Как найти радиус описанной через радиус вписанной

Описанные и вписанные окружности — формулы, свойства и определение с примерами решения

Содержание:

Окружность, которая касается стороны треугольника и продолжений двух других его сторон, называется вневписанной окружностью треугольника. На рисунке 146 изображен треугольник АВС и три его вневписанные окружности с центрами

Вневписанные окружности обладают рядом интересных свойств:

1. Центры вписанной и вневписанной окружностей лежат на биссектрисе соответствующего внутреннего угла треугольника.

2. где — радиус вписанной окружности треугольника,

3. где R — радиус описанной окружности
Попробуйте доказать некоторые из этих свойств.

Найдем радиус вневписанной окружности треугольника АВС со сторонами а, b и с (рис. 147). Для этого проведем радиусы По свойству касательной Из подо­бия прямоугольных треугольников АОЕ и (по острому углу) следуетТак как то откуда

Пример:

Вычислим, используя данную формулу, радиус вневписанной окружности прямоугольного треугольника с катетами 3 и 4, которая касается гипотенузы:

Описанная и вписанная окружности треугольника

Определение. Окружность называется описанной около треугольника, если она проходит через все его вершины.

На рисунке 90 изображена окружность с ради­усом R и центром описанная около треугольни ка АВС.

Так как ОА = ОВ = ОС = R, то центр описанной окружности равноудален от вершин треугольника.

Вместо слов «окружность, описанная около треугольника АВС», также говорят «окружность, описанная вокруг треугольника АВС», или «описанная окружность треугольника АВС».

Теорема (об окружности, описанной около треугольника).
Около любого треугольника можно описать окружность, причем только одну, ее центр находится в точке пересечения серединных перпендикуляров к сторонам треугольника.

Рассмотрим произвольный треугольник АВС (рис. 91). Пусть О — точка пересечения серединных перпендикуляров к его сторонам. Проведем отрезки ОА, ОВ и ОС. По свойству серединного перпендикуляра ОА = ОС, ОС = ОВ. Так как точка О равноудалена от всех вершин треугольника АВС, то окружность с центром в точке О и радиусом ОА проходит через все вершины треугольника АВС, т. е. является его описанной окружностью. Единственность описанной окружности докажите самостоятельно.

Замечание. Так как все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, то для нахождения центра описанной окружности достаточно построить точку пересечения любых двух из них.

Определение. Окружность называется вписанной в треугольник, если она касается всех его сторон.

На рисунке 92 изображена окружность с цент­ром О и радиусом вписанная в треугольник АВС; К, М и N — точки ее касания со сторонами треугольника АВС.
Так как и по свойству касательной к окружности то центр вписанной окружности равно­удален от сторон треугольника.

Вместо слов «окружность, вписанная в треугольник АВС», также говорят «вписанная окружность треугольника АВС».

Теорема (об окружности, вписанной в треугольник).
В любой треугольник можно вписать окружность, причем только одну, ее центр находится в точке пересечения биссектрис треугольника.

Рассмотрим произвольный треугольник АВС (рис. 93). Пусть О — точка пересечения его биссектрис. Проведем из точки О перпендикуляры ОК, ОМ и ON соответственно к сторонам АВ, ВС и АС. По свойству биссектрисы угла ОК = ON, ON = ОМ. Окружность с центром в точке О и радиусом ОК будет проходить через точки К, М и N и касаться сторон АВ, ВС и АС в указанных точках по признаку касательной.

Следовательно, эта окружность является вписанной в треугольник АВС. Единственность вписанной окружности докажите самостоятельно.

Замечание. Так как все три биссектрисы треугольника пересекаются в одной точке, то для нахождения центра вписанной окружности достаточно построить точ­ку пересечения любых двух из них.

Теорема. Площадь треугольника можно найти по формуле где — полупериметр треугольника, — радиус окружности, вписанной в этот треугольник.

Пусть дан треугольник АВС со сторонами — центр его вписанной окружности (рис. 94). Соединим отрезками точ­ку О с вершинами А, В и С. Треугольник АВС разобьется на три треугольника: Радиусы проведенные в точки касания, будут высотами этих тре­угольников. Площадь треугольника АВС равна сумме площадей указанных треугольников:

Следствие:

Радиус окружности, вписанной в треугольник, можно найти по формуле

Одной из важнейших задач данной темы является задача нахождения радиуса описанной и радиуса вписанной окружностей данного треугольника.

Пример:

Найти радиус окружности, описанной около равнобедренного треугольника АВС, у которого АВ = ВС = 26 см, высота ВК = 24 см
(рис. 95).

Решение:

Способ 1 (метод подобия). Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Проведем серединные перпендикуляры к сторонам АС и ВС, которые пересекутся в точке О — центре описанной окружности. Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой, то ВК — серединный перпендикуляр к стороне АС. Пусть МО — серединный перпендикуляр к стороне ВС. Тогда ВМ = 13 см, ВО = R -— иско­мый радиус. Поскольку (как прямо­угольные с общим острым углом СВК), то ,
откуда
Способ 2 (тригонометрический метод). Из (см. рис. 95) из откуда Дальнейшее решение совпадает с приведенным в способе 1.

Способ 3* (среднее пропорциональное). Продлим высоту ВК до пересечения с описанной окружностью в точке D (рис. 96). Так как центр описанной окружности равнобедренного треугольника лежит на прямой ВК (см. способ 1), то BD = 2R — диаметр данной окружности. В прямоугольном треугольнике BCD как вписанный, опирающийся на диаметр) катет ВС есть среднее пропорциональное меж­ду гипотенузой BD и проекцией ВК катета ВС на гипотенузу. Поэтому откуда
Ответ: см.
Замечание. Из решения ключевой задачи 1 следует свойство: «Центр окружно­сти, описанной около равнобедренного треугольника, лежит на его высоте, про­веденной к основанию, или на ее продолжении».

Верно и обратное утверждение: «Если центр окружности, описанной около треугольника, лежит на высоте треугольника или на ее продолжении, то этот треугольник равнобедренный».
Обратное утверждение докажите самостоятельно.

Полезно запомнить!
Если в ключевой задаче 1 боковую сторону обозначить а высоту, проведенную к основанию, — то получится пропорция .
Отсюда следует удобная формула для нахождения радиуса окруж­ности, описанной около равнобедренного треугольника:

Пример:

Найти радиус окружности, вписанной в равнобедренный тре­угольник АВС, у которого АВ = ВС = 10 см, АС = 12 см.

Решение:

Способ 1 (метод подобия). Центр вписанной окружности находится в точке пересечения биссектрис треугольника. Проведем в треугольнике АВС биссектрисы из вершин В и С, которые пересекутся в точке О — центре вписанной окружности (рис. 97). Биссектриса ВМ, проведенная к основанию равнобедренного треугольника АВС, будет его высотой и медианой, луч СО — биссектриса угла С, — искомый радиус вписанной окружности. Так как AM = МС = 6 см, то из по теореме Пифагора (см), откуда (см). Проведем радиус ОК в точку касания окружности со стороной . Из подобия прямоугольных треугольников ВКО и ВМС ( — общий) следует:. Тогда (см).
Способ 2 (тригонометрический метод). Из (см. рис. 97) , из откуда . Дальнейшее решение совпадает с приведенным в способе 1.

Способ 3 (свойство биссектрисы треугольника). СО — биссектриса . Известно, что биссектриса треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому ‘ откуда = 3 (см).

Способ 4 (формула ).

Из формулы площади треугольника следует:
Ответ: 3 см.

Замечание. Из решения ключевой задачи 2 следует свойство: «Центр окружности, вписанной в равнобедренный треугольник, лежит на его высоте, проведенной к основанию».

Верно и обратное утверждение: «Если центр окружности, вписанной в тре­угольник, лежит на высоте треугольника, то этот треугольник равнобедренный».

Обратное утверждение докажите самостоятельно.

Пример:

Дан равносторонний треугольник со стороной а. Найти радиус R его описанной окружности и радиус его вписанной окружности.

Решение:

Способ 1 (тригонометрический метод).Так как в равностороннем треугольнике биссектрисы являются и высотами, и медианами, то его биссектрисы лежат на серединных перпендикулярах к сторонам треугольника. Поэтому в равностороннем треугольнике центры описанной и вписанной окружностей совпадают.

Рассмотрим равносторонний треугольник АВС со стороной а, у которого высоты AM и ВК пересекаются в точке О — центре описанной и вписанной окружностей (рис. 98). Тогда ОА = OB = R — радиусы описанной, — радиусы вписанной окружности. Так как AM — бис­сектриса и Поскольку ВК — высота и медиана, то Из , откуда .
В катет ОК лежит против угла в 30°, поэтому ,

Способ 2 (свойство медиан). Поскольку AM и ВК — медианы треугольника АВС (см. рис. 98), то по свойству медиан Высоту равностороннего треугольника можно найти по формуле . Откуда

Ответ:

Полезно запомнить!

Поскольку радиус описанной окружности равностороннего треугольника то Значит, сторона равностороннего
треугольника в раз больше радиуса его описанной окружности.
Чтобы найти радиус R описанной окружности равностороннего треугольника, нужно сторону разделить на , а чтобы найти его сторону а, нужно радиус R умножить на . Радиус вписанной окружности равностороннего треугольника

Прямоугольный треугольник и его описанная и вписанная окружности

Теорема. Центр окружности, описанной около прямоугольного тре­угольника, лежит на середине гипотенузы, а ее радиус равен половине гипотенузы, т. е. где с — гипотенуза.

Проведем в прямоугольном треугольнике АВС медиану СО к гипотенузе АВ (рис. 111). Так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы, то ОС = ОА = ОВ.
Тогда середина гипотенузы — точка О — равноудалена от точек А, В и С и поэтому является центром описанной окружности треугольника АВС. Радиус этой окружности где с — гипотенуза.
Теорема доказана.

Замечание. Также можно доказать, что серединные перпендикуляры к катетам прямоугольного треугольника пересекаются на середине гипотенузы.

Отметим, что у остроугольного треугольника центр описанной окружности лежит внутри треугольника (рис. 112, а), у тупоугольного — вне треугольника (рис. 112, б), у прямоугольного — на середине гипотенузы (рис. 112, в). Обоснуйте первые два утверждения самостоятельно.

Теорема. Радиус окружности, вписанной в прямоугольный треугольник, можно найти по формуле , где — искомый радиус, и — катеты, — гипотенуза треугольника.

Рассмотрим прямоугольный треуголь­ник АВС с катетами и гипотенузой . Пусть вписанная в треугольник окружность с центром О и радиусом касается сторон треугольника в точках М, N и К (рис. 113).
Проведем радиусы в точки касания и получим: Четырехугольник CMON — квадрат, так как у него все углы прямые и . Тогда Так как отрезки касательных, проведенных из одной точки к окружности, равны между собой, то Но , т. е. , откуда

Следствие: где р — полупериметр треугольника.

Преобразуем формулу радиуса вписанной окружности:

Формула в сочетании с формулами и дает возможность решать многие задачи, связанные с прямоугольным треугольником, алгебраическим методом.

Пример. Дан прямоугольный треугольник, Найти .

Решение:

Так как то
Из формулы следует . По теореме Виета (обратной) — посторонний корень.
Ответ: = 2.

Пример:

Найти радиус окружности, описанной около прямоугольного треугольника, у которого один из катетов равен 6, а радиус вписанной окружности равен 2.

Решение:

Способ 1 (геометрический). Пусть в треугольнике АВС, где — радиус вписанной окружности (рис. 114). Проведем из центра О вписанной окружности перпендикуляры ОК, ОМ и ON к сторонам треугольника, которые будут радиусами вписанной окружности. Так как — квадрат, то
По свойству касательных
Тогда По теореме Пифагора

Следовательно,
Радиус описанной окружности
Способ 2 (алгебраический). Подставив в формулу значения получим По теореме Пифагора , т. е. Тогда
Ответ: 5.

Пример:

Гипотенуза прямоугольного треугольника радиус вписанной в него окружности Найти площадь треугольника.

Решение:

Способ 1 (геометрический). Пусть в гипотенуза АВ — = с = 18,0 — центр вписанной окружности, ОК, ОМ, ON — ее радиусы, проведенные в точки касания (рис. 115). Так как

, то CMON — квадрат co стороной, равной радиусу вписанной окружности, — высота . Поскольку отрезки касательных, проведенных из одной точки к окруж­ности, равны между собой, то АК = AM, ВК = BN.
Отсюда по катету и гипотенузе.
Площадь равна сумме удвоенной площади и площади квадрата CMON, т. е.

Способ 2 (алгебраический). Из формулы следует Возведем части равенства в квадрат: Так как и

Способ 3 (алгебраический). Из формулы следует, что Из формулы следует, что
Ответ: 40.

Реальная геометрия:

Есть два листа ДСП (древесно-стружечной плиты). Один из них имеет форму равностороннего треугольника со сторо­ной 1 м, другой — форму прямоугольного равнобедренного треугольника с катетами, равными 1 м (рис. 120). Из каждого листа необходимо вырезать по одному кругу наибольшего диаметра. Определите, из какого листа будет вырезан круг большего диаметра и каким в этом случае будет процент отходов, если известно, что площадь круга можно найти по формуле

Вписанные и описанные четырехугольники

Определение. Окружность называется описанной около многоуголь­ника, если она проходит через все его вершины. При этом многоугольник называется вписанным в окружность.

Окружность называется вписанной в многоугольник, если она касается всех его сторон. При этом много угольник называется описанным около окружности.
Пятиугольник ABCDE (рис. 121, а) является вписанным в окружность а четырехугольник MNPK (рис. 121, б) — описанным около окружности.

Центр описанной окружности многоугольника находится в точке пересечения серединных перпендикуляров к его сторонам, а центр вписанной — в точке пересечения биссектрис его углов.
Обоснуйте эти утверждения самостоятельно.

Теорема (свойство вписанного четырехугольника).
Сумма противоположных углов четырехугольника, вписанного в окружность, равна 180°.

Пусть ABCD — четырехугольник, вписанный в окружность (рис. 122). Его углы А, В, С и D являются вписанными в окружность. Так как вписанный угол равен половине дуги, на которую он опирается, то Дуги BCD и BAD дополняют друг друга до окружности, и поэтому сумма их градусных мер равна 360°. Отсюда

Аналогично доказывается, что 180°. Теорема доказана.

Теорема (признак вписанного четырехугольника).
Если сумма противоположных углов четырехугольника равна то около него можно описать окружность.

Рассмотрим четырехугольник ABCD, у которого (рис. 123). Через вершины А, В и D проведем окружность (около любого треугольника можно описать окружность). Если бы вершина С не лежала на данной окружности, а находилась вне ее в положении или внутри нее в положении то в первом случае угол С был бы меньше, а во втором — больше поло­вины градусной меры дуги BAD (по свойству угла между секущими и угла между пересекающимися хордами).
Тогда сумма не была бы равна 180°. Следовательно, вершина С лежит на данной окружности. Теорема доказана.

Замечание. Так как сумма углов четырехугольника равна 360°, то для того что­бы около четырехугольника можно было описать окружность, достаточно, чтобы сумма любой пары его противоположных углов была равна 180°.

Следствия.

1. Около параллелограмма можно описать окружность, только если этот параллелограмм — прямоугольник (рис. 124, а). Центр этой окружности лежит в точке пересечения диагоналей прямоугольника.

2. Около ромба можно описать окружность, только если этот ромб — квадрат (рис. 124, б).

3. Около трапеции можно описать окружность, только если она равнобедренная (рис. 124, в).

Докажите эти следствия самостоятельно.

Теорема (свойство описанного четырехугольника ).
Суммы противоположных сторон описанного четырехугольника равны между собой.

Пусть ABCD — описанный четырех­угольник, М, N, Р и К — точки касания его сторон с окружностью (рис. 125). Так как отрезки касательных, проведенных к окружности из одной точки, равны меж­ду собой, то AM = АК = а, ВМ = BN = b, СР = CN = с, DP = DK = d. Тогда

откуда AD + ВС = AB + CD.
Теорема доказана.

Следствие:

Периметр описанного четырехугольника равен удвоенной сумме длин любой пары его противоположных сторон:

Теорема (признак описанного четырехугольника).
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Пусть для выпуклого четырехугольника ABCD справедливо, что

(1)
Проведем окружность, которая касается прямых AD, АВ и ВС (рис. 126). Такая окружность существует, ее центр находится в точке пересечения биссектрис углов А и В. Если окружность не касается стороны CD, то либо прямая CD не имеет с окружностью общих точек, либо является секущей. Рассмотрим первый случай. Проведем отрезок который касается окружности. По свойству описанного четырехугольника

(2)

Отняв почленно от равенства (1) равенство (2), получим что противоречит неравенству треугольника.
Рассмотрев случай, когда прямая DC — секущая, также придем к противоре­чию (сделайте это самостоятельно). Следовательно, данная окружность касается стороны CD и в четырехугольник ABCD можно вписать окружность. Теорема доказана.

Следствия.

1. В параллелограмм можно вписать окружность, только если этот параллелограмм — ромб. Центр этой окружности лежит в точке пересечения диагоналей ромба, а ее диаметр равен высоте ромба (рис. 127, а).

2. В прямоугольник можно вписать окружность, только если этот прямоугольник — квадрат (рис. 127, б).

3. Диаметр окружности, вписанной в трапецию, равен ее высоте (рис. 127, в).
Докажите эти следствия самостоятельно.

Для описанного многоугольника справедлива формула , где S — его площадь, р — полупериметр, — радиус вписанной окружности.

Доказательство аналогично приведенному в § 8 для треугольника. Выполните его самостоятельно, используя рисунок 128.

Пример:

Найти радиус окружности, вписанной в ромб с периметром 24 см и острым углом, равным 45°.

Решение:

Способ 1 (решение прямоугольного треугольника). Пусть ABCD — ромб (рис. 129), О — центр вписанной в ромб окружности. Известно, что высота ВК ромба равна диаметру EF вписанной окружности, т. е. Так как у ромба все стороны равны , то (см).
Из прямоугольного треугольника АВК находим. что откуда Искомый радиус вписанной окружности (см).
Способ 2 (метод площадей). Ромб — параллелограмм. По формуле площади параллелограмма найдем площадь данного ромба: С другой стороны , площадь ромба можно найти по формуле площади описанного многоугольника Поскольку (см), то Отсюда (см).

Ответ: см.

Пример:

Окружность, вписанная в прямоугольную трапецию ABCD, где делит точкой касания большую боковую сторону CD на отрезки СК = 1, KD = 4. Найти площадь трапеции (рис. 130).

Решение:

Способ 1. Площадь трапеции находится по формуле Необходимо найти сумму оснований и высоту трапеции. Проведем высоту трапеции, проходящую через центр О вписанной окружности. По свойству касательных, проведенных из одной точки к окружности, CF = СК = 1, DH = DK = 4. Проведем вы­соту СМ. Так как HFCM — прямоугольник (все углы прямые), то НМ = FC = 1, MD = 3. В прямо­угольном треугольнике CMD по теореме Пифагора Тогда По свойству описанного четырехугольника Отсюда

Способ 2*. Центр О вписанной окружности лежит на пересечении биссектрис углов и Так как как внутренние односторонние углы при и секущей CD, то (рис. 131). Тогда — прямоугольный, радиус является его высотой, проведенной к гипотенузе CD. Высота прямоугольного треугольника, проведенная к гипотенузе, — есть среднее пропорциональное между проекциями катетов на гипотенузу. Поэто­му или Высота описанной трапеции равна диаметру вписанной окружности, откуда Так как по свой­ству описанного четырехугольника то
Ответ: 18.
Замечание. Полезно запомнить свойство: «Боковая сторона описанной трапеции видна из центра вписанной окружности под углом 90°».

Пример:

Внутри острого угла А взята точка М, из которой опущены перпендикуляры МВ и МС на стороны угла А, Найти величину угла ВАС (рис. 132, а).

Решение:

Так как в четырехугольнике АВМС сумма углов В и С равна 180°, то около него можно описать окружность. Проведем в ней хорду AM (рис. 132, б). Поскольку как вписанные углы, опирающиеся на одну и ту же дугу МС, то и прямоугольный треугольник АМС является равнобедренным, В прямоугольном треугольнике ABM откуда

Окружность, вписанная в треугольник

Пример:

Окружность вписана в треугольник АВС со сторонами ВС = а, АС = Ь, АВ = с. Вывести формулу для нахождения длин отрезков, на которые точки касания окружности со сторонами делят каждую сторону треугольника.

Решение:

Пусть К, М и N — точки касания вписанной окружности соответственно со сторонами АС, АВ и ВС треугольника АВС (рис. 140). Известно, что отрезки касательных, проведенных из одной точки к окружности, равны между собой.
Тогда, если то Так как АВ = AM + МВ, то откуда т. е. . После преобразований получим: Аналогично:
Ответ:

Замечание. Если (рис. 141), то (см. c. 69). Формула радиуса окружности, вписанной в прямоугольный треугольник, — частный случай результата задачи 1.

Описанная трапеция

Пример:

Найти площадь описанной равнобедренной трапеции с основа­ниями а и Ь.

Решение:

Площадь трапеции можно найти по формуле Пусть в трапеции ABCD основания — боковые стороны, — высота (рис. 142). По свойству описанного четырехугольника АВ + CD = AD + ВС, откуда . Известно, что в равнобедренной трапеции (можно опустить высоту СК и убедиться в этом). Из прямоугольного треугольника АНВ получаем: Отсюда Ответ:
Замечание. Площадь описанной равнобедренной трапеции равна произведению среднего арифметического и среднего геометрического ее оснований.

Полезно запомнить!

Для описанной равнобедренной трапеции с основаниями боковой стороной с, высотой h, средней линией и радиусом вписанной окружности (см. рис. 142) справедливы равенства:

Дополнительные свойства и признаки вписанного четырехугольника

Теорема.
Около четырехугольника можно описать окружность тогда и только тогда, когда угол между его стороной и диагональю равен углу между противоположной стороной и другой диагональю.
Рис. 143

1. Если четырехугольник ABCD вписан в окружность (рис. 143), то как вписанные углы, опирающиеся на одну и ту же дугу.

2. Докажем, что если в некотором четырехугольнике ABCD то около него можно описать окружность.
Опишем около треугольника ABD окружность.
В 8-м классе (В. В. Казаков. «Геометрия, 8», с. 186) было доказано свойство:

«Геометрическим местом точек плоскости, из которых данный отрезок AD виден под углом а, является объединение двух дуг окружностей: дуги ABD и ей симметричной относительно прямой AD, исключая точки » . Данное свойство гарантирует, что вершины всех углов, равных углу ABD и лежащих по одну сторону от прямой AD, расположены на дуге ABD окружности. Поэтому окружность, описанная около треугольника ABD, пройдет и через вершину С. Теорема доказана.

Обобщенная теорема Пифагора

В прямоугольном треугольнике проведена высота СН, которая делит его на треугольники АСН и СВН, подобные между собой и подобные треугольнику (рис. 148). Тогда теорема Пифагора может звучать так: сумма квадратов гипотенуз треугольников СВН и АСН равна квадрату гипотенузы треугольника АВС. И вообще, если — соответствующие линейные элемен­ты то можно сформулировать обобщенную теорему Пифагора:

Действительно, из подобия указанных треугольников откуда

Пример:

Пусть (см. рис. 148). Найдем По обобщенной теореме Пифагора отсюда
Ответ: = 39.

Формула Эйлера для окружностей

Для вписанной и описанной окружностей треугольника с радиусами и расстоянием d между их центрами (рис. 149) справедлива формула Эйлера

Проверим справедливость этой формулы на примере равнобедренного треугольника АВС, у которого АВ = ВС = 10, АС = 12 (рис. 150).

Вначале найдем расстояние между центрами указанных окружностей традиционным способом.

Проведем высоту ВН, длина которой будет равна 8 (пифагорова тройка 6, 8, 10). Центры описанной и вписанной окружностей — соответственно точки , и — лежат на прямой ВН (свойство равнобедренного треугольника). Тогда— расстояние между указанными центрами. Для нахождения радиуса описанной окружности воспользуемся формулой где b — боковая сторона, — высота, проведенная к основанию равнобедренного треугольника. Получим Радиус вписанной окружности Так как то Искомое расстояние
А теперь найдем d по формуле Эйлера:

откуда Как видим, формула Эйлера достаточно эффективна.

Запомнить:

  1. Центр описанной окружности треугольника (многоугольника) лежит в точке пересечения серединных перпендикуляров к его сторонам.
  2. Центр вписанной окружности треугольника (многоугольника) лежит в точке пересечения биссектрис его углов.
  3. Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы, а ее радиус равен половине гипотенузы:
  4. Радиус вписанной окружности прямоугольного треугольника находится по формуле
  5. Если четырехугольник вписан в окружность, то суммы его противополож­ных углов равны 180°. И обратно.
  6. Если четырехугольник описан около окружности, то суммы его противопо­ложных сторон равны между собой. И обратно.
  7. Площадь треугольника и описанного многоугольника можно найти по формуле где — полупериметр, — радиус вписанной окружности.

Справочная информация по описанной и вписанной окружности треугольника

Определение. Окружность называют описанной около треугольника, если она проходит через все вершины этого треугольника.

На рисунке 298 изображена окружность, описанная около треугольника. В этом случае также говорят, что треугольник вписан в окружность. Очевидно, что центр описанной окружности треугольника равноудален от всех его вершин. На рисунке 298 точка — центр окружности, описанной около треугольника , поэтому .

Теорема 21.1. Вокруг любого треугольника можно описать окружность.

Доказательство: Для доказательства достаточно показать, что для любого треугольника существует точка , равноудаленная от всех его вершин. Тогда точка будет центром описанной окружности, а отрезки , и — ее радиусами.

На рисунке 299 изображен произвольный треугольник . Проведем серединные перпендикуляры и сторон и соответственно. Пусть точка — точка пересечения этих прямых. Поскольку точка принадлежит серединному перпендикуляру , то . Так как точка принадлежит серединному перпендикуляру , то . Значит, , т. е. точка равноудалена от всех вершин треугольника.

Заметим, что вокруг треугольника можно описать только одну окружность. Это следует из того, что серединные перпендикуляры и (рис. 299) имеют только одну точку пересечения. Следовательно, существует только одна точка, равноудаленная от всех вершин треугольника.

Следствие 1. Три серединных перпендикуляра сторон треугольника пересекаются в одной точке.

Следствие 2. Центр описанной окружности треугольника — это точка пересечения серединных перпендикуляров его сторон.

Определение. Окружность называют вписанной в треугольник, если она касается всех его сторон.

На рисунке 300 изображена окружность, вписанная в треугольник. В этом случае также говорят, что треугольник описан около окружности.

Точка (рис. 300) — центр вписанной окружности треугольника , отрезки , , — радиусы, проведенные в точки касания, . Понятно, что центр вписанной окружности треугольника равноудален от всех его сторон.

Теорема 21.2. В любой треугольник можно вписать окружность.

Доказательство: Для доказательства достаточно показать, что для любого треугольника существует точка , удаленная от каждой его стороны на некоторое расстояние г. Тогда в силу следствия из теоремы 20.4 точка будет центром окружности радиуса г, которая касается сторон .

На рисунке 301 изображен произвольный треугольник . Проведем биссектрисы углов и , — точка их пересечения. Так как точка принадлежит биссектрисе угла , то она равноудалена от сторон и (теорема 19.2). Аналогично, так как точка принадлежит биссектрисе угла , то она равноудалена от сторон и . Следовательно, точка равноудалена от всех сторон треугольника.

Заметим, что в треугольник можно вписать только одну окружность. Это следует из того, что биссектрисы углов и (рис. 301) пересекаются только в одной точке. Следовательно, существует только одна точка, равноудаленная от сторон треугольника.

Следствие 1. Биссектрисы углов треугольника пересекаются в одной точке.

Следствие 2. Центр вписанной окружности треугольника — это точка пересечения его биссектрис.

Докажите, что радиус окружности, вписанной в прямоугольный треугольник, определяется по формуле , где — радиус вписанной окружности, и — катеты, — гипотенуза.

Решение:

В треугольнике (рис. 302) , , , , точка — центр вписанной окружности, , и — точки касания вписанной окружности со сторонами , и соответственно.

Отрезок — радиус окружности, проведенный в точку касания. Тогда .

Так как точка — центр вписанной окружности, то — биссектриса угла и . Тогда — равнобедренный прямоугольный, . Используя свойство отрезков касательных, проведенных к окружности из одной точки, получаем:

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Плоские и пространственные фигуры
  • Взаимное расположение точек и прямых
  • Сравнение и измерение отрезков и углов
  • Первый признак равенства треугольников
  • Треугольники и окружность
  • Площадь треугольника
  • Соотношения между сторонами и углами произвольного треугольника
  • Окружность и круг

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Как найти радиус окружности. Вписанная и описанная окружность

Радиус – это отрезок, который соединяет любую точку на окружности с ее центром. Это одна из самых важных характеристик данной фигуры, поскольку на ее основе можно вычислить все другие параметры. Если знать, как найти радиус окружности, то можно рассчитать ее диаметр, длину, а также площадь. В том случае, когда данная фигура вписана или описана вокруг другой, то можно решить еще целый ряд задач. Сегодня мы разберем основные формулы и особенности их применения.

Известные величины

Если знать, как найти радиус окружности, который обычно обозначают буквой R, то его можно вычислить по одной характеристике. К таким величинам относят:

  • длину окружности (C);
  • диаметр (D) – отрезок (вернее, хорда), который проходит через центральную точку;
  • площадь (S) – пространство, которое ограничено данной фигурой.

По длине окружности

Если в задаче известна величина C, то R = С / (2 * П). Эта формула является производной. Если мы знаем, что из себя представляет длина окружности, то ее уже не нужно запоминать. Предположим, что в задаче C = 20 м. Как найти радиус окружности в этом случае? Просто подставляем известную величину в вышеприведенную формулу. Отметим, что в таких задачах всегда подразумевается знание числа П. Для удобства расчетов примем его значение за 3,14. Решение в этом случае выглядит следующим образом: записываем, какие величины даны, выводим формулу и проводим вычисления. В ответе пишем, что радиус равен 20 / (2 * 3,14) = 3,19 м. Важно не забыть о том, что мы считали, и упомянуть название единиц измерения.

По диаметру

Сразу подчеркнем, что это самый простой вид задач, в которых спрашивается о том, как найти радиус окружности. Если такой пример попался вам на контрольной, то можете быть спокойны. Тут даже не нужен калькулятор! Как мы уже говорили, диаметр – это отрезок или, правильнее сказать, хорда, которая проходит через центр. При этом все точки окружности равноудалены. Поэтому данная хорда состоит из двух половинок. Каждая из них является радиусом, что следует из его определения как отрезка, который соединяет точку на окружности и ее центр. Если в задаче известен диаметр, то для нахождения радиуса нужно просто разделить эту величину на два. Формула выглядит следующим образом: R = D / 2. Например, если диаметр в задаче равен 10 м, то радиус – 5 метров.

По площади круга

Этот тип задач обычно называют самым сложным. Это связано в первую очередь с незнанием формулы. Если знать, как найти радиус окружности в этом случае, то остальное – дело техники. В калькуляторе только нужно заранее найти значок вычисления квадратного корня. Площадь круга – это произведение числа П и радиуса, умноженного на самого себя. Формула выглядит следующим образом: S = П * R 2 . Обособив радиус на одной из сторон уравнения, можно с легкость решить задачу. Он будет равен квадратному корню из частного от деления площади на число П. Если S = 10 м, то R = 1,78 метров. Как и в предыдущих задачах, важно не забыть об используемых единицах измерения.

Как найти радиус описанной окружности

Предположим, что a, b, c – это стороны треугольника. Если знать их величины, то можно найти радиус описанной вокруг него окружности. Для этого сначала нужно найти полупериметр треугольника. Чтобы было легче для восприятия, обозначим его маленькой буквой p. Он будет равен половине суммы сторон. Его формула: p = (a + b + c) / 2.

Также вычислим произведение длин сторон. Для удобства обозначим его буквой S. Формула радиуса описанной окружности будет выглядеть так: R = S / (4 * √(p * ( p — a ) * (p — b) * (p — c)).

Рассмотрим пример задачи. У нас есть окружность, описанная вокруг треугольника. Длины ее сторон составляют 5, 6 и 7 см. Сначала вычисляем полупериметр. В нашей задаче он будет равен 9 сантиметрам. Теперь вычислим произведение длин сторон – 210. Подставляем результаты промежуточных расчетов в формулу и узнаем результат. Радиус описанной окружности равен 3,57 сантиметра. Записываем ответ, не забывая о единицах измерения.

Как найти радиус вписанной окружности

Предположим, что a, b, c – длины сторон треугольника. Если знать их величины, то можно найти радиус вписанной в него окружности. Сначала нужно найти его полупериметр. Для облегчения понимания обозначим его маленькой буквой p. Формула его вычисления выглядит следующим образом: p = ( a + b + c) / 2. Этот тип задачи несколько проще, чем предыдущий, поэтому больше не нужно никаких промежуточных расчетов.

Радиус вписанной окружности вычисляется по следующей формуле: R = √((p — a) * (p — b) * (p — c) / p). Рассмотрим это на конкретном примере. Предположим, в задаче описан треугольник со сторонами 5, 7 и 10 см. В него вписана окружность, радиус которой и нужно найти. Сначала находим полупериметр. В нашей задаче он будет равен 11 см. Теперь подставляем его в основную формулу. Радиус окажется равным 1,65 сантиметрам. Записываем ответ и не забываем о правильных единицах измерения.

Окружность и ее свойства

У каждой геометрической фигуры есть свои особенности. Именно от их понимания зависит правильность решения задач. Есть они и у окружности. Зачастую их используют при решении примеров с описанными или вписанными фигурами, поскольку они дают ясное представление о такой ситуации. Среди них:

  • Прямая может иметь ноль, одну или две точки пересечения с окружностью. В первом случае она с ней не пересекается, во втором является касательной, в третьем – секущей.
  • Если взять три точки, что не лежат на одной прямой, то через них можно привести только одну окружность.
  • Прямая может быть касательной сразу двух фигур. В этом случае она будет проходить через точку, которая лежит на отрезке, соединяющем центры окружностей. Его длина равна сумме радиусов данных фигур.
  • Через одну или две точки можно провести бесконечное количество окружностей.

Вписанная окружность

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac<1><2>(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac<1><2>(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    источники:

    http://www.syl.ru/article/196141/mod_kak-nayti-radius-okrujnosti-vpisannaya-i-opisannaya-okrujnost

    http://colibrus.ru/vpisannaya-okruzhnost/

    13
    Апр 2012

    15 Задание (2022) (C4)ВИДЕОУРОКИ

    В этой статье я хочу привести несколько полезных формул, которые помогают легко найти радиус вписанной и описанной окружности, и показать решение задачи из задания С4 с использованием этих формул.

    1. Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности:

     S=pr. где p={a+b+c}/2, r — радиус вписанной окружности.

    Отсюда: r=S/p

    То есть радиус вписанной окружности равен отношению площади треугольника к его полупериметру.

    Для прямоугольного треугольника p={a+b+c}/2, S={ab}/2, тогда

    r={ab}/{a+b+c}

    где a и b — катеты треугольника, а c — гипотенуза.

    2. Площадь треугольника равна отношению произведения его сторон к учетверенному радиусу описанной окружности:

    S={abc}/{4R}

    Отсюда:

    R={abc}/{4S}

    Радиус  окружности, описанной около треугольника, равен отношению произведения сторон треугольника к его учетверенной площади.

    3. По теореме синусов, отношение стороны треугольника к синусу противолежащего угла равно двум радиусам описанной окружности:

    a/{sinA}=b/{sinB}=c/{sinC}=2R

    Отсюда:

    R=a/{2sinA}=b/{2sinB}=c/{2sinC}

    Радиус  окружности, описанной около треугольника, равен отношению стороны треугольника к удвоенному синусу противолежащего угла.

    Предлагаю вам посмотреть ВИДЕОРЕШЕНИЕ задачи:

    Угол при основании равнобедренного треугольника  равен varphi. Найдите отношение радиуса вписанной в этот треугольник окружности к радиусу описанной окружности:

    И.В. Фельдман, репетитор по математике.

    Радиус вписанной и описанной окружности: полезные формулы. Задание С4

    |
    Отзывов (13)
    | Метки: решение задания С4

    радиус описанной окружности треугольника

    a , b , c blue    —  стороны треугольника

    s12 black  — полупериметр

    s (abc)2

    O black  — центр окружности

    Формула радиуса описанной окружности треугольника ( R  ) :

    Формула радиуса описанной окружности треугольника

    радиус описанной окружности равностороннего треугольника

    сторона — сторона треугольника

    высота — высота

    радиус — радиус описанной окружности

    Формула радиуса описанной окружности равностороннего треугольника через его сторону:

    Формула радиуса описанной окружности равностороннего треугольника через сторону

    Формула радиуса описанной окружности равностороннего треугольника через высоту:

    Формула радиуса описанной окружности равностороннего треугольника через высоту

    Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

    радиус описанной окружности равнобедренного треугольника

    a, b — стороны треугольника

    Формула радиуса описанной окружности равнобедренного треугольника(R):

    Формула радиуса описанной окружности равнобедренного треугольника

    Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

    радиус описанной окружности прямоугольного треугольника

    a, b — катеты прямоугольного треугольника

    c — гипотенуза

    Формула радиуса описанной окружности прямоугольного треугольника (R):

    Формула радиуса описанной окружности прямоугольного треугольника

    Радиус описанной окружности трапеции

    a — боковые стороны трапеции

    c — нижнее основание

    b — верхнее основание

    d — диагональ

    p — полупериметр треугольника DBC

    p = (a+d+c)/2

    Формула радиуса описанной окружности равнобокой трапеции, (R)

    Формула радиуса описанной окружности равнобокой трапеции

    Радиус описанной окружности квадрата равен половине его диагонали

    радиус описанной окружности около квадрата

    a — сторона квадрата

    d — диагональ

    Формула радиуса описанной окружности квадрата (R):

    Формула радиуса описанной окружности квадрата

    Радиус описанной окружности прямоугольника равен половине его диагонали

    Радиус описанной окружности прямоугольника

    a, b — стороны прямоугольника

    d — диагональ

    Формула радиуса описанной окружности прямоугольника (R):

    Формула радиуса описанной окружности прямоугольника

    Радиус описанной окружности правильного многоугольника

    a — сторона многоугольника

    N — количество сторон многоугольника

    Формула радиуса описанной окружности правильного многоугольника, (R):

    Формула радиуса описанной окружности правильного многоугольника

    a — сторона шестиугольника

    d — диагональ шестиугольника

    Радиус описанной окружности правильного шестиугольника (R):

    Удобно, когда все формулы, по которым можно найти радиус описанной окружности для треугольника, квадрата, многоугольника размещены на одной странице.

    Радиус описанной окружности для произвольного треугольника

    Формулы для нахождения радиуса описанной окружности треугольника (верны для треугольника любого вида):

    radius opisannoy okruzhnosti

        [R = frac{{abc}}{{4S}}]

        [R = frac{a}{{2sin alpha }} = frac{b}{{2sin beta }} = frac{c}{{2sin gamma }},]

    где a, b, c — длины сторон треугольника, α, β, γ — противолежащие этим сторонам углы, S — площадь треугольника.

    Центр описанной окружности лежит:

    radius opisannoy okruzhnosti tupougolnogo treugolnika

    у остроугольного треугольника — внутри треугольника;

    у прямоугольного — на середине гипотенузы;

    у тупоугольного — вне треугольника, напротив тупого угла.

    Радиус описанной окружности для прямоугольного треугольника

    radius opisannoy okruzhnosti pryamougolnogo treugolnika

    Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы:

        [R = frac{c}{2}]

    Окружность, описанная около многоугольника

    radius opisannoy okruzhnosti mnogougolnika

    Если около многоугольника можно описать окружность, ее центр является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

    Радиус описанной около многоугольника окружности  находят как радиус окружности, описанной около треугольника. Для этого берут любые три вершины многоугольника.

    Например, для пятиугольника ABCDE можно взять любой из треугольников ABC, ABD, ABE, BCD, BCE, CDE, ACD, ACE, ADE, BDE.

    Радиус окружности, описанной около правильного многоугольника

    Формула радиуса описанной окружности для правильного многоугольника

        [R = frac{a}{{2sin frac{{{{180}^o}}}{n}}}]

    где a — длина стороны многоугольника, n — количество его сторон.

    Частные случаи — правильный треугольник, правильный четырехугольник (то есть квадрат), правильный шестиугольник.

    Радиус описанной окружности правильного треугольника

    radius opisannoy okruzhnosti ravnostoronnego treugolnikaФормула радиуса описанной окружности для правильного треугольника

        [R = frac{a}{{sqrt 3 }}]

    Если без иррациональности в знаменателе —

        [R = frac{{asqrt 3 }}{3}.]

    У правильного треугольника радиус описанной окружности в два раза больше радиуса вписанной окружности:

        [R = 2r]

    Радиус описанной окружности квадрата

    radius opisannoy okruzhnosti kvadrata

    Формула радиуса описанной окружности для квадрата

        [R = frac{a}{{sqrt 2 }}]

    Если без иррациональности в знаменателе —

        [R = frac{{asqrt 2 }}{2}.]

    Радиус описанной окружности правильного шестиугольника

    radius opisannoy okruzhnosti pravilnogo shestiugolnika

    Формула радиуса описанной окружности для правильного шестиугольника

        [R = a]

    Краткое содержание:

    1. Что такое радиус
    2. Радиус и диаметр
    3. Примеры задач
    4. Формулы для радиуса описанной окружности
    5. Найти радиус описанной окружности треугольника по сторонам
    6. Найти радиус описанной окружности равностороннего треугольника по стороне или высоте
    7. Найти радиус описанной окружности равнобедренного треугольника по сторонам
    8. Найти радиус описанной окружности прямоугольного треугольника по катетам
    9. Радиус описанной окружности трапеции по сторонам и диагонали
    10. Найти радиус описанной окружности около квадрата
    11. Радиус описанной окружности прямоугольника по сторонам
    12. Радиус описанной окружности правильного многоугольника
    13. Радиус описанной окружности правильного шестиугольника
    14. Формулы для радиуса вписанной окружности
    15. Радиус вписанной окружности в треугольник
    16. Радиус вписанной окружности в равносторонний треугольник
    17. Радиус вписанной окружности равнобедренный треугольник
    18. Радиус вписанной окружности в прямоугольный треугольник
    19. Радиус вписанной окружности в равнобочную трапецию
    20. Радиус вписанной окружности в квадрат
    21. Радиус вписанной окружности в ромб
    22. Радиус вписанной окружности в правильный многоугольник
    23. Радиус вписанной окружности в шестиугольник
    24. Примеры задач
    25. Обсуждение

    Здравствуйте мои дорогие подписчики и гости сайта 9111.ru!

    На самом деле эту тему проходят еще в начальных классах обычной школы. И все, кто хорошо учился, сразу смогут сказать, о чем идет речь. Ну, или хотя бы точно понять, что РАДИУС как-то связан с окружностью.

    Что такое радиус

    И действительно:

    Радиус – это отрезок, который начинается в центре окружности и заканчивается в любой точке ее поверхности. В то же время так называется и длина этого отрезка.

    Радиус описанной и вписанной окружности: Формулы и примеры

    Вот так это выглядит графически.

    **************************************

    Само слово РАДИУС имеет латинские корни. Оно произошло от «radius», что можно перевести как «луч» или «спица колеса». Впервые этот математический термин ввел французский ученый П.Ромус. Было это в 1569 году.

    Но потребовалось чуть более ста лет, чтобы слово РАДИУС прижилось и стало общепринятым.

    Кстати, есть еще несколько значений слова РАДИУС:

    • Размер охвата чего-нибудь или сфера распространения. Например, говорят «Огонь уничтожил все в радиусе 10 километров» или «ОН показал на карте радиус действия артиллерии»;
    • В анатомии этим словом обозначают Лучевую кость предплечья.

    Но, конечно, нас интересует РАДИУС как математический термин. А потому и продолжим говорить именно о нем.

    Радиус и диаметр

    Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

    А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

    Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

    Радиус описанной и вписанной окружности: Формулы и примеры

    Обозначается диаметр также первой буквой своего слова – D или d.

    Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

    А именно:

    Длина диаметра равна удвоенной длине радиуса.

    Радиус описанной и вписанной окружности: Формулы и примеры

    Примеры задач

    Задание 1

    Длина окружности равняется 87,92 см. Найдите ее радиус.

    Решение:

    Используем первую формулу (через периметр):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Задание 2

    Найдите радиус круга, если его площадь составляет 254,34 см 2.

    Решение:

    Воспользуемся формулой, выраженной через площадь фигуры:

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формулы для радиуса описанной окружности

    Найти радиус описанной окружности треугольника по сторонам

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса описанной окружности треугольника (R ) :

    Радиус описанной и вписанной окружности: Формулы и примеры

    Найти радиус описанной окружности равностороннего треугольника по стороне или высоте

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса описанной окружности равностороннего треугольника через его сторону:

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса описанной окружности равностороннего треугольника через высоту:

    Радиус описанной и вписанной окружности: Формулы и примеры

    Найти радиус описанной окружности равнобедренного треугольника по сторонам

    Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса описанной окружности равнобедренного треугольника (R):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Найти радиус описанной окружности прямоугольного треугольника по катетам

    Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса описанной окружности прямоугольного треугольника (R):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус описанной окружности трапеции по сторонам и диагонали

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса описанной окружности равнобокой трапеции, (R)

    Радиус описанной и вписанной окружности: Формулы и примеры

    Найти радиус описанной окружности около квадрата

    Радиус описанной окружности квадрата равен половине его диагонали

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса описанной окружности квадрата (R):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус описанной окружности прямоугольника по сторонам

    Радиус описанной окружности прямоугольника равен половине его диагонали

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса описанной окружности прямоугольника (R):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус описанной окружности правильного многоугольника

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса описанной окружности правильного многоугольника, (R):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус описанной окружности правильного шестиугольника

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус описанной окружности правильного шестиугольника (R):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формулы для радиуса вписанной окружности

    Радиус вписанной окружности в треугольник

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в треугольник (r):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус вписанной окружности в равносторонний треугольник

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула для радиуса вписанной окружности в равносторонний треугольник (r):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус вписанной окружности равнобедренный треугольник

    1. Формулы радиуса вписанной окружности если известны: стороны и угол

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в равнобедренный треугольник через стороны (r ) :

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол (r ) :

    Радиус описанной и вписанной окружности: Формулы и примеры

    2. Формулы радиуса вписанной окружности если известны: сторона и высота

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту (r ) :

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус вписанной окружности в прямоугольный треугольник

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в прямоугольный треугольник (r):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус вписанной окружности в равнобочную трапецию

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности равнобочной трапеции (r):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус вписанной окружности в квадрат

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в квадрат (r):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус вписанной окружности в ромб

    1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в ромб через диагонали (r ) :

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в ромб через сторону и угол (r ) :

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в ромб через диагональ и угол (r ) :

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в ромб через диагональ и сторону (r ) :

    Радиус описанной и вписанной окружности: Формулы и примеры

    2. Радиус вписанной окружности ромба, равен половине его высоты

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в ромб (r ) :

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус вписанной окружности в правильный многоугольник

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в правильный многоугольник, (r):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Радиус вписанной окружности в шестиугольник

    Радиус описанной и вписанной окружности: Формулы и примеры

    Формула радиуса вписанной окружности в шестиугольник, (r):

    Радиус описанной и вписанной окружности: Формулы и примеры

    Примеры задач

    Задание 1

    Дан треугольник со сторонами 5, 7 и 10 см. Вычислите радиус вписанной в него окружности.

    Решение

    Сперва вычислим площадь треугольника. Для этого применим формулу Герона:

    Радиус описанной и вписанной окружности: Формулы и примеры

    Остается только применить соответствующую формулу для вычисления радиуса круга:

    Радиус описанной и вписанной окружности: Формулы и примеры

    Задание 2

    Боковые стороны равнобедренного треугольника равны 16 см, а основание 7 см. Найдите радиус вписанной в фигуру окружности.

    Решение

    Воспользуемся подходящей формулой, подставив в нее известные значения:

    Радиус описанной и вписанной окружности: Формулы и примеры

    Всем спасибо и приятного просмотра! Если понравилась публикация подписывайтесь и ставьте палец вверх!

    Источники:

    • https://KtoNaNovenkogo.ru/voprosy-i-otvety/radius-chto-ehto-takoe-kak-najti-radius-okruzhnosti-formula.html
    • https://MicroExcel.ru/radius-kruga/
    • https://www-formula.ru/2011-09-24-00-42-22
    • https://www-formula.ru/2011-09-24-00-40-48
    • https://MicroExcel.ru/radius-vpisannogo-v-treugolnik-kruga/

    Понравилась статья? Поделить с друзьями:
  • Как найти свой идентификатор в честном знаке
  • Как составить сочетание хмелей
  • Crashdump dmp метро эксодус как исправить
  • Как найти свой роутер на ком
  • Как найти мою старую страницу вконтакте