Как найти радиус по формуле кулона

Основной
закон взаимодействия электрических
зарядов был найден Шарлем Кулоном в
1785 г. экспериментально. Кулон установил,
что сила
взаимодействия
между двумя небольшими заряженными
металлическими шариками обратно
пропорциональна квадрату расстояниямежду ними и зависит от величины зарядови:

,

где
коэффициент
пропорциональности

.

Силы,
действующие на заряды
,
являются центральными,
то есть они направлены вдоль прямой,
соединяющей заряды.

  • Для
    одноименных зарядов произведение
    и силасоответствует взаимному отталкиванию
    зарядов,

  • для
    разноимнных зарядов
    ,
    и силасоответствует взаимному притяжению
    зарядов.

Закон
Кулона

можно записать в
векторной форме
:,

где
вектор
силы, действующей на заряд
со стороны заряда,

— радиус-вектор,
соединяющий заряд
с зарядом;

— модуль радиус-вектора.

Сила,
действующая на заряд
со стороныравна,.

Закон Кулона в
такой форме

  • справедлив
    только
    для взаимодействия точечных электрических
    зарядов
    ,
    то есть таких заряженных тел, линейными
    размерами которых можно пренебречь по
    сравнению с расстоянием между ними.

  • выражает
    силу взаимодействия

    между неподвижными электрическими
    зарядами, то есть это электростатический
    закон.

Формулировка
закона Кулона
:

Сила
электростатического взаимодействия
между двумя точечными электрическими
зарядами прямо пропорциональна
произведению величин зарядов и обратно
пропорциональна квадрату расстояния
между ними
.

Коэффициент
пропорциональности

в законе Кулоназависит

  1. от свойств среды

  2. выбора единиц
    измерения величин, входящих в формулу.

Поэтому
можно
представить отношением,

где
коэффициент,
зависящий только от выбора системы
единиц измерения
;

— безразмерная
величина, характеризующая электрические
свойства среды, называется относительной
диэлектрической проницаемостью среды
.
Она не зависит от выбора системы единиц
измерения и равна единице в вакууме.

Тогда
закон Кулона примет вид:,

для
вакуума
,

тогда
относительная
диэлектрическая проницаемость среды
показывает, во сколько раз в данной
среде сила взаимодействия между двумя
точечными электрическими зарядами
и,
находящимися друг от друга на расстоянии,
меньше, чем в вакууме.

В
системе СИ
коэффициент
,
и

закон
Кулона имеет вид
:.

Это
рационализированная
запись закона К
улона.

— электрическая
постоянная,
.

В
системе СГСЭ

,.

В
векторной форме закон Кулона

принимает вид

где
вектор
силы, действующей на заряд
со стороны заряда

,


радиус-вектор, соединяющий заряд
с зарядом

(рис. 1.2),

r
–модуль радиус-вектора

.

Всякое
заряженное тело состоит из множества
точечных электрических зарядов, поэтому
электростатическая
сила, с которой одно заряженное тело
действует на другое, равна векторной
сумме сил, приложенных ко всем точечным
зарядам второго тела со стороны каждого
точечного заряда первого тела.

1.3.Электрическое поле. Напряженность.

Пространство,
в котором находится электрический
заряд, обладает определенными физическими
свойствами
.

  1. На
    всякий

    другой заряд,
    внесенный в это пространство, действуют
    электростатические силы Кулона.

  2. Если в каждой
    точке пространства действует сила, то
    говорят, что в этом пространстве
    существует силовое поле.

  3. Поле наряду с
    веществом является формой материи.

  4. Если
    поле стационарно, то есть не меняется
    во времени, и создается неподвижными
    электрическими зарядами, то такое поле
    называется электростатическим.

Электростатика
изучает только электростатические поля
и взаимодействия неподвижных зарядов.

Для
характеристики электрического поля
вводят понятие напряженности
.
Напряженностью
в каждой точке электрического поля
называется вектор
,
численно равный отношению силы, с которой
это поле действует на пробный положительный
заряд, помещенный в данную точку, и
величины этого заряда, и направленный
в сторону действия силы.

Пробный
заряд
,
который вносится в поле, предполагается
точечным и часто называется пробным
зарядом.

Он
не участвует в создании поля,

которое с его помощью измеряется.


предполагается, что этот заряд не
искажает исследуемого поля,

то есть он достаточно мал и не вызывает
перераспределения зарядов, создающих
поле.

Если
на пробный точечный заряд
поле действует силой,
то напряженность.

Единицы напряженности:

СИ:

СГСЭ:

В
системе СИ выражение
для
поля точечного заряда
:

.

В векторной форме:

Здесь
– радиус-вектор, проведенный из зарядаq
, создающего поле, в данную точку.

Таким
образом,векторы
напряженности электрического поля
точечного заряда
q
во всех точках поля направлены радиально

(рис.1.3)

— от
заряда, если он положительный, «исток»

— и
к заряду, если он отрицательный

«сток»

Для
графической интерпретации

электрического поля вводят понятие
силовой линии или
линии
напряженности
.
Это

  • кривая,
    касательная в каждой точке к которой
    совпадает с вектором напряженности
    .

  • Линия напряженности
    начинается на положительном заряде и
    заканчивается на отрицательном.

  • Линии напряженности
    не пересекаются, так как в каждой точке
    поля вектор напряженности имеет лишь
    одно направление.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Помогите пожалуйста выразить r из формулы Кулона : F = k * сверху q1 * q2 / снизу E * r ^ 2.

На этой странице сайта размещен вопрос Помогите пожалуйста выразить r из формулы Кулона : F = k * сверху q1 * q2 / снизу E * r ^ 2? из категории
Физика с правильным ответом на него. Уровень сложности вопроса
соответствует знаниям учеников 5 — 9 классов. Здесь же находятся ответы по
заданному поиску, которые вы найдете с помощью автоматической системы.
Одновременно с ответом на ваш вопрос показаны другие, похожие варианты по
заданной теме. На этой странице можно обсудить все варианты ответов с другими
пользователями сайта и получить от них наиболее полную подсказку.

Закон Кулона

Два неподвижных тела, обеспеченные определенным зарядом, взаимодействуют.
Они притягиваются либо отталкиваются. И математическое описание той самой величины действия и является законом Кулона.
Но речь идет именно о точечном заряде, когда отсутствуют сторонние источники электромагнитных полей и не учитывается стороннее воздействие.
Закон Кулона же описывает ту самую силу, исходя из формы и размеров тех самых тел.
Где F — сила воздействия, q1 b q2 — уровень заряда (в кулонах), r — расстояние (от центра тел, в метрах), k — индекс пропорциональности.

Содержание

  1. История открытия
  2. Формулировка
  3. Коэффициент пропорциональности K и электрическая постоянная с точки зрения физики
  4. Направление силы Кулона и векторный вид формулы
  5. Устройство крутильных весов Шарля Кулона
  6. Закон Кулона для зарядов в вакууме
  7. Закон Кулона для зарядов в веществе
  8. Закон Кулона в диэлектриках
  9. Где применяется на практике
  10. Ограничение в применении
  11. Прямая и обратная пропорциональность
  12. Закон Амонтона-Кулона

История открытия

Физическое свойство открыто в 1785 году Шарлем Кулоном.
Точнее, он его подтвердил, а в дальнейшем — вывел математическую зависимость.
Опыты он проводил с помощью обычных металлических шариков.
Итоговое заключение: сила взаимодействия в условиях безвоздушного пространства имеет прямую зависимость от произведения этих модулей и обратную пропорциональность корню расстояния.
И на основе этого в дальнейшем был выведен закон сохранения точечного электрического заряда закон Кулона, что сейчас является основной электростатики.
Кстати, воздействие зарядов ранее на протяжении 20 лет изучал английский физик-теоретик Кавендиш.
И именно он предложил теорию, что два не движущихся тела с имеющимся точечным зарядом взаимодействуют между собой.
Но какая именно сила действует при этом, в каком направлении и от каких параметров она может меняться — он не определил (точнее, не опубликовал информацию о своих выводах).
Математического обоснования он также не предоставил.
Аналогичные исследования проводил и Бернулли, и Робинсон, и Пристли.
Но никто из них не смог вывести окончательную математическую формулу для расчета взаимодействия и перевести её в общепринятую меру.

Формулировка

Текущее формулирование закона Кулона звучит следующим образом:

Закон Кулона

Но есть условия, при которых получается рассчитать взаимодействие двух точечных зарядов по закону:

  1. В пространстве расстояние между зарядами должно существенно превышать их физические габариты.
  2. Тела — статичны относительно окружающей среды.
  3. Тела расположены в вакууме (нивелируется возможное воздействие окружающей среды).

Но в теории, закон Кулона можно применять и для расчета электростатического взаимодействия между двумя точечными движущимися телами.
В итоговую формулу лишь потребуется добавить вектор от заряда q1 к q2.
Но расчет взаимодействия между собой точечных зарядов актуален только если тела находятся в условиях вакуума.
Для движущихся тел, находящихся в окружении определенной среды, применять радиус-вектор не представляется возможным, так как при смене положения меняется также и направление внешних действующих сил.
То есть в данном случае невозможно определить статический коэффициент зависимости.

Коэффициент пропорциональности K и электрическая постоянная с точки зрения физики

Рассчитывается сила взаимодействия при помощи индекса k, который по СГСЭ обозначает единицу заряда.
Его рассчитывать не нужно, так как с математической точки зрения он всегда равен 1 (при условии, что заряды расположены в условиях вакуума).
А вот индекс К — постоянный для заданных условий.
Это не статический показатель, заблаговременно его рассчитать невозможно.
Но для двух тел в одной среде значение К всегда остается одинаковым.

Направление силы Кулона и векторный вид формулы

Направление действующей силы Кулона зависит от того, одноименные или разноимённые точечные заряды взаимодействуют между собой.
Здесь действует основное правило электростатики, согласно которому два тела с одинаковым потенциалом отталкиваются, с разным — притягиваются.
Заряд при этом не имеет значения, учитывается именно потенциал (положительный или отрицательный).

Закон Кулона

Закон Кулона

Соответственно, в векторном виде формула выглядит так:

Закон Кулона

Где q — это электрический заряд (в кулонах), r — радиус-вектор (1/с), ℇ — постоянная (≈ 8,85 Ф/м).

Устройство крутильных весов Шарля Кулона

Для опытов Кулон использовал так называемые «крутильные весы».
Их основа — это шелковая нить (в безвоздушном пространстве).
На ней — уравновешенный рычаг, на краях которого — заряды (аналогично помещенные в вакуум).
При возникновении внешней движущей силы рычаг двигается по горизонтали. И смещается он до уравновешивания силой упругости имеющейся шелковой нити.
Рычаг при этом отклоняется от оси (обозначается как d). И зная это отклонение можно рассчитать крутящий момент кулоновского взаимодействия.
Допускается замена нити на любой другой материал, главное — рассчитать её обратное сопротивление, которое и уравновешивает всю конструкцию.

Закон Кулона

Но это — уже современная вариациях весов.
Непосредственно Шарль Кулон опыт проводил иначе.
Сперва фиксировалось положение горизонтального рычага, когда оба тела — не заряжены.
Далее одному из шариков придавался определенный заряд. По возвращению обратно в вакуум тела между собой начинали взаимодействовать.
С какой именно силой — как раз и показывала шкала отклонения (с поправкой на силу упругости нити, которая и удерживала всю конструкцию).
Данное физическое явление и позволило определить, что сила прямо пропорциональна заряду.
Чем выше потенциал тел — тем больше отклонение по шкале.
В дальнейшем аналогичный опыт проводился и в условиях воздуха.
Разница в результатах — минимальная, поэтому условно считается, что закон Кулона действует как для вакуума, так и для воздуха (за счет схожей диэлектрической проводимости пространства в единицу).
Поэтому опыт Шарля вполне реально повторить в домашних условиях при наличии источника тока и высокоточного измерительного прибора (мультиметра).
В качестве тел можно использовать все те же металлические шарики.

Закон Кулона для зарядов в вакууме

Сила отталкивания в вакууме рассчитывается с учетом эффекта поляризации (по квантовой электродинамике).
Что это означает? Что необходимо учитывать условное сопротивление электронно-позитронных пар, экранирующих непосредственно заряд.
И оно увеличивается при большем расстоянии.
То есть эффективный заряд электрона считается убывающей функцией по логарифмическому соотношению к расстоянию.

Закон Кулона

Закон Кулона

Но при этом формой, массой и габаритами точечного заряда в данном правиле также пренебрегают, оценивая их в условную единицу.
На практике, поправку с учетом эффекта поляризации делать не нужно, так как она играет роль только для микрочастиц размером в несколько атомов.

Закон Кулона для зарядов в веществе

Действие тел друг на друга, размещенных в каком-нибудь веществе, будет ниже, чем в вакууме.
Сила взаимодействия точечных зарядов рассчитывается аналогично, но добавляются 2 дополнительные составляющие:

Закон Кулона

  • объем вещества (который условно взаимодействует с телами);
  • проницаемость вещества (диэлектрическая).

Закон Кулона в диэлектриках

Диэлектрик приравнивается к среде, в которой из-за поляризации он снижает силу Кулона.
Уменьшение F пропорционально диэлектрической проницаемости.
Для воздуха он близок к 1, поэтому закон в этом случае рассчитывается точно так же, как и для вакуума.
Но нивелируется факт, что модуль рассматриваемого заряда может передавать заряженные частицы непосредственно диэлектрику (процесс формирования статического заряда).
И это актуально только в том случае, если данный процесс постоянный.
Если же телу придали заряд, а в дальнейшем извлекли из электромагнитного поля, то уровень заряженности постепенно меняется.
Соответственно, если между телами находится диэлектрик, чья проницаемость близка или равна бесконечности, то взаимодействия между ними не будет.
Увеличение заряда до бесконечности тоже не меняет данную формулу.

Где применяется на практике

Основной действующий закон электростатики как раз и выстроен на базовых понятиях кулоновской силы и взаимодействия электромагнитных полей.
Даже самая обычная молния — это ничто иное, как процесс формирования определенной силы взаимодействия между землей и грозовой тучей (где каждое из «тел» снабжено определенным зарядом).
И на основании этого и был придуман громоотвод, так как его потенциал всегда выше, чем у земли и других окружающих тел (даже если это антенна для приема и передачи сотового сигнала).
Схожим образом работает и защита от возможного попадания молнии в летательных аппаратах.
Там имеется специальный громоотвод (выступающая металлическая часть, имеющая больший заряд, чем корпус) и среда, поглощающая электромагнитное поле.
Также адронный коллайдер в своей работе тоже использует закон Кулона.
С его помощью рассчитывается потенциально возможное высвобождение кинетической энергии при движении или столкновении двух заряженных частиц.
Таким образом, например, удалось в 2014 году рассчитать потенциальную силу действия двух атомов в момент соприкосновения, когда у них световая скорость движения (порядка 300000 километров в секунду).
Ещё закон используется в производстве конденсаторов, кремниевых транзисторов (включая все компьютерные и мобильные процессоры), антистатических материалов (рассеивающих попадающий на них заряд), специализированной защитной одежды (для работы в условиях активных электромагнитных полей).
Также распространенный вариант использования закона Кулона — в промышленном оборудовании для очистки зерна.
Есть 2 основных их варианта:

  • когда вся масса получает определенный статический заряд и при прохождении через электромагнитное поле — разделяется (по уровню силы взаимодействия);
  • когда в массу добавляют металлическую стружку, а после — просеивают через сепаратор на основе электромагнита (железные опилки притягивают к себе остаточный мусор и «связываются» с ним).

Ещё одна сфера использования — это производство электромагнитных накопителей (карты памяти, жесткие диски, ленточные носители).
В них информация сохраняется в двоичном виде (0 и 1) при помощи так называемых «ячеек», взаимодействующих с точечными заряженными частицами.
И именно за счет диэлектрических свойств основания накопителя потенциальный срок хранения данных составляет более 5 лет (далее требуется либо повторно сформировать заряд, либо обеспечить установленный уровень намагниченности).
Схожая технология применяется ещё в производстве квантовых компьютеров.

Ограничение в применении

Закон Кулона является основной любых электромагнитных взаимодействий.
Но действует только на сравнительно небольших расстояниях.
Минимальное — это 10-16 метров, максимальное — несколько километров.
И рассчитывается только для не движущихся тел, расстояние между которыми не меняется.
И условное действие всех окружающих сил приравнено к нулю (за исключением поляризации среды, в которой и находятся тела с зарядом).
Соответственно, сумма моментов тоже приравнивается к нулю и не учитывается в формуле.
Но также известно, что при избыточно высоких зарядах (когда между телами формируется облако плазмы) сила взаимодействия растет в геометрической прогрессии.
Но по какой именно формуле — ученым ещё не удалось установить.
И здесь же можно заметить практическое значение силы Кулона.
Молния возникает только между землей и грозовыми тучами, которые расположены над уровнем почвы менее чем в 2 километра.
Тогда как поля заряженных ионов, находящихся в более высоких слоях атмосферы, взаимодействуют только между собой.
В противном бы случае Земля являлась бы необитаемой планетой.
Также закон не может применяться, если заряды помещаются в среду, не являющейся диэлектриком, так как имеющийся потенциал мгновенно нивелируется.
Поэтому его нельзя использовать, к примеру, для расчета потенциально опасного расстояния между трансформатором и человеком.

Прямая и обратная пропорциональность

Под пропорциональностью в данном случае необходимо понимать зависимость одной действующей силы от иной.
Взаимодействие между телами производно от их текущего заряда (чем выше — тем больше сила действует).
Обратная же пропорциональность актуальна по отношению к расстоянию: чем оно больше, тем сила меньше.
Но это актуально только для тех расстояний, при котором закон действует.
Если выполняется расчет для зарядов, расположенных в веществе или диэлектрике, то здесь тоже наблюдается обратная пропорциональность.
Чем выше показатель диэлектрической проницаемости — тем сила меньше, так как среда «поглощает» часть электромагнитного поля и рассеивает его.

Закон Амонтона-Кулона

Шарль Кулон известен не только своими открытиями в электростатике.
Он также сформулировал закон, описывающий линейную связь между силой трения, и действием (нормальной реакцией), оказываемым на тело со стороны поверхности.
Первичную формулировку предложил Гийом Амонтон ещё в 1699 году.
Кулон же подтвердил закон и описал его математической формулой F=A+ μN, где А — условный показатель «сцепления» поверхности, по которой и производится скольжение (трение), N — сила нормальной реакции, μ — коэффициент трения поверхностей.
А согласно 3 закону Ньютона, сила Амонтона-Кулона — взаимодействующая.
То есть она актуальна и в отношении статического, и динамичного тела.
И действие оказывается одновременно также на саму поверхность.
Данный закон активно используется при производстве смазочных материалов.
С его помощью можно также рассчитать условную устойчивость и эксплуатационный ресурс материалов.
Кулон, в свою очередь, только сформулировал математическое описание открытия Амонтона, без определения статических индексов.
Итого, закон Кулона — это фундаментная сила в электростатике в целом.
И на её основе было сделано множество новых открытий, связанных с электромагнитным воздействием.
Вся современная электроника, компоненты печатных плат — всё это прямо связано с законом Кулона.

Между заряженными телами существует сила взаимодействия, благодаря которой они могут притягиваться или отталкиваться друг от друга. Закон Кулона описывает данную силу, показывает степень её действия в зависимости от размеров и формы самого тела. Об этом физическом законе пойдёт речь в данной статье.

Формула закона Кулона.

Содержание

  • 1 Неподвижные точечные заряды
  • 2 Крутильные весы Шарля Кулона
  • 3 Коэффициент пропорциональности k и электрическая постоянная
  • 4 Направление силы Кулона и векторный вид формулы
  • 5 Где закон Кулона применяется на практике
  • 6 Направление сил в законе Кулона
  • 7 История открытия закона

Неподвижные точечные заряды

Закон Кулона применим к неподвижным телам, размер которых намного меньше их расстояния до других объектов. На таких телах сосредоточен точечный электрический заряд. При решении физических задач размерами рассматриваемых тел пренебрегают, т.к. они не имеют особого значения.

На практике покоящиеся точечные заряды изображаются следующим образом:

Точечный положительно заряженный заряд q1. Точечный положительно заряженный заряд q2.

В данном случае q1 и q2 — это положительные электрические заряды, и на них действует сила Кулона (на рисунке не показана). Размеры точечных объектов не имеют значения.

Обратите внимание! Покоящиеся заряды располагаются друг от друга на заданном расстоянии, которое в задачах обычно обозначается буквой r. Далее в статье данные заряды будем рассматривать в вакууме.

Крутильные весы Шарля Кулона

Это прибор, разработанный Кулоном в 1777 году, помог вывести зависимость силы, названной в последствии в его честь. С его помощью изучается взаимодействие точечных зарядов, а также магнитных полюсов.

Крутильные весы имеют небольшую шёлковую нить, расположенную в вертикальной плоскости, на которой висит уравновешенный рычаг. На концах рычага расположены точечные заряды.

Под действием внешних сил рычаг начинает совершать движения по горизонтали. Рычаг будет перемещаться в плоскости до тех пор, пока его не уравновесит сила упругости нити.

В процессе перемещений рычаг отклоняется от вертикальной оси на определённый угол. Его принимают за d и называют углом поворота. Зная величину данного параметра, можно найти крутящий момент возникающих сил.

Крутильные весы Шарля Кулона выглядят следующим образом:

Крутильные весы Шарля Кулона.

Коэффициент пропорциональности k и электрическая постоянная varepsilon_0

В формуле закона Кулона есть параметры k — коэффициент пропорциональности или varepsilon_0 — электрическая постоянная. Электрическая постоянная varepsilon_0 представлена во многих справочниках, учебниках, интернете, и её не нужно считать! Коэффициент пропорциональности в вакууме на основе varepsilon_0 можно найти по известной формуле:

k = frac {1}{4cdot picdot varepsilon_0}

Здесь varepsilon_0=8.85cdot 10^{-12} frac {C^2}{Hcdot m^2} — электрическая постоянная,

pi=3.14 — число пи,

k=9cdot 10^{9} frac {Hcdot m^2}{C^2} — коэффициент пропорциональности в вакууме.

Дополнительная информация! Не зная представленные выше параметры, найти силу взаимодействия между двумя точечными электрическими зарядами не получится.
Формулировка и формула закона Кулона

Чтобы подытожить вышесказанное, необходимо привести официальную формулировку главного закона электростатики. Она принимает вид:

Сила взаимодействия двух покоящихся точечных зарядов в вакууме прямо пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Причём произведение зарядов необходимо брать по модулю!

F=kcdot frac {|q_1|cdot |q_2|}{r^2}

В данной формуле q1 и q2 — это точечные заряды, рассматриваемые тела; r2 — расстояние на плоскости между этими телами, взятое в квадрате; k — коэффициент пропорциональности (9cdot 10^{9} frac {Hcdot m^2}{C^2} для вакуума).

Направление силы Кулона и векторный вид формулы

Для полного понимания формулы закон Кулона можно изобразить наглядно:

Напрвление силы Кулона для двух точечных зарядов одинаковой полярности.

F1,2 — сила взаимодействия первого заряда по отношению ко второму.

F2,1 — сила взаимодействия второго заряда по отношению к первому.

Также при решении задач электростатики необходимо учитывать важное правило: одноимённые электрические заряды отталкиваются, а разноимённые притягиваются. От этого зависит расположение сил взаимодействия на рисунке.

Если рассматриваются разноимённые заряды, то силы их взаимодействия будут направлены навстречу друг другу, изображая их притягивание.

Напрвление силы Кулона для двух точечных зарядов разной полярности.

Формула основного закона электростатики в векторном виде можно представить следующим образом:

vec F_1_2=frac {1}{4cdot picdot varepsilon_0}cdot frac {q_1cdot q_2}{r_1_2^3}cdot vec r_1_2

vec F_1_2 — сила, действующая на точечный заряд q1, со стороны заряда q2,

vec r_1_2 — радиус-вектор, соединяющий заряд q2 с зарядом q1,

r=|vec r_1_2|

Важно! Записав формулу в векторном виде, взаимодействующие силы двух точечных электрических зарядов надо будет спроецировать на ось, чтобы правильно поставить знаки. Данное действие является формальностью и часто выполняется мысленно без каких-либо записей.

Где закон Кулона применяется на практике

Основной закон электростатики — это важнейшее открытие Шарля Кулона, которое нашло своё применение во многих областях.

Работы известного физика использовались в процессе изобретения различных устройств, приборов, аппаратов. К примеру, молниеотвод.

При помощи молниеотвода жилые дома, здания защищают от попадания молнии во время грозы. Таким образом, повышается степень защиты электрического оборудования.

Молниеотвод работает по следующему принципу: во время грозы на земле постепенно начинают скапливаться сильные индукционные заряды, которые поднимаются вверх и притягиваются к облакам. При этом на земле образуется немаленькое электрическое поле. Вблизи молниеотвода электрическое поле становится сильнее, благодаря чему от острия устройства зажигается коронный электрический заряд.

Далее образованный на земле заряд начинает притягиваться к заряду облака с противоположным знаком, как и должно быть согласно закону Шарля Кулона. После этого воздух проходит процесс ионизации, а напряжённость электрического поля становится меньше возле конца молниеотвода. Таким образом, риск попадания молнии в здание минимален.

Обратите внимание! Если в здание, на котором установлен молниеотвод, попадёт удар, то пожара не произойдёт, а вся энергия уйдёт в землю.

На основе закона Кулона было разработано устройство под названием “Ускоритель частиц”, которое пользуется большим спросом сегодня.

В данном приборе создано сильное электрическое поле, которое увеличивает энергию попадающих в него частиц.

Направление сил в законе Кулона

Как и говорилось выше, направление взаимодействующих сил двух точечных электрических зарядов зависит от их полярности. Т.е. одноимённые заряды будут отталкиваться, а разноимённые притягиваться.

Кулоновские силы также можно назвать радиус-вектором, т.к. они направлены вдоль линии, проведённой между ними.

В некоторых физических задачах даются тела сложной формы, которые не получается принять за точечный электрический заряд, т.е. пренебречь его размерами. В сложившейся ситуации рассматриваемое тело необходимо разбить на несколько мелких частей и рассчитывать каждую часть по отдельности, применяя закон Кулона.

Полученные при разбиении вектора сил суммируются по правилам алгебры и геометрии. В результате получается результирующая сила, которая и будет являться ответом для данной задачи. Данный способ решения часто называют методом треугольника.

Направление векторов силы Кулона.

История открытия закона

Взаимодействия двух точечных зарядов рассмотренным выше законом в первый раз были доказаны в 1785 Шарлем Кулоном. Доказать правдивость сформулированного закона физику удалось с использованием крутильных весов, принцип действия которых также был представлен в статье.

Кулон также доказал, что внутри сферического конденсатора нет электрического заряда. Так он пришёл к утверждению, что величину электростатических сил можно менять путём изменения расстояния между рассматриваемыми телами.

Таким образом, закон Кулона по-прежнему является главнейшим законом электростатики, на основе которого было сделано немало величайших открытий. В рамках данной статьи была представлена официальная формулировка закона, а также подробно описаны его составляющие части.

Понравилась статья? Поделить с друзьями:
  • Как исправить проблемы с бровями
  • Способы как найти свое призвание
  • Как найти банковский процент по вкладу
  • Как найти модель компьютера в компьютере
  • Гта 5 как найти мачете