac{3}{2} + {(frac{3}{2})^2}) - ]

    [ - {(frac{3}{2})^2} + frac{4}{3} = 0]

    [{(x - frac{2}{3})^2} + {(y - frac{3}{2})^2} - frac{{{4^{backslash 4}}}}{9} - frac{{{9^{backslash 9}}}}{4} + frac{{{4^{backslash 12}}}}{3} = 0]

    [{(x - frac{2}{3})^2} + {(y - frac{3}{2})^2} = frac{{49}}{{36}}]

Центр этой окружности лежит в точке

    [(frac{2}{3};frac{3}{2}),R = frac{7}{6}.]

Понравилась статья? Поделить с друзьями:
  • Валхейм как найти змея
  • Как найти людей с которыми интересно
  • Сайт может быть опасен как исправить
  • Как исправить 3 года мальчику
  • Как найти свой статус в одноклассниках