Найти центр и радиус окружности
найти центр (a;b) и радиус R такой окружности несложно.
Определить по уравнению окружности координаты её центра и радиуса:
Таким образом, центр данной окружности — точка (3;7), радиус R=2.
a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.
Центр окружности — (0;-3), радиус R=3.
Центр — в точке (6;0), радиус R=√5.
Чтобы найти центр и радиус окружности, заданной уравнением вида
нужно дополнить его до полных квадратов, чтобы привести к привычному виду.
Для этого сначала сгруппируем слагаемые
затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)
При a²+b²-c>0 это уравнение задаёт окружность с радиусом
При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).
При a²+b²-c<0 нет ни одной точки, удовлетворяющей этому уравнению.
Найти координаты центра и радиус окружности:
Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:
Как найти радиус и центр окружности
Окружность на плоскости — это множество точек на плоскости равноудаленных от точки центра. На рисунке данная точка обозначена C.
Окружность радиуса R с центром в начале координат представляется уравнением:
Окружность радиуса R с центром в точке C(a;b) представляется уравнением:
Расстояние от центра окружности С(a;b) до точки M(x;y) называется радиусом окружности R (на рисунке красная линия ).
Это уравнение можно записать в виде:
Если уравнение помножить на любое число A, то получим
Примечание
Окружность относится к линии второго порядка, так как представляется уравнением второй степени.
Необходимые условия для этого:
1. Отсутствие в уравнение второй степени члена с произведением xy;
2. Коэффициенты при x 2 и y 2 были равны в уравнение вида:
3. Если выполняется неравенство
Как найти радиус и центр окружности
Уравнение Ax 2 +Bx+Ay 2 +Cy+D=0 если оно удовлетворяет примечаниям (1, 2 и 3), то тогда (a;b) и радиус R окружности можно найти по формулам:
Пример 1
Уравнение 5x 2 -10x+5y 2 +20y-20=0
Здесь
A=5, B=-10, C=20, D=-20
Оно удовлетворяет примечаниям 1, 2 и выполняется неравенство
Решая, получаем что центр есть (1;-2), а радиус R=3
Анимационный график окружности
Пример 2
Уравнение второй степени x 2 +4xy+y 2 =1 не является окружностью, так как в нём есть член 4xy.
Пример 3
Уравнение второй степени 4x 2 +9y 2 =36 не представляет окружность, так как в нём коэффициенты при x 2 и y 2 не равны.
3433
Уравнение окружности
Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.
Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности
Равенство (1) есть уравнение окружности радиуса R с центром в точке С.
Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b) — центр окружности радиуса R. Пусть М(х; у) — произвольная точка этой окружности.
Так как |СМ| = ( sqrt ), то уравнение (1) можно записать так:
(x — a) 2 + (у — b) 2 = R 2 (2)
Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b). Например, уравнение
(x — l) 2 + (y + 3) 2 = 25
есть уравнение окружности радиуса R = 5 с центром в точке (1; —3).
Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид
x 2 + у 2 = R 2 . (3)
Уравнение (3) называют каноническим уравнением окружности.
Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.
Непосредственной подстановкой значения радиуса в уравнение (3) получим
x 2 + у 2 = 49.
Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; —6).
Подставив значение координат точки С и значение радиуса в формулу (2), получим
(х — 3) 2 + (у — (—6)) 2 = 81 или (х — 3) 2 + (у + 6) 2 = 81.
Задача 3. Найти центр и радиус окружности
(х + 3) 2 + (у —5) 2 =100.
Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = —3, b = 5, R = 10. Следовательно, С(—3; 5), R = 10.
Задача 4. Доказать, что уравнение
x 2 + у 2 + 4х — 2y — 4 = 0
является уравнением окружности. Найти ее центр и радиус.
Преобразуем левую часть данного уравнения:
x 2 + 4х + 4— 4 + у 2 — 2у +1—1—4 = 0
(х + 2) 2 + (у — 1) 2 = 9.
Это уравнение представляет собой уравнение окружности с центром в точке (—2; 1); радиус окружности равен 3.
Задача 5. Написать уравнение окружности с центром в точке С(—1; —1), касающейся прямой АВ, если A (2; —1), B(— 1; 3).
Напишем уравнение прямой АВ:
или 4х + 3y —5 = 0.
Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(—1; —1) — центра окружности до прямой 4х + 3y —5 = 0:
Напишем уравнение искомой окружности
(x +1) 2 + (y +1) 2 = 144 /25
Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у) (рис. 105).
Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох, тогда абсцисса и ордината точки М изменяются в зависимости от t
(0 2 = 3 cos 2 t, у 2 = 3 sin 2 t. Складывая эти равенства почленно, получаем
Если окружность задана уравнением вида
найти центр (a;b) и радиус R такой окружности несложно.
Примеры.
Определить по уравнению окружности координаты её центра и радиуса:
Решение:
a=3, b=7, R²=4.
Таким образом, центр данной окружности — точка (3;7), радиус R=2.
a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.
a=0, b=-3, R²=9.
Центр окружности — (0;-3), радиус R=3.
a=6, b=0, R²=5.
Центр — в точке (6;0), радиус R=√5.
Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.
Чтобы найти центр и радиус окружности, заданной уравнением вида
нужно дополнить его до полных квадратов, чтобы привести к привычному виду.
Для этого сначала сгруппируем слагаемые
затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)
Отсюда
При a²+b²-c>0 это уравнение задаёт окружность с радиусом
При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).
При a²+b²-c<0 нет ни одной точки, удовлетворяющей этому уравнению.
Примеры.
Найти координаты центра и радиус окружности:
Решение:
Группируем слагаемые
Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:
Аналогично
Таким образом,
Центром этой окружности является точка (-5;3), радиус R=7.
Центр окружности — точка (2,5;0), радиус R=1,5.
Разделим обе части уравнения на 3:
Далее — аналогично
Центр этой окружности лежит в точке
Skip to content
Как найти радиус и центр окружности
Окружность на плоскости — это множество точек на плоскости равноудаленных от точки центра. На рисунке данная точка обозначена C.
Окружность радиуса R с центром в начале координат представляется уравнением:
Окружность радиуса R с центром в точке C(a;b) представляется уравнением:
Расстояние от центра окружности С(a;b) до точки M(x;y) называется радиусом окружности R (на рисунке красная линия).
Это уравнение можно записать в виде:
Если уравнение помножить на любое число A, то получим
Примечание
Окружность относится к линии второго порядка, так как представляется уравнением второй степени.
Необходимые условия для этого:
1. Отсутствие в уравнение второй степени члена с произведением xy;
2. Коэффициенты при x2 и y2 были равны в уравнение вида:
3. Если выполняется неравенство
Как найти радиус и центр окружности
Уравнение Ax2+Bx+Ay2+Cy+D=0 если оно удовлетворяет примечаниям (1, 2 и 3), то тогда (a;b) и радиус R окружности можно найти по формулам:
Пример 1
Уравнение 5x2-10x+5y2+20y-20=0
Здесь
A=5, B=-10, C=20, D=-20
Оно удовлетворяет примечаниям 1, 2 и выполняется неравенство
Решая, получаем что центр есть (1;-2), а радиус R=3
Анимационный график окружности
Пример 2
Уравнение второй степени x2+4xy+y2=1 не является окружностью, так как в нём есть член 4xy.
Пример 3
Уравнение второй степени 4x2+9y2=36 не представляет окружность, так как в нём коэффициенты при x2 и y2 не равны.
8041
Уравнение окружности
Решение уравнений
Окружность — геометрическое место расположения множества точек, каждая из которых равноудалена от центра окружности. Отрезок, соединяющий любую точку окружности с ее центром, называется радиусом окружности. Величина радиуса равняется половине диаметра — отрезку, который соединяет две точки окружности, проходя через точку ее центра.
Если в координатную плоскость поместить окружность с радиусом R и центром в точке А, а координаты центра обозначим (а;b), координаты любой точки окружности (х;у), то уравнение окружности будет иметь вид: (х — а)2 + (у — b)2 = R2.
Уравнением окружности называется уравнение, в котором радиус окружности, возведенный в квадрат, равняется сумме квадратов разностей между координатами любой точки окружности и координатами ее центра.
Если центр окружности лежит в точке начала координат, квадрат радиуса окружности равняется сумме квадратов координат любой точки окружности. Уравнение будет иметь вид: х2 + у2 = R2.
Зная координаты точки центра и любой точки окружности можно вычислить длину радиуса, что позволит при необходимости рассчитать длину окружности и площадь круга — плоскости, расположенной внутри окружности.
l = 2π • r;
S = 2π • r2,
где l — длина окружности; r — радиус окружности; S — площадь круга; Пи — 3,14.
Воспользовавшись онлайн калькулятором вы сможете быстро рассчитать уравнение окружности, найти радиус окружности. Для этого потребуется лишь ввести заданные координаты точек.
Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.
Уравнение окружности
r2 = (x — h)2 + (y — k)2
где,
- h,k — координаты центра Окружности
- x,y — координаты точки окружности
- r — радиус
Пример
Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)
Решение :
Шаг:1
Подставляем координаты точек в формулу
- (2 — h)2 + (2 — k)2 = r2
- (2 — h)2 + (4 — k)2 = r2
- (5 — h)2 + (5 — k)2 = r2
Шаг :2
Найдем значение k упрощая 1 и 2 уравнения
- (2 — h)2 + (2 — k)2 = (2 — h)2 + (4 — k)2
- 4 — 4h + h2+ 4 — 4k + k2 = 4 — 4h + h2+16 — 8k + k2
- 8 — 4k = 20 — 8k
- k=3
Шаг :3
Найдем значение h упрощая уравнения 2 и 3
- (2 — h)2 + (2 — k)2 = (5 — h)2 + (5 — k)2
- 4 — 4h + h2+ 4 — 4k + k2 = 25 — 10h + h2+ 25 — 10k + k2
- 8 — 4k — 4h = 50 — 10h — 10k
- 6k + 6h = 42
Подставив значение k=3 в уравнение
- 6h = 24
- h=4
Получаем координаты точки центра (h,k) = (4,3)
Шаг :4
Подставим значения h,k в формулу
- r2 = (x — h)2 + (y — k)2
- r2 = (2 — 4)2 + (2 — 3)2
- r2 = (-2)2 + (-1)2
- r2 = 5
- r = 2.24
Шаг :5
Подставим значения h, k в уравнение окружности
(x — h)2 + (y — k)2
Уравнение окружности = (x — 4)2 + (y — 3)2
Ответ :
- Координаты точки центра окружности c(h,k) = c(4,3)
- Радиус окружности r = 2.24
- Уравнение окружности = (x — 4)2 + (y — 3)2 = (2.24)2
людей нашли эту статью полезной. А Вы?