Как найти радиус описанной около основания окружности

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Радиус описанной окружности

Удобно, когда все формулы, по которым можно найти радиус описанной окружности для треугольника, квадрата, многоугольника размещены на одной странице.

Формулы для нахождения радиуса описанной окружности треугольника (верны для треугольника любого вида):

где a, b, c — длины сторон треугольника, α, β, γ — противолежащие этим сторонам углы, S — площадь треугольника.

у остроугольного треугольника — внутри треугольника;

у прямоугольного — на середине гипотенузы;

у тупоугольного — вне треугольника, напротив тупого угла.

Радиус описанной окружности для прямоугольного треугольника

Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы:

Окружность, описанная около многоугольника

Если около многоугольника можно описать окружность, ее центр является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Радиус описанной около многоугольника окружности находят как радиус окружности, описанной около треугольника. Для этого берут любые три вершины многоугольника.

Например, для пятиугольника ABCDE можно взять любой из треугольников ABC, ABD, ABE, BCD, BCE, CDE, ACD, ACE, ADE, BDE.

Радиус окружности, описанной около правильного многоугольника

Формула радиуса описанной окружности для правильного многоугольника

где a — длина стороны многоугольника, n — количество его сторон.

Частные случаи — правильный треугольник, правильный четырехугольник (то есть квадрат), правильный шестиугольник.

Радиус описанной окружности правильного треугольника

Формула радиуса описанной окружности для правильного треугольника

Если без иррациональности в знаменателе —

У правильного треугольника радиус описанной окружности в два раза больше радиуса вписанной окружности:

Радиус описанной окружности квадрата

Формула радиуса описанной окружности для квадрата

Если без иррациональности в знаменателе —

Радиус описанной окружности правильного шестиугольника

Формула радиуса описанной окружности для правильного шестиугольника

Как найти радиус окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

источники:

Радиус описанной окружности

http://skysmart.ru/articles/mathematic/radius-okruzhnosti

радиус описанной окружности треугольника

a , b , c blue    —  стороны треугольника

s12 black  — полупериметр

s (abc)2

O black  — центр окружности

Формула радиуса описанной окружности треугольника ( R  ) :

Формула радиуса описанной окружности треугольника

радиус описанной окружности равностороннего треугольника

сторона — сторона треугольника

высота — высота

радиус — радиус описанной окружности

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через сторону

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Формула радиуса описанной окружности равностороннего треугольника через высоту

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

радиус описанной окружности равнобедренного треугольника

a, b — стороны треугольника

Формула радиуса описанной окружности равнобедренного треугольника(R):

Формула радиуса описанной окружности равнобедренного треугольника

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

радиус описанной окружности прямоугольного треугольника

a, b — катеты прямоугольного треугольника

c — гипотенуза

Формула радиуса описанной окружности прямоугольного треугольника (R):

Формула радиуса описанной окружности прямоугольного треугольника

Радиус описанной окружности трапеции

a — боковые стороны трапеции

c — нижнее основание

b — верхнее основание

d — диагональ

p — полупериметр треугольника DBC

p = (a+d+c)/2

Формула радиуса описанной окружности равнобокой трапеции, (R)

Формула радиуса описанной окружности равнобокой трапеции

Радиус описанной окружности квадрата равен половине его диагонали

радиус описанной окружности около квадрата

a — сторона квадрата

d — диагональ

Формула радиуса описанной окружности квадрата (R):

Формула радиуса описанной окружности квадрата

Радиус описанной окружности прямоугольника равен половине его диагонали

Радиус описанной окружности прямоугольника

a, b — стороны прямоугольника

d — диагональ

Формула радиуса описанной окружности прямоугольника (R):

Формула радиуса описанной окружности прямоугольника

Радиус описанной окружности правильного многоугольника

a — сторона многоугольника

N — количество сторон многоугольника

Формула радиуса описанной окружности правильного многоугольника, (R):

Формула радиуса описанной окружности правильного многоугольника

a — сторона шестиугольника

d — диагональ шестиугольника

Радиус описанной окружности правильного шестиугольника (R):

Удобно, когда все формулы, по которым можно найти радиус описанной окружности для треугольника, квадрата, многоугольника размещены на одной странице.

Радиус описанной окружности для произвольного треугольника

Формулы для нахождения радиуса описанной окружности треугольника (верны для треугольника любого вида):

radius opisannoy okruzhnosti

    [R = frac{{abc}}{{4S}}]

    [R = frac{a}{{2sin alpha }} = frac{b}{{2sin beta }} = frac{c}{{2sin gamma }},]

где a, b, c — длины сторон треугольника, α, β, γ — противолежащие этим сторонам углы, S — площадь треугольника.

Центр описанной окружности лежит:

radius opisannoy okruzhnosti tupougolnogo treugolnika

у остроугольного треугольника — внутри треугольника;

у прямоугольного — на середине гипотенузы;

у тупоугольного — вне треугольника, напротив тупого угла.

Радиус описанной окружности для прямоугольного треугольника

radius opisannoy okruzhnosti pryamougolnogo treugolnika

Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы:

    [R = frac{c}{2}]

Окружность, описанная около многоугольника

radius opisannoy okruzhnosti mnogougolnika

Если около многоугольника можно описать окружность, ее центр является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Радиус описанной около многоугольника окружности  находят как радиус окружности, описанной около треугольника. Для этого берут любые три вершины многоугольника.

Например, для пятиугольника ABCDE можно взять любой из треугольников ABC, ABD, ABE, BCD, BCE, CDE, ACD, ACE, ADE, BDE.

Радиус окружности, описанной около правильного многоугольника

Формула радиуса описанной окружности для правильного многоугольника

    [R = frac{a}{{2sin frac{{{{180}^o}}}{n}}}]

где a — длина стороны многоугольника, n — количество его сторон.

Частные случаи — правильный треугольник, правильный четырехугольник (то есть квадрат), правильный шестиугольник.

Радиус описанной окружности правильного треугольника

radius opisannoy okruzhnosti ravnostoronnego treugolnikaФормула радиуса описанной окружности для правильного треугольника

    [R = frac{a}{{sqrt 3 }}]

Если без иррациональности в знаменателе —

    [R = frac{{asqrt 3 }}{3}.]

У правильного треугольника радиус описанной окружности в два раза больше радиуса вписанной окружности:

    [R = 2r]

Радиус описанной окружности квадрата

radius opisannoy okruzhnosti kvadrata

Формула радиуса описанной окружности для квадрата

    [R = frac{a}{{sqrt 2 }}]

Если без иррациональности в знаменателе —

    [R = frac{{asqrt 2 }}{2}.]

Радиус описанной окружности правильного шестиугольника

radius opisannoy okruzhnosti pravilnogo shestiugolnika

Формула радиуса описанной окружности для правильного шестиугольника

    [R = a]

Краткое содержание:

  1. Что такое радиус
  2. Радиус и диаметр
  3. Примеры задач
  4. Формулы для радиуса описанной окружности
  5. Найти радиус описанной окружности треугольника по сторонам
  6. Найти радиус описанной окружности равностороннего треугольника по стороне или высоте
  7. Найти радиус описанной окружности равнобедренного треугольника по сторонам
  8. Найти радиус описанной окружности прямоугольного треугольника по катетам
  9. Радиус описанной окружности трапеции по сторонам и диагонали
  10. Найти радиус описанной окружности около квадрата
  11. Радиус описанной окружности прямоугольника по сторонам
  12. Радиус описанной окружности правильного многоугольника
  13. Радиус описанной окружности правильного шестиугольника
  14. Формулы для радиуса вписанной окружности
  15. Радиус вписанной окружности в треугольник
  16. Радиус вписанной окружности в равносторонний треугольник
  17. Радиус вписанной окружности равнобедренный треугольник
  18. Радиус вписанной окружности в прямоугольный треугольник
  19. Радиус вписанной окружности в равнобочную трапецию
  20. Радиус вписанной окружности в квадрат
  21. Радиус вписанной окружности в ромб
  22. Радиус вписанной окружности в правильный многоугольник
  23. Радиус вписанной окружности в шестиугольник
  24. Примеры задач
  25. Обсуждение

Здравствуйте мои дорогие подписчики и гости сайта 9111.ru!

На самом деле эту тему проходят еще в начальных классах обычной школы. И все, кто хорошо учился, сразу смогут сказать, о чем идет речь. Ну, или хотя бы точно понять, что РАДИУС как-то связан с окружностью.

Что такое радиус

И действительно:

Радиус – это отрезок, который начинается в центре окружности и заканчивается в любой точке ее поверхности. В то же время так называется и длина этого отрезка.

Радиус описанной и вписанной окружности: Формулы и примеры

Вот так это выглядит графически.

**************************************

Само слово РАДИУС имеет латинские корни. Оно произошло от «radius», что можно перевести как «луч» или «спица колеса». Впервые этот математический термин ввел французский ученый П.Ромус. Было это в 1569 году.

Но потребовалось чуть более ста лет, чтобы слово РАДИУС прижилось и стало общепринятым.

Кстати, есть еще несколько значений слова РАДИУС:

  • Размер охвата чего-нибудь или сфера распространения. Например, говорят «Огонь уничтожил все в радиусе 10 километров» или «ОН показал на карте радиус действия артиллерии»;
  • В анатомии этим словом обозначают Лучевую кость предплечья.

Но, конечно, нас интересует РАДИУС как математический термин. А потому и продолжим говорить именно о нем.

Радиус и диаметр

Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

Радиус описанной и вписанной окружности: Формулы и примеры

Обозначается диаметр также первой буквой своего слова – D или d.

Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

А именно:

Длина диаметра равна удвоенной длине радиуса.

Радиус описанной и вписанной окружности: Формулы и примеры

Примеры задач

Задание 1

Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:

Используем первую формулу (через периметр):

Радиус описанной и вписанной окружности: Формулы и примеры

Задание 2

Найдите радиус круга, если его площадь составляет 254,34 см 2.

Решение:

Воспользуемся формулой, выраженной через площадь фигуры:

Радиус описанной и вписанной окружности: Формулы и примеры

Формулы для радиуса описанной окружности

Найти радиус описанной окружности треугольника по сторонам

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса описанной окружности треугольника (R ) :

Радиус описанной и вписанной окружности: Формулы и примеры

Найти радиус описанной окружности равностороннего треугольника по стороне или высоте

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Радиус описанной и вписанной окружности: Формулы и примеры

Найти радиус описанной окружности равнобедренного треугольника по сторонам

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса описанной окружности равнобедренного треугольника (R):

Радиус описанной и вписанной окружности: Формулы и примеры

Найти радиус описанной окружности прямоугольного треугольника по катетам

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса описанной окружности прямоугольного треугольника (R):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус описанной окружности трапеции по сторонам и диагонали

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса описанной окружности равнобокой трапеции, (R)

Радиус описанной и вписанной окружности: Формулы и примеры

Найти радиус описанной окружности около квадрата

Радиус описанной окружности квадрата равен половине его диагонали

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса описанной окружности квадрата (R):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус описанной окружности прямоугольника по сторонам

Радиус описанной окружности прямоугольника равен половине его диагонали

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса описанной окружности прямоугольника (R):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус описанной окружности правильного многоугольника

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса описанной окружности правильного многоугольника, (R):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус описанной окружности правильного шестиугольника

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус описанной окружности правильного шестиугольника (R):

Радиус описанной и вписанной окружности: Формулы и примеры

Формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в треугольник (r):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус вписанной окружности в равносторонний треугольник

Радиус описанной и вписанной окружности: Формулы и примеры

Формула для радиуса вписанной окружности в равносторонний треугольник (r):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны (r ) :

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол (r ) :

Радиус описанной и вписанной окружности: Формулы и примеры

2. Формулы радиуса вписанной окружности если известны: сторона и высота

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту (r ) :

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус вписанной окружности в прямоугольный треугольник

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в прямоугольный треугольник (r):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус вписанной окружности в равнобочную трапецию

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности равнобочной трапеции (r):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус вписанной окружности в квадрат

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в квадрат (r):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус вписанной окружности в ромб

1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в ромб через диагонали (r ) :

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в ромб через сторону и угол (r ) :

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в ромб через диагональ и угол (r ) :

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в ромб через диагональ и сторону (r ) :

Радиус описанной и вписанной окружности: Формулы и примеры

2. Радиус вписанной окружности ромба, равен половине его высоты

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в ромб (r ) :

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус вписанной окружности в правильный многоугольник

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в правильный многоугольник, (r):

Радиус описанной и вписанной окружности: Формулы и примеры

Радиус вписанной окружности в шестиугольник

Радиус описанной и вписанной окружности: Формулы и примеры

Формула радиуса вписанной окружности в шестиугольник, (r):

Радиус описанной и вписанной окружности: Формулы и примеры

Примеры задач

Задание 1

Дан треугольник со сторонами 5, 7 и 10 см. Вычислите радиус вписанной в него окружности.

Решение

Сперва вычислим площадь треугольника. Для этого применим формулу Герона:

Радиус описанной и вписанной окружности: Формулы и примеры

Остается только применить соответствующую формулу для вычисления радиуса круга:

Радиус описанной и вписанной окружности: Формулы и примеры

Задание 2

Боковые стороны равнобедренного треугольника равны 16 см, а основание 7 см. Найдите радиус вписанной в фигуру окружности.

Решение

Воспользуемся подходящей формулой, подставив в нее известные значения:

Радиус описанной и вписанной окружности: Формулы и примеры

Всем спасибо и приятного просмотра! Если понравилась публикация подписывайтесь и ставьте палец вверх!

Источники:

  • https://KtoNaNovenkogo.ru/voprosy-i-otvety/radius-chto-ehto-takoe-kak-najti-radius-okruzhnosti-formula.html
  • https://MicroExcel.ru/radius-kruga/
  • https://www-formula.ru/2011-09-24-00-42-22
  • https://www-formula.ru/2011-09-24-00-40-48
  • https://MicroExcel.ru/radius-vpisannogo-v-treugolnik-kruga/

Радиус описанной окружности около равнобедренного треугольника онлайн

С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Содержание

  1. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и боковая сторона b=c
  2. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и противолежащий угол A
  3. Радиус окружности описанной около равнобедренного треугольника, если известны боковая сторона b=c треугольника и угол между боковыми сторонами A
  4. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и прилежащий угол B=C

1. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и боковая сторона b=c

Пусть известны основание a равнобедренного треугольника и боковая сторона b=c. Найдем радиус описанной окружности около равнобедренного треугольника. На странице Радиус окружности описанной около треугольника онлайн была выведена формула вычисления радиуса R описанной около любого треугольника окружности:

где p вычисляется из формулы:

Учитывая, что у нас треугольник равнобедренный, т.е. b=c, имеем:

Подставляя (3)−(5) в (1) и учитывая, что b=c, получим:

то есть

Пример 1. Известны основание ( small a=7 ) и боковая сторона ( small b=frac{9}{2} ) равнобедренного треугольника. Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (6).

Подставим значения ( small a=7 ) и ( small b=frac{9}{2} ) в (6):

Ответ:

2. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и противолежащий угол A

Пусть известны сторона a и противолежащий угол A. Формула для нахождения радиуса окружности описанной около равнобедренного треугольника по основанию и противолежащему углу аналогична формуле для нахождения радиуса окружности описанной около произвольного треугольника:

Пример 2. Сторона основание равнобедренного треугольника равна:( small a=21 ) а противолежащий угол ( small angle A=60°.) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (7). Подставим значения ( small a=21 ) и ( small angle A=60° ) в (7):

Ответ:

3. Радиус окружности описанной около равнобедренного треугольника, если известны боковая сторона b=c треугольника и угол между боковыми сторонами A

Пусть известны боковая сторона b=c равнобедренного треугольника и угол между боковыми сторонами A. Найдем радиус описанной окружности около равнобедренного треугольника.

На странице Радиус описанной окружности около треугольника онлайн была выведена формула для нахождения радиуса описанной окружности около треугольника при известных сторонах и углу между ними:

Подставляя в (8) c=b, получим:

то есть

Пример 3. Известны основание ( small a=21 ) равнобедренного треугольника и угол между боковыми сторонами: ( small angle A=70°. ) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (9). Подставим значения ( small a=21; ) и ( small angle A=70° ) в (9):

Ответ:

4. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и прилежащий угол B=C

Пусть известны основание a равнобедренного треугольника и прилежащие к ней угол B=C. Найдем радиус описанной окружности около треугольника. На странице Радиус описанной окружности около треугольника онлайн была выведена формула для нахождения радиуса описанной окружности около треугольника при известной стороне и прилежащим двум углам:

Подставляя ( small C=B ) в (10), получим требуемую формулу:

Пример 4. Известны основание равнобедренного треугольника ( small a=14 ) и прилежащий к ней угол: ( small angle B=25°. ) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (11). Подставим значения ( small a=14 ) и ( small angle B=25° ) в (11):

Ответ:

Смотрите также:

  • Радиус описанной окружности около треугольника онлайн
  • Радиус описанной окружности около равностороннего треугольника онлайн
  • Радиус описанной окружности около прямоугольного треугольника онлайн

Понравилась статья? Поделить с друзьями:
  • Как найти заблокировано сообщение в вайбере
  • Как исправить код тарифа в рсв 1
  • Как найти цифры в лотерее
  • Как найти имущество предприятия по балансу
  • Как найти объем высота ширина длинна