Как найти радиус описанной окружности остроугольного треугольника

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольника Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусов
Площадь треугольника
Радиус описанной окружности
Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Радиус описанной окружности

Удобно, когда все формулы, по которым можно найти радиус описанной окружности для треугольника, квадрата, многоугольника размещены на одной странице.

Формулы для нахождения радиуса описанной окружности треугольника (верны для треугольника любого вида):

где a, b, c — длины сторон треугольника, α, β, γ — противолежащие этим сторонам углы, S — площадь треугольника.

у остроугольного треугольника — внутри треугольника;

у прямоугольного — на середине гипотенузы;

у тупоугольного — вне треугольника, напротив тупого угла.

Радиус описанной окружности для прямоугольного треугольника

Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы:

Окружность, описанная около многоугольника

Если около многоугольника можно описать окружность, ее центр является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Радиус описанной около многоугольника окружности находят как радиус окружности, описанной около треугольника. Для этого берут любые три вершины многоугольника.

Например, для пятиугольника ABCDE можно взять любой из треугольников ABC, ABD, ABE, BCD, BCE, CDE, ACD, ACE, ADE, BDE.

Радиус окружности, описанной около правильного многоугольника

Формула радиуса описанной окружности для правильного многоугольника

где a — длина стороны многоугольника, n — количество его сторон.

Частные случаи — правильный треугольник, правильный четырехугольник (то есть квадрат), правильный шестиугольник.

Радиус описанной окружности правильного треугольника

Формула радиуса описанной окружности для правильного треугольника

Если без иррациональности в знаменателе —

У правильного треугольника радиус описанной окружности в два раза больше радиуса вписанной окружности:

Радиус описанной окружности квадрата

Формула радиуса описанной окружности для квадрата

Если без иррациональности в знаменателе —

Радиус описанной окружности правильного шестиугольника

Формула радиуса описанной окружности для правильного шестиугольника

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Описанная окружность — подробнее

Определение

Описанная окружность – такая окружность, что проходит через все три вершины треугольника, около которого она описана.

Свойства и центр описанной кружности

И вот, представь себе, имеет место удивительный факт:

Вокруг всякого треугольника можно описать окружность.

Почему этот факт удивительный?

Потому что треугольники ведь бывают разные!

И для всякого найдётся окружность, которая пройдёт через все три вершины, то есть описанная окружность.

Доказательство этого удивительного факта мы приведем чуть позже, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины.

Вот, скажем, параллелограмм – отличный четырехугольник, а окружности, проходящей через все его четыре вершины – нет!

А есть только для прямоугольника:

Подробнее об этом смотри в статье о вписанных четырехугольниках!

Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.

Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам этого треугольника.

Знаешь ли ты, что такое серединный перпендикуляр?

Серединный перпендикуляр — это прямая, проходящая через середину отрезка и перпендикулярная ему.

Прямая ( displaystyle a) – это серединный перпендикуляр к отрезку ( displaystyle AB).

А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.

Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок – все три серединных перпендикуляра пересекаются в одной точке ( displaystyle O).

Это и есть центр описанной около (вокруг) треугольника ( displaystyle ABC) окружности.

Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе – вовсе не всегда!

Если треугольник тупоугольный, то центр его описанной окружности лежит снаружи!

Вот так:

А вот если остроугольный, то внутри:

Что же делать с прямоугольным треугольником?

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы.

Здорово, правда?

Если треугольник – прямоугольный, то не надо строить аж три перпендикуляра, а можно просто найти середину гипотенузы – и центр описанной окружности готов!

Да ещё с дополнительным бонусом:

В прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая теорема синусов.

А именно:

В произвольном треугольнике:
( Large displaystyle frac{a}{sin angle A}=2R)

Ну и, конечно,

( displaystyle begin{array}{l}frac{b}{sin angle B}=2R\frac{c}{sin angle C}=2Rend{array})

Так что ты теперь всегда сможешь найти и центр , и радиус окружности, описанной вокруг треугольника.

То есть чтобы найти радиус описанной окружности, нужно знать одну (!) сторону и один (!) противолежащий ей угол. 

Хорошая формула? По-моему, просто отличная!

Доказательство теоремы

Теорема. Вокруг всякого треугольника можно описать окружность, при том единственным образом.

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему.

Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Геометрическое место точек, обладающих свойством «( displaystyle X)» — такое множество точек, что все они обладают свойством «( displaystyle X)» и никакие другие точки этим свойством не обладают.

Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.

А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.

В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Серединный перпендикуляр к отрезку является геометрическим местом точек, равноудалённых от концов отрезка.

Тут множество – это серединный перпендикуляр, а свойство «( displaystyle X)» — это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  • Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
  • Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему

Приступим:

Проверим 1. Пусть точка ( displaystyle M) лежит на серединном перпендикуляре к отрезку ( displaystyle AB).

Соединим ( displaystyle M) с ( displaystyle A) и с ( displaystyle B).Тогда линия ( displaystyle MK) является медианой и высотой в ( displaystyle Delta AMB).

Значит, ( displaystyle Delta AMB) – равнобедренный, ( displaystyle MA=MB) – убедились, что любая точка ( displaystyle M), лежащая на серединном перпендикуляре, одинаково удалена от точек ( displaystyle A) и ( displaystyle B).

Теперь 2. Почти точно так же, но в другую сторону. Пусть точка ( displaystyle M) равноудалена от точек ( displaystyle A) и ( displaystyle B), то есть ( displaystyle MA=MB).

Возьмём ( displaystyle K) – середину ( displaystyle AB) и соединим ( displaystyle M) и ( displaystyle K). Получилась медиана ( displaystyle MK). Но ( displaystyle Delta AMB) – равнобедренный по условию ( displaystyle (MA=MB)Rightarrow MK) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка ( displaystyle M) — точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник ( displaystyle ABC). Проведём два серединных перпендикуляра ( displaystyle {{a}_{1}}) и ( displaystyle {{a}_{2}}), скажем, к отрезкам ( displaystyle AB) и ( displaystyle BC). Они пересекутся в какой-то точке, которую мы назовем ( displaystyle O).

А теперь, внимание!

Точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{1}}Rightarrow OA=OB);
точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{2}}Rightarrow OB=OC).
И значит, ( displaystyle OA=OB=OC) и ( displaystyle OA=OC).

Отсюда следует сразу несколько вещей:

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике

ЕГЭ 6. Описанная окружность. Многоугольники

Вы этом видео вы узнаете, что такое описанная окружность, где находится её центр, и другие свойства. 

Около каких фигур можно, а вокруг каких нельзя описать окружность. 

Также мы узнаем, что такое правильные многоугольники, и какие у них свойства; как они связаны с описанной окружностью. 

Научимся решать задачи из ЕГЭ на описанную окружность и правильные многоугольники.

ЕГЭ 6. Вписанная окружность

В этом видео мы узнаем, что такое вписанная окружность, где находится её центр, и другие свойства.

В какие фигуры можно, а в какие нельзя вписать окружность. Научимся решать задачи на вписанную окружность.

Удобно, когда все формулы, по которым можно найти радиус описанной окружности для треугольника, квадрата, многоугольника размещены на одной странице.

Радиус описанной окружности для произвольного треугольника

Формулы для нахождения радиуса описанной окружности треугольника (верны для треугольника любого вида):

radius opisannoy okruzhnosti

    [R = frac{{abc}}{{4S}}]

    [R = frac{a}{{2sin alpha }} = frac{b}{{2sin beta }} = frac{c}{{2sin gamma }},]

где a, b, c — длины сторон треугольника, α, β, γ — противолежащие этим сторонам углы, S — площадь треугольника.

Центр описанной окружности лежит:

radius opisannoy okruzhnosti tupougolnogo treugolnika

у остроугольного треугольника — внутри треугольника;

у прямоугольного — на середине гипотенузы;

у тупоугольного — вне треугольника, напротив тупого угла.

Радиус описанной окружности для прямоугольного треугольника

radius opisannoy okruzhnosti pryamougolnogo treugolnika

Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы:

    [R = frac{c}{2}]

Окружность, описанная около многоугольника

radius opisannoy okruzhnosti mnogougolnika

Если около многоугольника можно описать окружность, ее центр является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Радиус описанной около многоугольника окружности  находят как радиус окружности, описанной около треугольника. Для этого берут любые три вершины многоугольника.

Например, для пятиугольника ABCDE можно взять любой из треугольников ABC, ABD, ABE, BCD, BCE, CDE, ACD, ACE, ADE, BDE.

Радиус окружности, описанной около правильного многоугольника

Формула радиуса описанной окружности для правильного многоугольника

    [R = frac{a}{{2sin frac{{{{180}^o}}}{n}}}]

где a — длина стороны многоугольника, n — количество его сторон.

Частные случаи — правильный треугольник, правильный четырехугольник (то есть квадрат), правильный шестиугольник.

Радиус описанной окружности правильного треугольника

radius opisannoy okruzhnosti ravnostoronnego treugolnikaФормула радиуса описанной окружности для правильного треугольника

    [R = frac{a}{{sqrt 3 }}]

Если без иррациональности в знаменателе —

    [R = frac{{asqrt 3 }}{3}.]

У правильного треугольника радиус описанной окружности в два раза больше радиуса вписанной окружности:

    [R = 2r]

Радиус описанной окружности квадрата

radius opisannoy okruzhnosti kvadrata

Формула радиуса описанной окружности для квадрата

    [R = frac{a}{{sqrt 2 }}]

Если без иррациональности в знаменателе —

    [R = frac{{asqrt 2 }}{2}.]

Радиус описанной окружности правильного шестиугольника

radius opisannoy okruzhnosti pravilnogo shestiugolnika

Формула радиуса описанной окружности для правильного шестиугольника

    [R = a]

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

  • Формулы вычисления радиуса описанной окружности

    • Произвольный треугольник

    • Прямоугольный треугольник

    • Равносторонний треугольник

  • Примеры задач

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

Формула расчета радиуса описанной вокруг треугольника окружности

Треугольник abc с описанной вокруг окружностью с радиусом R

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Прямоугольный треугольник с описанной вокруг окружностью

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

Формула расчета радиуса описанной около равностороннего треугольника окружности

Равносторонний треугольник c описанной вокруг окружностью

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Пример расчета площади треугольника по формуле Герона

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Пример расчета радиуса описанной вокруг треугольника окружности через его стороны и площадь

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Пример нахождения гипотенузы в прямоугольном треугольнике по Теореме Пифагора

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Радиус описанной около треугольника окружности

Определение

Треугольник является геометрической фигурой на плоскости, которая включает три стороны в виде отрезков, образованных с помощью соединения трех точек, не лежащих на одной прямой.

Обозначают данную геометрическую фигуру символом △.

Точками A, B и C обычно обозначают вершины треугольника. Отрезки AB, BC и AC определяют стороны треугольника, которые, как правило, обозначают с помощью латинской буквы. К примеру, AB = a, BC = b, AC = c.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Внутренность треугольника представляет собой часть плоскости, которая ограничена сторонами треугольника. Стороны треугольника в вершинах формируют три угла, которые обычно обозначают, используя греческие буквы – (alpha, beta, gamma) и другие. По этой причине треугольник получил название многоугольника с тремя углами. Для обозначения углов также применяют символ ∠, к примеру:

  • (alpha )∠BAC или ∠CAB;
  • (beta) ∠ABC или ∠CBA;
  • (gamma )∠ACB или ∠BCA.

Треугольники различают по величине углов или количеству равных сторон:

  • остроугольный, в котором все три угла острые, то есть меньше (90^{0});
  • тупоугольный, обладает один из углов больше (90^{0}), а два остальных угла являются острыми;
  • прямоугольный с одним прямым углом в (90^{0}), двумя сторонами, образующими прямой угол, которые называют катетами, третьей стороной, расположенной напротив прямого угла в виде гипотенузы;
  • разносторонний, со сторонами разной длины;
  • равнобедренный, с двумя одинаковыми боковыми сторонами и третьей стороной в виде основания, углы при котором равны;
  • равносторонний (правильный) обладает тремя сторонами с одинаковой длиной и углами, равными по (60^{0}).

Определение

Окружностью называют замкнутую плоскую прямую, каждая точка которой равноудалена от данной точки или центра, лежащей в той же плоскости, что и кривая.

Примечание

Окружность, описанная около треугольника, является окружностью, проходящей через все три вершины рассматриваемого треугольника.

Радиус окружности, описанной около треугольника, определяется с помощью специальных формул, подкрепленных соответствующими доказательствами. Первая закономерность позволяет рассчитать его согласно расширенной теореме синусов: 

  • радиус R окружности, описанной около треугольника, равен отношению стороны треугольника к удвоенному синусу противолежащего угла.

Формула для нахождения радиуса:

(R=frac{AB}{2sin angle C} =frac{AC}{2sin angle B} =frac{BC}{2sin angle A})

Теореме синусов

 

Вторую формулу для определения радиуса описанной около треугольника окружности записывают таким образом:

(R=frac{AB*BC*AC}{4S_{ABC}})

Общий вид:

(R=frac{abc}{4S})

Таким образом, для определения радиуса окружности, которая описана около треугольника, требуется произведение длины сторон этой геометрической фигуры разделить на четыре площади треугольника.

Площадь треугольника можно рассчитать, используя формулу Герона:

(S=sqrt{p(p-a)(p-b)(p-c)})

В данном случае р обозначает полупериметр и определяется по формуле:

(p=frac{a+b+c}{2})

В результате преобразованная формула для определения радиуса описанной около треугольника окружности примет следующий вид:

(R=frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}})

Представленные закономерности справедливы в случае любого треугольника, независимо от его вида. При расчетах необходимо учитывать расположение центра описанной окружности.

формулу Герона

 

Расположение центра окружности, описанной около треугольника:

  • остроугольный треугольник – во внутренней области;
  • прямоугольный треугольник – на середине гипотенузы;
  • тупоугольный треугольник – вне геометрической фигуры, напротив тупого угла.

Вычисление радиуса через стороны

Выше были рассмотрены формулы, с помощью которых можно определить радиус окружности, описанной вокруг треугольника, зная его стороны. Кроме того, при решении задач можно использовать некоторые закономерности, предусмотренные для треугольников определенного типа.

Формула для равнобедренного треугольника

Обладая информацией о длине сторон равнобедренного треугольника, можно определить радиус окружности, описанной вокруг этого треугольника.

Формула для равнобедренного треугольника

 

(R=frac{a^{2}}{sqrt{4a^{2}-b^{2}}})

где a и b являются сторонами треугольника.  

Формула для равностороннего треугольника

Такое выражение подходит для расчета радиуса окружности, описанной около любого правильного многоугольника. Формула имеет вид:

(R=frac{a}{2sin frac{180^{0}}{n}})

Здесь а является длиной стороны многоугольника, n – определяет количество его сторон.

Частным случаем правильного многоугольника является правильный треугольник. Тогда данную формулу можно применить для расчета радиуса окружности, описанной около правильного треугольника.

Формула для равностороннего треугольника

 

Формула радиуса описанной окружности для правильного треугольника:

(R=frac{a}{sqrt{3}})

Исключая иррациональность в знаменателе, получим:

(R=frac{asqrt{3}}{3})

Следует заметить, что в случае правильного треугольника радиус описанной окружности в два раза превышает радиус вписанной окружности:

R=2r

Формула для произвольного треугольника

Как правило, при решении задач по геометрии необходимо вычислить радиус окружности, описанной около произвольного треугольника. В этом случае целесообразно воспользоваться формулой:

(R=frac{abc}{4S})

Формула для произвольного треугольника

 

Справедливо следующее равенство:

(R=frac{a}{2sin alpha }=frac{b}{2sin beta }= frac{c}{2sin gamma })

где a, b, c являются длинами сторон треугольника, (alpha, beta, gamma) определяются, как противолежащие этим сторонам углы, S представляет собой площадь треугольника.

Формула для прямоугольного треугольника

Радиус описанной около прямоугольного треугольника окружности можно определить по формуле:

(R=frac{AB}{2})

Формула для прямоугольного треугольника

 

Таким образом, в случае прямоугольного треугольника радиус окружности, которая описана около него, равен половине гипотенузы. Как правило, ее обозначают с помощью «с», то есть АВ = с. Поэтому формула принимает следующий вид:

(R=frac{c}{2})

Примеры решения задач

Задача 1

Стороны треугольника равны 4, 6 и 9 см. Необходимо определить радиус окружности, которая описана около данного треугольника.

Решение

В первую очередь нужно рассчитать площадь рассматриваемого треугольника. Зная длины его сторон, ее можно определить с помощью формулы Герона:

(S=sqrt{9.5(9.5-4)*(9.5-6)*(9.5-9)}approx 9.56)

Затем достаточно просто найти радиус окружности:

(R=frac{4*6*9}{4*9.56}approx 5.65)

Ответ: радиус окружности равен 5.65 см

Задача 2

Известно, что катеты прямоугольного треугольника равны 6 и 8 см. Требуется рассчитать радиус окружности, которая описана около данного треугольника.

Решение

Определим гипотенузу рассматриваемого треугольника с помощью теоремы Пифагора:

(c=sqrt{6^{2}+8^{2}}=10)

Известно, что радиус окружности, которая описана около прямоугольного треугольника, соответствует половине его гипотенузы. Таким образом:

(R = 10/2 = 5)

Ответ: радиус окружности равен 5 см.

Задача 3

Необходимо определить радиус описанной окружности около треугольника АВС, стороны которого равны (AB=4sqrt{2}) см,( AC=7 см) и (angle A=45^{circ}.)

Решение

Определить радиус окружности, которая описана около треугольника, можно, как отношение произведения сторон треугольника к его площади, умноженной на 4:

(R=frac{ABcdot BCcdot AC}{4S} )

По теореме косинусов следует рассчитать сторону ВС:

(BC=sqrt{AC^2 +AB^2 -2ACcdot ABcdot cos angle A} =)

(=sqrt{49+32-2cdot 7cdot 4sqrt{2} cdot frac{sqrt{2} }2 } =sqrt{25} =5 cm)

Затем можно определить площадь треугольника АВС:

(S_{ABC} =frac{1}{2} cdot ABcdot ACcdot sin angle A=14 cm^2 )

Зная площадь, легко рассчитать радиус окружности:

(R=frac{ABcdot BCcdot AC}{4S} =frac{4sqrt{2} cdot 5cdot 7}{4cdot 14} =frac{5sqrt{2} }{2} cm)

Ответ: радиус окружности равен (frac{5sqrt{2} }2 см.)

Задача 4

Дан треугольник АВС со сторонами AB=3 см,( AC=sqrt{6} см). Необходимо определить углы этой геометрической фигуры. При этом радиус описанной окружности равен (R=sqrt{3}) см.

Решение

Согласно формуле, радиус описанной окружности равен отношению стороны треугольника к удвоенному синусу противолежащего угла:

(R=frac{AB}{2sin angle C} =frac{AC}{2sin angle B} =frac{BC}{2sin angle A} )

Таким образом, можно вычислить синусы углов треугольника:

(sin angle C=frac{AB}{2R} =frac{3}{2sqrt{3} } =frac{sqrt{3} }{2}, откуда angle C=60^{circ},)

(sin angle B=frac{AC}{2R} =frac{sqrt{6} }{2sqrt{3} } =frac{sqrt{2} }{2}, откуда angle B=45^{circ}.)

Далее следует определить угол А:

(angle A=180^{circ} -60^{circ} -45^{circ} =75^{circ} )

Ответ: (angle A=75^{circ} , angle B=45^{circ} , angle C=60^{circ})

Понравилась статья? Поделить с друзьями:
  • Как ты нашла мою страничку
  • Как составить акт приемки в эксплуатацию
  • Как найти путь к файлу сертификата
  • С000021а fatal system error windows 7 как исправить
  • Как найти изменение энтальпии в адиабатическом процессе