Как найти радиус шестерни

Радиус основной окружности шестерни Калькулятор

Search
Дом физика ↺
физика Теория машины ↺
Теория машины Зубчатая передача ↺
Зубчатая передача Зубчатая передача Терминология ↺

Радиус делительной окружности шестерни — это радиальное расстояние зуба, измеряемое от делительной окружности до нижней части межзубного промежутка.Радиус делительной окружности шестерни [r]

+10%

-10%

Угол давления зубчатого колеса, также известный как угол наклона, представляет собой угол между поверхностью зуба и касательной к зубчатому колесу.Угол давления шестерни [Φgear]

+10%

-10%

Радиус основной окружности шестерни — это радиус окружности, из которой образуется эвольвентная часть профиля зуба.Радиус основной окружности шестерни [rb]

⎘ копия

Радиус основной окружности шестерни Решение

ШАГ 0: Сводка предварительного расчета

ШАГ 1. Преобразование входов в базовый блок

Радиус делительной окружности шестерни: 10.2 Миллиметр —> 0.0102 метр (Проверьте преобразование здесь)
Угол давления шестерни: 32 степень —> 0.55850536063808 Радиан (Проверьте преобразование здесь)

ШАГ 2: Оцените формулу

ШАГ 3: Преобразуйте результат в единицу вывода

0.00865009058079612 метр —>8.65009058079612 Миллиметр (Проверьте преобразование здесь)




22 Зубчатая передача Терминология Калькуляторы

Радиус основной окружности шестерни формула

Радиус основной окружности шестерни = Радиус делительной окружности шестерни*cos(Угол давления шестерни)

rb = r*cos(Φgear)

Какова функция шестерни?

Он преобразует вращательное движение рулевого колеса в линейное движение, необходимое для поворота колес. Он обеспечивает понижающую передачу, что облегчает поворот колес.

Почему шестерня слабее шестерни?

Когда используются разные материалы, продукт определяет более слабую шестерню и шестерню. Форм-фактор Льюиса для шестерни всегда меньше, чем для шестерни. Когда для шестерни и шестерни используется один и тот же материал, шестерня всегда слабее шестерни.

В основу методики
расчета эвольвентных зубчатых передач
внешнего зацепления положена система
расчета диаметров окружностей вершин
колес, при которой в зацеплении пары
колес сохраняется стандартный зазор
c*m.
Расчет велся при свободном выборе
межосевого растояния. При нарезании
колес прямозубой передачи исходный
производящий контур, в соответствии с
ГОСТ 13775-81, имеет следующие параметры:
=200,
h*a=1,
с*=0,25. Были определены радиусы делительных
окружностей колес
,

радиусы основных
окружностей

.

Как уже было
отмечено, требуется выполнение условия
.

Определили
наименьшее на колесе число зубьев без
смещения, свободных от подрезания,

а затем коэффициенты
наименьшего смещения исходного контура.

.

Угол зацепления
передачи определяют по формуле

,
где х12,
а z=z1+z2.

При ручном счете
значений угла tW
находят по inv
tW
в таблице
эвольвентных функций.

Коэффициент
воспринимаемого смещения

.

Коэффициент
уравнительного смещения

y= х-y.

Радиусы начальных
окружностей

.

Межосевое расстояние

aW=rW1-rW2.

Радиусы окружностей
вершин

.

Радиусы окружностей
впадин

.

Высота зубьев
колес

.

Толщина зубьев по дугам делительных окружностей

.

Углы профиля на
окружностях вершин зубьев колес

.

Толщины зубьев по
дугам окружностей вершин

.

Для построения
станочного зацепления дополнительно
определены следующие размеры:

толщина зуба S0
исходного производящего контура по
делительной прямой, равная ширине
впадины

,

шаг

,

радиус скругления
основания ножки зуба

,

шаг по хорде
делительной окружности шестерни

      1. Построение
        профиля зуба колеса, изготовляемого
        реечным инструментом.

Профиль
зуба изготовляемого колеса воспроизводится
(образуется) как огибающая ряда положений
исходного производящего контура реечного
инструмента в станочном зацеплении.
Схема станочного зацепления строится
слеующим образом:

Проводим
делительную d1=dw01
и основную db1
окружности, окружности вершин d1
и впадин df1.

Откладываем
от делительной окружности (с учетом
знака) выбранное в результате анализа
смещение x1
m
и проводим делительную прямую исходного
производящего контура реечного
инструмента.

На
расстоянии
вверх и вниз от делительной прямой
проводим прямые граничных точек, а на
расстоянии— прямые вершин и впадин; станочно-начальную
прямую проводим касательно к делительной
окружности в точкеP0
(полюс станочного зацепления).

Проводим
линию станочного зацепления N1P0
через полюс станочного зацепления P0
касательно к основной окружности в
точке N1.
Эта линия образует с прямыми исходного
производящего контура инструмента
углы, равные .

Строим
исходный производящий контур реечного
инструмента так, чтобы ось симметрии
впадины совпадала с вертикалью. Для
этого от точки пересечения вертикали
с делительной прямой (точка G)
откладываем влево по горизонтали отрезок
в 1/4 шага и через конец его перпендикулярно
к линии зацепления
проводим наклонную прямую, которая
образует уголс вертикалью. Эта прямая является
прямолинейной частью профиля зуба
исходного производящего контура
инструмента. Закругленный участок
профиля строим как сопряжение прямолинейной
части контура с прямой вершин или с
прямой впадин окружностью радиуса.

Строим
профиль зуба проектируемого колеса,
касающегося профиля исходного
производящего контура в точке
.

Проводим
вспомогательную прямую
касательно к окружности вершин. Фиксируем
точку пересечения линиии прямолинейной части профиля инструментаи центр окружности закругленного участка
профиля точку.
Откладываем на прямойнесколько отрезков равной длины (15…20
мм) и отмечаем точкиI,
II,
III,
IV
и т.д. Такие же отрезки откладываем на
станочно-начальной прямой
(точки 1, 2, 3 …) и на дуге делительной
окружности (точки 1’, 2’, 3’ …). Из центраколеса через точки 1’, 2’, 3’, … на
делительной окружности проводим лучи
01’, 02’, 03’, … до пересечения с окружностью
вершин в точках 1”, 2”, 3”, … .

Любое
промежуточное положение точки
илинаходим построением соответствующих
треугольников. Затем из точекрадиусомпроводим окружность, а через точкикасательно к этим окружностям прямые,
которые дают новые положения исходного
производящего контура. К полученному
ряду положений профиля зуба исходного
контура проводим огибающую, которая
определяет левый профиль зуба
изготовляемого колеса. Далее на окружности
вершин откладывают толщину зуба.
Через концы отложенных отрезков по
шаблону строим вторую половину профиля
этого же зуба.

      1. Построение
        проектируемой зубчатой передачи.

По
вычисленным с использованием ЭВМ
параметрам проектируемую зубчатую
передачу строим следующим образом:

  1. Откладываем
    межосевое расстояние
    и проводим окружности: начальные,;
    делительные,и основные,;
    окружности вершин,и впадин,.
    Начальные окружности должны касаться
    в полюсе зацепления. Расстояние между
    делительными окружностями по осевой
    линии равно воспринимаемому смещению.
    Расстояние между окружностями вершин
    одного колеса и впадин другого, измеренное
    по осевой линии, должно быть равно
    радиальному зазору.

  2. Через
    полюс зацепления касательно к основным
    окружностям колес проводим линию
    зацепления. Точки касания
    иназываются предельными точками линии
    зацепления. Линия зацепления образует
    с перпендикуляром, восстановленным к
    осевой линии в полюсе, угол зацепления.
    Буквамииотмечена активная линия зацепления.

  3. Профили
    зубьев шестерни переносятся на чертеж
    проектируемой передачи со схемы
    станочного зацепления с помощью шаблона;
    эвольвентную часть профиля зуба колеса
    строим обычным образом, как траекторию
    точки прямой при перекатывании ее по
    основной окружности колеса без скольжения
    и переносим в точку контакта зубьев
    на линию зацепления. Переходную часть
    профиля зуба строим приближенно. Так
    каки,
    то от основания эвольвенты на основной
    окружности проводим линию, параллельную
    оси зуба до окружности впадин, а затем
    у основания зуба делаем закругление
    радиусом.
    От построенного профиля зуба откладываем
    толщину зуба по делительной окружности
    и проводим аналогичный профиль другой
    стороны зуба.

Соседние файлы в папке РПЗ

  • #
  • #
  • #
  • #
  • #
  • #

Формула для расчета радиуса основной окружности тмм

Эвольвентным зубчатым колесом называют звено зубчатого механизма, снабженное замкнутой системой зубьев. При проектировании зубчатого колеса вначале нужно определить его число зубьев z , а затем определить параметры зубьев. Для этого нужно произвольную окружность колеса r y разделить на z частей, каждая из которых называется окружным шагом p y .

где m y = p y / p = d y / z — модуль зацепления по окружности произвольного радиуса.

Модулем зацепления называется линейная величина в p раз меньшая окружного шага или отношение шага по любой концентрической окружности зубчатого колеса к p . В зависимости от окружности по которой определен модуль различают делительный, основной, начальный. Для косозубых колес еще и нормальный, торцевой и осевой модули. В ряде стран используется величина обратная модулю, которая называется питчем. Питч (диаметральный) — число зубьев колеса, приходящееся на дюйм диаметра. Исходя из этого модуль можно определить как число милиметров диаметра, приходящееся на один зуб. На колесе можно провести бесчисленное число окружностей на каждой из которых будет свой модуль. Для ограничения этого числа ГОСТом введен стандартный ряд модулей. Стандартной модуль определяется по окружности называемой делительной. Точнее делительной называется такая окружность зубчатого колеса, на которой модуль и шаг принимают стандартное значение. Окружным шагом или шагом называется расстояние по дуге окружности между одноименными точками профилей соседних зубьев (под одноименными понимаются правые или левые профили зуба). Угловой шаг t — центральный угол соответствующий дуге p — окружному шагу по делительной окружности.

Примечание: Согласно ГОСТ основные элементы зубчатого колеса обозначаются по следующим правилам: линейные величины — строчными буквами латинского алфавита, угловые — греческими буками; установлены индексы для величин :

по окружностям: делительной — без индекса, вершин — a , впадин — f , основная — b , начальная — w , нижних точек активных профилей колес — p , граничных точек — l ;

по сечениям: нормальное сечение — n , торцевое сечение — t , осевое сечение — x ;

относящихся к зуборезному инструменту — 0 .

Для параметров зубчатого колеса справедливы следующие соотношения

— диаметр окружности произвольного радиуса,

— диаметр делительной окружности,

— шаг по окружности произвольного радиуса,

— шаг по делительной окружности,

где a — угол профиля на делительной окружности,

a y — угол профиля на окружности произвольного радиуса.

Углом профиля называется острый угол между касательной к профилю в данной точки и радиусом — вектором, проведенным в данную точку из центра колеса.

Шаг колеса делится на толщину зуба s y и ширину впадины e y . Толщина зуба s y — расстояние по дуге окружности r y между разноименными точками профилей зуба. Ширина впадины e y — расстояние по дуге окружности r y между разноименными точками профилей соседних зубьев.

На основной окружности a b => 0 и cos a b => 1 , тогда

В зависимости от соотношения между толщиной зуба и шириной впадины на делительной окружности зубчатые колеса делятся на:

нулевые s = e = p * m / 2 , D = 0;

положительные s > e , => D > 0;

отрицательные s D D — коэффициент изменения толщины зуба (отношение приращения толщины зуба к модулю). Тогда толщину зуба по делительной окружности можно записать

Более подробно познакомиться с основными определениями и расчетными зависимостями можно в литературе [ 11.1 ] и в ГОСТ 16530-83.

Толщина зуба колеса по окружности произвольного радиуса .

Толщина зуба по дуге делительной окружности

Угловая толщина зуба по окружности произвольного радиуса из схемы на рис. 12.2

Подставляя в формулу угловой толщины эти зависимости, получим

Методы изготовления эвольвентных зубчатых колес .

Существует множество вариантов изготовления зубчатых колес. В их основу положены два принципиально отличных метода:

метод копирования, при котором рабочие кромки инструмента по форме соответствуют обрабатываемой поверхности ( конгруентны ей, т. е. заполняют эту поверхность как отливка заполняет форму );

метод огибания, при котором инструмент и заготовка за счет кинематической цепи станка выполняют два движения — резания и огибания (под огибанием понимается такое относительное движение заготовки и инструмента , которое соответствует станочному зацеплению , т. е. зацеплению инструмента и заготовки с требуемым законом изменения передаточного отношения).

Из вариантов изготовления по способу копирования можно отметить:

Нарезание зубчатого колеса профилированной дисковой или пальцевой фрезой (проекция режущих кромок которой соответствует конфигурации впадин). При этом методе резание производится в следующем прядке: прорезается впадина первого зуба, затем заготовка с помощью делительного устройства (делительной головки) поворачивается на угловой шаг и прорезается следующая впадина. Операции повторяются пока не будут прорезаны все впадины. Производительность данного способа низкая, точность и качество поверхности невысокие.

Отливка зубчатого колеса в форму. При этом внутренняя поверхность литейной формы конгруентна наружной поверхности зубчатого колеса. Производительность и точность метода высокая, однако при этом нельзя получить высокой прочности и твердости зубьев.

Из вариантов изготовления по способу огибания наибольшее распространение имеют:

Обработка на зубофрезерных или зубодолбежных станках червячными фрезами или долбяками. Производительность достаточно высокая, точность изготовления и чистота поверхностей средняя. Можно обрабатывать колеса из материалов с невысокой твердостью поверхности.

Накатка зубьев с помощью специального профилированного инструмента. Обеспечивает высокую производительность и хорошую чистоту поверхности. Применяется для пластичных материалов, обычно на этапах черновой обработки. Недостаток метода образование наклепанного поверхностного слоя, который после окончания обработки изменяет свои размеры.

Обработка на зубошлифовальных станках дисковыми кругами. Применяемся как окончательная операция после зубонарезания (или накатки зубьев) и термической обработки. Обеспечивает высокую точность и чистоту поверхности. Применяется для материалов с высокой поверхностной прочностью.

Понятие о исходном, исходном производящем и производящем контурах .

Для сокращения номенклатуры режущего инструмента стандарт устанавливает нормативный ряд модулей и определенные соотношения между размерами элементов зуба. Эти соотношения определяются:

для зубчатых колес определяются параметрами исходной рейки через параметры ее нормального сечения — исходный контур;

для зубчатого инструмента определяются параметрами исходной производящей рейки через параметры ее нормального сечения — исходный производящий контур.

По ГОСТ 13755-81 значения параметров исходного контура должны быть следующими:

угол главного профиля a = 20 ° ;

коэффициент высоты зуба h * a = 1 ;

коэффициент высоты ножки h * f = 1.25 ;

коэффициент граничной высоты h * l = 2 ;

коэффициент радиуса кривизны переходной кривой r * f =с * /(1-sin a )= 0.38 ;

коэффициент радиального зазора в паре исходных контуров с * = 0.25.

Исходный производящий контур отличается от исходного высотой зуба h 0 = 2.5m.

Исходный и исходный производящий контуры образуют между собой конруентную пару (рис. 12.3), т.е. один заполняет другой как отливка заполняет заготовку (с радиальным зазором с * Ч m в зоне прямой вершин зуба исходной рейки). Принципиальное отличие этих контуров в том, что исходный контур положен в основу стандартизации зубчатых колес, а исходный производящий — в основу стандартизации зуборезного инструмента. Оба эти контура необходимо отличать от производящего контура — проекции режущих кромок инструмента на плоскость перпендикулярную оси заготовки.

Станочным зацеплением называется зацепление, образованное заготовкой колеса и инструментом, при изготовлении зубчатого колеса на зубообрабатывающем оборудовании по способу обката. Схема станочного зацепления колеса и инструмента с производящим контуром, совпадающим с исходным производящим контуром, изображена на рис. 12.4.

Линия станочного зацепления — геометрическое место точек контакта эвольвентной части профиля инструмента и эвольвентной части профиля зуба в неподвижной системе координат.

Смещение исходного производящего контура x*m — кратчайшее расстояние между делительной окружностью заготовки и делительной прямой исходного производящего контура.

Уравнительное смещение D y*m — условная расчетная величина, введенная в расчет геометрии зацепления с целью обеспечения стандартного радиального зазора в зацеплении (величина, выражающая в долях модуля уменьшение радиуса окружностей вершин колес, необходимое для обеспечения стандартной величины радиального зазора).

Окружность граничных точек r l — окружность проходящая через точки сопряжения эвольвентной части профиля зуба с переходной кривой.

Основные размеры зубчатого колеса .

Определим основные размеры эвольвентного зубчатого колеса, используя схему станочного зацепления (рис. 12.4).

Радиус окружности вершин

Радиус окружности впадин

Толщина зуба по делительной окружности.

Так как стночно-начальная прямая перекатывается в процессе огибания по делительной окружности без скольжения, то дуга s-s по делительной окружности колеса равна ширине впадины e-e по станочно-начальной прямой инструмента. Тогда, c учетом схемы на рис. 12.5, можно записать

Виды зубчатых колес (Классификация по величине смещения) .

В зависимости от расположения исходного производящего контура относительно заготовки зубчатого колеса, зубчатые колеса делятся на нулевые или без смещения, положительные или с положительным смещением, отрицательные или с отрицательным смещением.

Подрезание и заострение зубчатого колеса .

Если при нарезании зубчатого колеса увеличивать смещение, то основная и делительная окружность не изменяют своего размера, а окружности вершин и впадин увеличиваются. При этом участок эвольвенты, который используется для профиля зуба, увеличивает свой радиус кривизны и профильный угол. Толщина зуба по делительной окружности увеличивается , а по окружности вершин уменьшается.

На рис. 12.7 изображены два эвольвентных зуба для которых

Для термобработанных зубчатых колес с высокой поверхностной прочностью зуба заострение вершины зуба является нежелательным. Термообработка зубьев (азотирова-ние, цементация, цианирование), обеспечивающая высо Рис. 12.7 кую поверхностную прочность и твердость зубьев при сохранении вязкой серцевины, осуществляется за счет насыщения поверхностных слоев углеродом. Вершины зубьев, как выступающие элементы колеса, насыщаются углеродом больше. Поэтому после закалки они становятся более твердыми и хрупкими. У заостренных зубьев появляется склонность к скалыванию зубьев на вершинах. Поэтому рекомендуется при изготовлении не допускать толщин зубьев меньших некоторых допустимых значений. То есть заостренным считается зуб у которого

При этом удобнее пользоваться относительными величинами [s a /m ]. Обычно принимают следующие допустимые значения

улучшение, нормализация [s a /m ] = 0.2;

цианирование, азотирование [s a /m ] = 0.25. 0.3;

цементация [s a /m ] = 0.35. 0.4.

Подрезание эвольвентных зубьев в станочном зацеплении

В процессе формирования эвольвентного зуба по способу огибания, в зависимости от взаимного расположения инструмента и заготовки возможно срезание эвольвентной части профиля зуба той частью профиля инструмента, которая формирует переходную кривую. Условие при котором это возможно определяется из схемы станочного зацепления. Участок линии зацепления, соответствующий эвольвентному зацеплению определяется отрезком B 1 . где точка B l определяется пересечением линии станочного зацепления и прямой граничных точек инструмента. Если точка B l располагается ниже (см. рис.12.8) точки N , то возникает подрезание зуба. Условие при котором нет подрезания можно записать так

Детали машин

Геометрические параметры эвольвентного зацепления

Эвольвентное зацепление зубчатых колес характеризуется различными геометрическими параметрами, оказывающими существенное влияние на свойства и работу передачи. К таким параметрам относятся диаметры начальной, основной и делительной окружностей, окружной шаг зубьев, модуль зацепления, высота головок и ножек зубьев, длина активной линии зацепления, угол наклона линии зуба косозубого колеса, коэффициент перекрытия и некоторые другие.

В обозначении геометрических параметров зацепления используют индексы, относящиеся к характерным окружностям зубчатых колес:

  • w – начальной;
  • b – основной;
  • a – вершин зубьев;
  • f – впадин зубьев.

Параметрам, относящимся к делительной окружности, индекс не присваивается.

При обозначении параметров пары зубчатых колес индекс «1» присваивается шестерне, «2» — колесу.

Начальные окружности

Начальными называют окружности, которые в процессе зацепления перекатываются одна по другой без скольжения (рис. 1), при этом отношение их радиусов (расстояний от центров О1 и О2 до полюса П ) при неизменном межосевом расстоянии О1О2 тоже остается неизменным.
При изменении межосевого расстояния aw меняются и диаметры dw начальных окружностей шестерни и колеса, т. е. у пары зубчатых колес может быть множество начальных окружностей.
У отдельно взятого колеса начальной окружности не существует – по определению этот параметр образуется в зацеплении, т. е. в зубчатой передаче.

Межосевое расстояние определяется по формуле:

Делительная окружность

Окружность, на которой шаг p и угол зацепления α соответственно равны шагу p и углу α профиля инструментальной рейки, называют делительной окружностью (рис. 1). Эта окружность принадлежит отдельно взятому колесу, ее диаметр d при изменении межосевого расстояния остается неизменным.

Делительные окружности совпадают с начальными, если межосевое расстояние пары зубчатых колес равно сумме радиусов делительных окружностей.

У большинства зубчатых передач диаметры делительных и начальных окружностей совпадают, т. е.:

Исключение составляют передачи с угловой модификацией.

Окружной шаг зубьев

Расстояние между одноименными сторонами двух соседних зубьев, взятое по дуге делительной окружности, называют окружным шагом зубьев по делительной окружности и обозначают буквой p (рис. 1).
Для пары зацепляющихся зубчатых колес окружной шаг зубьев должен быть одинаковым.

Основной шаг

Этот параметр, обозначаемый pb , относится к основной окружности. На основании второго и четвертого свойств эвольвенты расстояние по нормали между одноименными сторонами двух соседних зубьев равно шагу pb .
Из треугольника О2ВП (см. рис. 1) диаметр основной окружности db2 = 2 rb2 = d2 cos αw , откуда основной шаг может быть определен по формуле:

Окружная толщина зуба и окружная ширина впадины

Окружная толщина зуба st и окружная ширина впадины et по дуге делительной окружности колеса передачи без смещения теоретически равны. Однако при изготовлении зубчатых колес на теоретический размер st назначают такое расположение поля допуска, при котором зуб получается тоньше, чем и гарантируется боковой зазор j (рис. 1), необходимый для нормального зацепления. По делительной окружности всегда st + et = p .

Окружной модуль зубьев

Из определения окружного шага следует, что длина делительной окружности зубчатого колеса πd = pz , где z – число зубьев. Следовательно,

Шаг зубьев p , так же как длина окружности, включает в себя трансцендентное число π , а поэтом шаг — также число трансцендентное. Для удобства расчетов и измерения зубчатых колес в качестве основного расчетного параметра принято рациональное число p/π , которое называют модулем зубьев , обозначают m и измеряют в миллиметрах:

d = mz или m = d/z .

Модуль зубьев m – часть диаметра делительной окружности, приходящаяся на один зуб.

Модуль является основной характеристикой размера зубьев. Для пары зацепляющихся колес модуль должен быть одинаковым.

Для обеспечения взаимозаменяемости зубчатых колес и унификации дорогостоящего зубонарезного оборудования и инструмента значения m регламентируются стандартом в диапазоне от 0,05 до 100 мм.
В соответствии со стандартным рядом I модуль может принимать следующие значения: 1,0, 1,25, 1,5, 2,0, 2,5, 3,0, 4,0, 5,0, 6,0, 8,0, 10,0.
Стандартный ряд II значительно расширяет диапазон применяемых на практике модулей ( m = 1,125, 1,375, 1,75 и т. д.).

При выборе модулей из стандартных рядов первый ряд следует предпочитать второму.

Высота головки и ножки зуба

Делительная окружность делит зуб по высоте на головку ha и ножку hf . Для создания радиального зазора с (см . рис. 1) необходимо

Для передачи без смещения ha = m .

Длина активной линии зацепления

При вращении зубчатых колес точка зацепления S (см. рис. 1) пары зубьев перемещается по линии зацепления NN . Зацепление профилей начинается в точке S’ пересечения линии зацепления с окружностью вершин колеса и заканчивается в точке S» пересечения линии зацепления с окружностью вершин шестерни.
Отрезок S’S» линии зацепления называют длиной активной линии зацепления и обозначают gα . Длину gα легко определить графически, для чего радиусами окружностей вершин обоих колес отсекают на линии зацепления NN отрезок S’S» и замеряют gα .

Коэффициент торцового перекрытия

Коэффициентом торцового перекрытия εα называют отношение длины активной линии зацепления к основному шагу:

где z1 и z2 – числа зубьев шестерни и колеса; β – угол наклона линии зуба косозубого колеса.

Непрерывность работы зубчатой передачи возможна при условии, когда последующая пара зубьев входит в зацепление до выхода предыдущей, т. е. когда обеспечивается перекрытие работы одной пары зубьев другой. Чем больше пар зубьев одновременно находится в зацеплении, тем выше плавность работы передачи.

За период работ пары зубьев точка их зацепления проходит путь, равный по длине gα (см. рис. 1), а расстояние между профилями соседних зубьев по линии зацепления равно основному шагу pb . При gα > pb необходимое перекрытие зубьев обеспечивается.

По условию непрерывности зацепления должно быть εα > 1. С увеличением количества зубьев z увеличивается и коэффициент торцового перекрытия εα .

Диаметр основной окружности зубчатого колеса

Эвольвентным зубчатым колесом называют звено зубчатого механизма, снабженное замкнутой системой зубьев. При проектировании зубчатого колеса вначале нужно определить его число зубьев z , а затем определить параметры зубьев. Для этого нужно произвольную окружность колеса r y разделить на z частей, каждая из которых называется окружным шагом p y .

где m y = p y / p = d y / z – модуль зацепления по окружности произвольного радиуса.

Модулем зацепления называется линейная величина в p раз меньшая окружного шага или отношение шага по любой концентрической окружности зубчатого колеса к p . В зависимости от окружности по которой определен модуль различают делительный, основной, начальный. Для косозубых колес еще и нормальный, торцевой и осевой модули. В ряде стран используется величина обратная модулю, которая называется питчем. Питч (диаметральный) – число зубьев колеса, приходящееся на дюйм диаметра. Исходя из этого модуль можно определить как число милиметров диаметра, приходящееся на один зуб. На колесе можно провести бесчисленное число окружностей на каждой из которых будет свой модуль. Для ограничения этого числа ГОСТом введен стандартный ряд модулей. Стандартной модуль определяется по окружности называемой делительной. Точнее делительной называется такая окружность зубчатого колеса, на которой модуль и шаг принимают стандартное значение. Окружным шагом или шагом называется расстояние по дуге окружности между одноименными точками профилей соседних зубьев (под одноименными понимаются правые или левые профили зуба). Угловой шаг t – центральный угол соответствующий дуге p – окружному шагу по делительной окружности.

Примечание: Согласно ГОСТ основные элементы зубчатого колеса обозначаются по следующим правилам: линейные величины – строчными буквами латинского алфавита, угловые – греческими буками; установлены индексы для величин :

по окружностям: делительной – без индекса, вершин – a , впадин – f , основная – b , начальная – w , нижних точек активных профилей колес – p , граничных точек – l ;

по сечениям: нормальное сечение – n , торцевое сечение – t , осевое сечение – x ;

относящихся к зуборезному инструменту – 0 .

Для параметров зубчатого колеса справедливы следующие соотношения

– диаметр окружности произвольного радиуса,

– диаметр делительной окружности,

– шаг по окружности произвольного радиуса,

– шаг по делительной окружности,

где a – угол профиля на делительной окружности,

a y – угол профиля на окружности произвольного радиуса.

Углом профиля называется острый угол между касательной к профилю в данной точки и радиусом – вектором, проведенным в данную точку из центра колеса.

Шаг колеса делится на толщину зуба s y и ширину впадины e y . Толщина зуба s y – расстояние по дуге окружности r y между разноименными точками профилей зуба. Ширина впадины e y – расстояние по дуге окружности r y между разноименными точками профилей соседних зубьев.

На основной окружности a b => 0 и cos a b => 1 , тогда

В зависимости от соотношения между толщиной зуба и шириной впадины на делительной окружности зубчатые колеса делятся на:

нулевые s = e = p * m / 2 , D = 0;

положительные s > e , => D > 0;

отрицательные s D D – коэффициент изменения толщины зуба (отношение приращения толщины зуба к модулю). Тогда толщину зуба по делительной окружности можно записать

Более подробно познакомиться с основными определениями и расчетными зависимостями можно в литературе [ 11.1 ] и в ГОСТ 16530-83.

Толщина зуба колеса по окружности произвольного радиуса .

Толщина зуба по дуге делительной окружности

Угловая толщина зуба по окружности произвольного радиуса из схемы на рис. 12.2

Подставляя в формулу угловой толщины эти зависимости, получим

Методы изготовления эвольвентных зубчатых колес .

Существует множество вариантов изготовления зубчатых колес. В их основу положены два принципиально отличных метода:

метод копирования, при котором рабочие кромки инструмента по форме соответствуют обрабатываемой поверхности ( конгруентны ей, т. е. заполняют эту поверхность как отливка заполняет форму );

метод огибания, при котором инструмент и заготовка за счет кинематической цепи станка выполняют два движения – резания и огибания (под огибанием понимается такое относительное движение заготовки и инструмента , которое соответствует станочному зацеплению , т. е. зацеплению инструмента и заготовки с требуемым законом изменения передаточного отношения).

Из вариантов изготовления по способу копирования можно отметить:

Нарезание зубчатого колеса профилированной дисковой или пальцевой фрезой (проекция режущих кромок которой соответствует конфигурации впадин). При этом методе резание производится в следующем прядке: прорезается впадина первого зуба, затем заготовка с помощью делительного устройства (делительной головки) поворачивается на угловой шаг и прорезается следующая впадина. Операции повторяются пока не будут прорезаны все впадины. Производительность данного способа низкая, точность и качество поверхности невысокие.

Отливка зубчатого колеса в форму. При этом внутренняя поверхность литейной формы конгруентна наружной поверхности зубчатого колеса. Производительность и точность метода высокая, однако при этом нельзя получить высокой прочности и твердости зубьев.

Из вариантов изготовления по способу огибания наибольшее распространение имеют:

Обработка на зубофрезерных или зубодолбежных станках червячными фрезами или долбяками. Производительность достаточно высокая, точность изготовления и чистота поверхностей средняя. Можно обрабатывать колеса из материалов с невысокой твердостью поверхности.

Накатка зубьев с помощью специального профилированного инструмента. Обеспечивает высокую производительность и хорошую чистоту поверхности. Применяется для пластичных материалов, обычно на этапах черновой обработки. Недостаток метода образование наклепанного поверхностного слоя, который после окончания обработки изменяет свои размеры.

Обработка на зубошлифовальных станках дисковыми кругами. Применяемся как окончательная операция после зубонарезания (или накатки зубьев) и термической обработки. Обеспечивает высокую точность и чистоту поверхности. Применяется для материалов с высокой поверхностной прочностью.

Понятие о исходном, исходном производящем и производящем контурах .

Для сокращения номенклатуры режущего инструмента стандарт устанавливает нормативный ряд модулей и определенные соотношения между размерами элементов зуба. Эти соотношения определяются:

для зубчатых колес определяются параметрами исходной рейки через параметры ее нормального сечения – исходный контур;

для зубчатого инструмента определяются параметрами исходной производящей рейки через параметры ее нормального сечения – исходный производящий контур.

По ГОСТ 13755-81 значения параметров исходного контура должны быть следующими:

угол главного профиля a = 20 ° ;

коэффициент высоты зуба h * a = 1 ;

коэффициент высоты ножки h * f = 1.25 ;

коэффициент граничной высоты h * l = 2 ;

коэффициент радиуса кривизны переходной кривой r * f =с * /(1-sin a )= 0.38 ;

коэффициент радиального зазора в паре исходных контуров с * = 0.25.

Исходный производящий контур отличается от исходного высотой зуба h 0 = 2.5m.

Исходный и исходный производящий контуры образуют между собой конруентную пару (рис. 12.3), т.е. один заполняет другой как отливка заполняет заготовку (с радиальным зазором с * Ч m в зоне прямой вершин зуба исходной рейки). Принципиальное отличие этих контуров в том, что исходный контур положен в основу стандартизации зубчатых колес, а исходный производящий – в основу стандартизации зуборезного инструмента. Оба эти контура необходимо отличать от производящего контура – проекции режущих кромок инструмента на плоскость перпендикулярную оси заготовки.

Станочным зацеплением называется зацепление, образованное заготовкой колеса и инструментом, при изготовлении зубчатого колеса на зубообрабатывающем оборудовании по способу обката. Схема станочного зацепления колеса и инструмента с производящим контуром, совпадающим с исходным производящим контуром, изображена на рис. 12.4.

Линия станочного зацепления – геометрическое место точек контакта эвольвентной части профиля инструмента и эвольвентной части профиля зуба в неподвижной системе координат.

Смещение исходного производящего контура x*m – кратчайшее расстояние между делительной окружностью заготовки и делительной прямой исходного производящего контура.

Уравнительное смещение D y*m – условная расчетная величина, введенная в расчет геометрии зацепления с целью обеспечения стандартного радиального зазора в зацеплении (величина, выражающая в долях модуля уменьшение радиуса окружностей вершин колес, необходимое для обеспечения стандартной величины радиального зазора).

Окружность граничных точек r l – окружность проходящая через точки сопряжения эвольвентной части профиля зуба с переходной кривой.

Основные размеры зубчатого колеса .

Определим основные размеры эвольвентного зубчатого колеса, используя схему станочного зацепления (рис. 12.4).

Радиус окружности вершин

Радиус окружности впадин

Толщина зуба по делительной окружности.

Так как стночно-начальная прямая перекатывается в процессе огибания по делительной окружности без скольжения, то дуга s-s по делительной окружности колеса равна ширине впадины e-e по станочно-начальной прямой инструмента. Тогда, c учетом схемы на рис. 12.5, можно записать

Виды зубчатых колес (Классификация по величине смещения) .

В зависимости от расположения исходного производящего контура относительно заготовки зубчатого колеса, зубчатые колеса делятся на нулевые или без смещения, положительные или с положительным смещением, отрицательные или с отрицательным смещением.

Подрезание и заострение зубчатого колеса .

Если при нарезании зубчатого колеса увеличивать смещение, то основная и делительная окружность не изменяют своего размера, а окружности вершин и впадин увеличиваются. При этом участок эвольвенты, который используется для профиля зуба, увеличивает свой радиус кривизны и профильный угол. Толщина зуба по делительной окружности увеличивается , а по окружности вершин уменьшается.

На рис. 12.7 изображены два эвольвентных зуба для которых

Для термобработанных зубчатых колес с высокой поверхностной прочностью зуба заострение вершины зуба является нежелательным. Термообработка зубьев (азотирова-ние, цементация, цианирование), обеспечивающая высо Рис. 12.7 кую поверхностную прочность и твердость зубьев при сохранении вязкой серцевины, осуществляется за счет насыщения поверхностных слоев углеродом. Вершины зубьев, как выступающие элементы колеса, насыщаются углеродом больше. Поэтому после закалки они становятся более твердыми и хрупкими. У заостренных зубьев появляется склонность к скалыванию зубьев на вершинах. Поэтому рекомендуется при изготовлении не допускать толщин зубьев меньших некоторых допустимых значений. То есть заостренным считается зуб у которого

При этом удобнее пользоваться относительными величинами [s a /m ]. Обычно принимают следующие допустимые значения

улучшение, нормализация [s a /m ] = 0.2;

цианирование, азотирование [s a /m ] = 0.25. 0.3;

цементация [s a /m ] = 0.35. 0.4.

Подрезание эвольвентных зубьев в станочном зацеплении

В процессе формирования эвольвентного зуба по способу огибания, в зависимости от взаимного расположения инструмента и заготовки возможно срезание эвольвентной части профиля зуба той частью профиля инструмента, которая формирует переходную кривую. Условие при котором это возможно определяется из схемы станочного зацепления. Участок линии зацепления, соответствующий эвольвентному зацеплению определяется отрезком B 1 . где точка B l определяется пересечением линии станочного зацепления и прямой граничных точек инструмента. Если точка B l располагается ниже (см. рис.12.8) точки N , то возникает подрезание зуба. Условие при котором нет подрезания можно записать так

– сверху – окружностью вершин диаметром da – формула (10.9);

– снизу – окружностью впадин диаметром df – формула (10.10);

– посередине профиля зуба – осью симметрии;

– переход от эвольвенты к окружности впадин осуществляют дугой переходной окружности радиусом = 0,4m.

Для определения положения оси симметрии зуба вычерчивают делительную окружность диаметром d – формула (10.6) – и по ней откладывают половину делительной толщины зуба

.

Полученную засечку соединяют с центром О окружностей, получая ось симметрии зуба. Вторую половину профиля получают, вычерчивая симметричный полупрофиль. Для повышения точности эвольвенты вводят дополнительную окружность произвольного радиуса ry приблизительно посередине между окружностями вершин и делительной, на которой измеряют и откладывают толщину sy. Профиль ножки зуба между эвольвентой и окружностью впадин формируется переходной кривой. Ширина впадины между зубьями по делительной окружности:

. (10.25)

Пример 10.1. Вычертить в масштабе эвольвенту и профиль одного зуба. Рассчитать d, db, da, df, p, s, e. Угол профиля a = 20 0 . Коэффициент высоты головки зуба = 1. Коэффициент радиального зазора c* = 0,25. Коэффициент радиуса переходной кривой = 0,4. Исходные данные: модуль m = 6 мм; число зубьев колеса z = 12; коэффициент смещения x = + 0,5; коэффициент уравнительного смещения Δy = 0,07.

Делительный диаметр d = 6∙12 = 72 мм.

Основной диаметр db = 6∙12∙cos20 ˚ = 67,66 мм.

Диаметр окружности вершин da = 6∙(12 + 2 + 2∙0,5 – 2∙0,07) = 89,16 мм.

Диаметр окружности впадин df = 6∙(12 – 2,5 + 2∙0,5) = 63 мм.

Делительная толщина зуба s = 0,5∙π∙6 + 2∙0,5∙6∙tg20 ˚ = 11,61 мм.

Шаг зубчатого колеса p = πm = π∙6 = 18,85 мм.

Делительная ширина впадины e = 18,85 – 11,61 = 7,24 мм.

Радиус переходной кривой = 0,4∙6 = 2,4 мм.

Выполняем построения в соответствии с вышеизложенными рекомендациями в масштабе. Графическое решение задачи представлено на рис. 10.11.

Б) Геометрия нулевого зубчатого колеса.

Исходные данные для расчёта геометрии содержат модуль m и число зубьев z, а также параметры нормального исходного контура: α = 20º; ; с * = 0,25. Рассчитывают следующие геометрические параметры: делительный диаметр d – формула (10.6), основной диаметр dв – формула (10.8), диаметр окружности вершин при отсутствии смещения:

диаметр окружности впадин:

шаг колеса – формула (10.2), делительная толщина зуба – формула (10.1), высота головки зуба, ножки зуба, полная высота зуба:

Геометрические параметры зубчатого колеса показаны на рис. 10.11.

В) Геометрия нулевого равносмещенного зацепления.

В равносмещенном зацеплении число зубьев шестерни z1 6 7 8

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Профиль боковых сторон зубьев зубчатых колес с эвольвентным зацеплением представляет собой две симметрично расположенные эвольвенты.

Эвольвента – это плоская кривая с переменным радиусом кривизны, образованная некоторой точкой на прямой, обкатывающейся без скольжения по окружности, диаметром (радиусом) db(rb) называемой основной окружностью.

Основные параметры эвольвентного зацепления. На рис. 1.1 показано зацепление двух зубчатых колес с эвольвентным профилем. Рассмотрим основные параметры зацепления, их определения и стандартные обозначения.

В отличие от принятого ранее, обозначение всех параметров производится строчными, а не заглавными буквами с индексами, указывающими их принадлежность колесу, инструменту, типу окружности и виду сечения.

Стандартом предусмотрены три группы индексов:

  • первая группа: n, t, x – означает вид сечения, соответственно нормальный, торцовый (окружной), осевой;
  • вторая группа: a,f,b,w,y- означает, что параметр относится соответственно к окружностям выступов, впадин, основной, начальной и любой концентричной окружности. Для делительной окружности индекс не указывается;
  • третья группа: 1, 2, 0 – означает, что параметр относится соответственно к шестерне, колесу, зуборезному инструменту.

    Порядок использования индексов определяется номером группы, т.е. вначале предпочтение отдается индексам первой группы, затем второй и т.д.

    Некоторые индексы разрешается опускать в случаях, исключающих возникновение недоразумений или не имеющих применения по определению. Например, у прямозубых цилиндрических колес не используются индексы первой группы. В ряде случаев некоторые индексы с целью сокращения записи также опускаются.

    Некоторые индексы разрешается опускать в случаях, исключающих возникновение недоразумений или не имеющих применения по определению. Например, у прямозубых цилиндрических колес не используются индексы первой группы. В ряде случаев некоторые индексы с целью сокращения записи также опускаются.

    Рассмотрим зацепление двух прямозубых цилиндрических (рис. 1.1) колес: с меньшим числом зубьев (z1), называемого шестерней, и с большим числом зубьев (z2), называемого колесом; соответственно с центрами колес в точках О1 и О2. В процессе обката шестерни с колесом происходит качение без скольжения двух центроид – окружностей, соприкасающихся в полюсе зацепления – Р. Эти окружности называются начальными, а их диаметры (радиусы) обозначаются с индексом w: dwl (rwl), dw2 (rw2). Для некорригированных колес эти окружности совпадают с делительными окружностями, обозначение диаметров (радиусов) которых дается без индексов первой и второй групп, т.е. для шестерни – d1(r1), для колеса – d2(r2).

    Рис. 1.1. Эвольвентное зацепление зубчатых колес

    Делительная окружность – окружность, на которой шаг между зубьями и угол профиля равны им же на делительной прямой зубчатой рейки, сцепленной с колесом. При этом шаг (Р = π · m) – расстояние между двумя соседними одноименными сторонами профиля. Отсюда диаметр делительной окружности колеса d = P · Z / π = m · Z

    Модуль зуба (m = P / π) – величина условная, имеющая размерность в миллиметрах (мм) и используемая как масштаб для выражения многих параметров зубчатых колес. В зарубежной практике в этом качестве используется питч – величина, обратная модулю.

    Основная окружность – это окружность, от которой образуется эвольвента. Все параметры, относящиеся к ней, обозначаются с индексом b например, диаметры (радиусы) колес в зацеплении: db1 (rbl), db2 (rb).

    Касательно к основным окружностям через полюс зацепления Р проходит прямая N-N, а ее участок N1-N2 называется линией зацепления, по которой в процессе обката перемещается точка контакта сопрягаемых профилей колес. N1-N2 называется номинальной (теоретической) линией зацепления, обозначаемой буквой g. Расстояние между точками пересечения ее с окружностями выступов колес называется рабочим участком линии зацепления и обозначается ga.

    В процессе обката зубчатых колес точка контакта профилей перемещается в пределах активного (рабочего) участка линии зацепления ga, которая является нормалью к профилям обоих колес в этих точках и одновременно общей касательной к обеим основным окружностям.

    Угол между линией зацепления и перпендикуляром к линии, соединяющей центры сопрягаемых колес, называется углом зацепления. У корригированных колес этот угол обозначается αw12; для некорригированных колес αw12 = α .

    Межцентровое расстояние некорригированных колес

    Окружности выступов и впадин – окружности, проходящие соответственно через вершины и впадины зубьев колес. Их диаметры (радиусы) обозначаются: da1 ( ra1 ), df1 ( rf1 ), da2 ( ra2 ), df2( rf2 ).

    Шаги зубьев колес – Pt Рb, Рn, Рх – это расстояния между одноименными сторонами профиля, замеренные:

  • по дуге делительной окружности в торцовом сечении – окружной (торцевый) шаг Pt = d / Z;
  • по дуге основной окружности – основной шаг Pb = db / Z;
  • по контактной нормали (линии зацепления) – основной нормальный шаг Рbn;
  • по нормали к направлению зубьев и по оси (у винтовых передач) – нормальный шаг Рn и осевой шаг Рх.

    Коэффициент перекрытия, ε – отношение активной (рабочей) части линии зацепления к основному нормальному шагу:

    Окружная (торцовая) толщина зуба, St – длина дуги делительной окружности, заключенная между двумя сторонами зуба.

    Окружная ширина впадины между зубьями, е – расстояние между разноименными сторонами профиля по дуге делительной окружности.

    Высота головки зуба, ha – расстояние между окружностями выступов и делительной:

    Высота ножки зуба hf – расстояние между окружностями делительной и впадин:

    Рабочий участок профиля зуба – геометрическое место точек контакта профилей сопрягаемых колес, определяется как расстояние от вершины зуба до точки начала эвольвенты. Ниже последней следует переходная кривая.

    Переходная кривая профиля зуба – часть профиля от начала эвольвенты, т.е. от основной окружности до окружности впадин. При методе копирования соответствует форме головки зуба инструмента, а при методе обкатки образуется вершинной кромкой режущего инструмента и имеет форму удлиненной эвольвенты (для инструментов реечного типа) или эпициклоиды (для инструментов типа колеса).

    Рис. 1.2. Зацепление зубчатой рейки с колесом

    Понятие об исходном контуре рейки

    Как было показано выше, частным случаем эвольвенты при z = (бесконечность) является прямая линия. Это дает основание использовать в эвольвентном зацеплении рейку с прямобочными зубьями. При этом любое зубчатое колесо данного модуля независимо от числа зубьев может быть сцеплено с рейкой того же модуля. Отсюда возникла идея обработки колес методом обкатки. В зацеплении колеса с рейкой (рис. 1.2) радиус начальной окружности последней равен бесконечности, а сама окружность превращается в начальную прямую рейки. Линия зацепления N1N2Так как профиль зубьев рейки – прямая линия, это в значительной мере упрощает контроль линейных параметров зубьев и угла профиля. С этой целью стандартами установлено понятие исходного контура зубчатой рейки (рис. 1.4, а) проходит через полюс Р касательно к основной окружности колеса и перпендикулярно к боковой стороне профиля зуба рейки. В процессе зацепления начальная окружность колеса обкатывается по начальной прямой рейки, а угол зацепления становится равным углу профиля зуба рейки α .

    Так как профиль зубьев рейки – прямая линия, это в значительной мере упрощает контроль линейных параметров зубьев и угла профиля. С этой целью стандартами установлено понятие исходного контура зубчатой рейки (рис. 1.3, а)

    В соответствии со стандартами, принятыми в нашей стране для эвольвентного зацепления, исходный контур имеет следующие параметры зубьев в зависимости от модуля:

  • угол профиля α = 20°;
  • коэффициент высоты головки h * a = 1;
  • коэффициент высоты ножки h * f = 1,25;
  • коэффициент радиального зазора с * = 0,25 или 0,3;
  • коэффициент граничной (рабочей) высоты зуба h * L = 2;
  • шаг зубьев Р = π · m;
  • толщина зуба S и ширина впадины е: S = е = 0,5Р = π · m / 2.

    Делительная прямая рейки проходит по середине рабочей высоты зуба hL.

    Для зуборезных инструментов основные параметры зубьев по аналогии с изложенным выше задаются параметрами исходной инструментальной рейки (рис. 1.3, б). Так как зубья режущего инструмента обрабатывают впадину между зубьями колеса и могут нарезать колеса с модифицированным (фланкированным) профилем, между названными исходными контурами имеются существенные различия:

  • Высота головки зуба исходной инструментальной рейки ha0 = (h * f0 + с )m = 1,25 m, т.е. коэффициент высоты головки й h * a0 =1,25. Высота ножки зуба hf0 = 1,25 m, а полная высота зуба h = ha0 + hf0 = 2,5 m.
  • Если нарезаемое колесо имеет срез у головки (модифицированный профиль), то ножка зуба инструментальной рейки должна иметь утолщение с параметрами h ф 0 , α ф 0 , n ф 0.
  • Толщина зуба у зубчатой рейки S = π · m / 2 ,
    а у инструментальной рейки при нарезании колес с модифицированным профилем зубьев S = π · m / 2 ± ΔS

    Рис. 1.3. Исходные контуры:

    а – зубчатой рейки; б – инструментальной рейки

    Поправка ΔS берется из справочников [23, 24] в зависимости от величины модуля зуба. Знак «+» берется для чистовых, а знак «-« – для черновых инструментов. В первом случае происходит утонение зубьев нарезаемого колеса с целью создания бокового зазора между зубьями сцепляемых колес, во втором случае утолщение, в результате чего нарезаемые зубья получают припуск на чистовую обработку.

    У колес с обычным (модифицированным) профилем зубьев изменение толщины нарезаемых зубьев можно получить путем смещения инструментальной рейки относительно центра колеса и утолщение ее зубьев у ножки не требуется.

    Параметры зацепления корригированных зубчатых колес. Корригирование (исправление) колес дает возможность улучшить зубчатое зацепление по сравнению с нормальным зацеплением в отношении трения, износа и прочности зубьев, уменьшить вероятность подреза ножки зубьев при малом их числе и др.

    Применительно к долбякам корригирование дает возможность получения задних углов на режущих кромках (см. ниже).

    Из известных методов корригирования на практике наибольшее применение нашло высотное корригирование, которое осуществляется путем смещения профиля исходной инструментальной рейки относительно центра нарезаемого колеса. Такое смещение принято считать положительным, если рейка отводится от центра колеса, и отрицательным, когда она приближается к его центру (рис. 1.4).

    Рис. 1.4. Схема высотного корригирования зубчатого колеса:

    1 – положительное смещение; 2 – нулевое смещение; 3 – отрицательное смещение

    Величина смещения оценивается произведением хо · m, где х – коэффициент смещения

    При положительном смещении высота головки зуба нарезаемого колеса h ‘ a1 увеличивается на величину хот, а высота ножки h ‘ f1 уменьшается на ту же величину. При отрицательном смещении, наоборот, высота головки зуба уменьшается, а высота ножки увеличивается. Полная высота зуба колеса в обоих случаях остается неизменной.

    Так как при этом положение делительной и основной окружностей колеса постоянно и не зависит от величины смещения, то неизбежно изменение толщины зуба нарезаемого колеса по делительной окружности из-за смещения делительной прямой рейки относительно начального положения на величину ± хо · m. Как видно из рис. 1.5, толщина зуба по делительной окружности у корригированного колеса при смещении рейки инструмента

    Знак «+» берется при положительном, а знак «-« – при отрицательном смещении.

    При расчетах зуборезных инструментов, например долбяков, зубья которых корригированы, возникает необходимость определения толщины зуба на окружности любого радиуса – rу, концентричной с делительной окружностью радиусом r.

    Рис. 1.5. Изменение толщины зуба на делительной окружности при положительном смещении инструментальной рейки.

    источники:

    http://k-a-t.ru/detali_mashin/24-dm_zubchatye17/index.shtml

    http://morflot.su/diametr-osnovnoj-okruzhnosti-zubchatogo-kolesa/

  • Геометрические параметры эвольвентного зацепления

    

    Эвольвентное зацепление зубчатых колес характеризуется различными геометрическими параметрами, оказывающими существенное влияние на свойства и работу передачи. К таким параметрам относятся диаметры начальной, основной и делительной окружностей, окружной шаг зубьев, модуль зацепления, высота головок и ножек зубьев, длина активной линии зацепления, угол наклона линии зуба косозубого колеса, коэффициент перекрытия и некоторые другие.

    В обозначении геометрических параметров зацепления используют индексы, относящиеся к характерным окружностям зубчатых колес:

    • w – начальной;
    • b – основной;
    • a – вершин зубьев;
    • f – впадин зубьев.

    Параметрам, относящимся к делительной окружности, индекс не присваивается.

    При обозначении параметров пары зубчатых колес индекс «1» присваивается шестерне, «2» — колесу.

    ***

    Начальные окружности

    Начальными называют окружности, которые в процессе зацепления перекатываются одна по другой без скольжения (рис. 1), при этом отношение их радиусов (расстояний от центров О1 и О2 до полюса П) при неизменном межосевом расстоянии О1О2 тоже остается неизменным.
    При изменении межосевого расстояния aw меняются и диаметры dw начальных окружностей шестерни и колеса, т. е. у пары зубчатых колес может быть множество начальных окружностей.
    У отдельно взятого колеса начальной окружности не существует – по определению этот параметр образуется в зацеплении, т. е. в зубчатой передаче.

    Межосевое расстояние определяется по формуле:

    aw = dw1/2 + dw2/2 = dw1(u + 1)/2.         (1)

    основные геометрические параметры эвольвентного зацепления

    ***

    Делительная окружность

    Окружность, на которой шаг p и угол зацепления α соответственно равны шагу p и углу α профиля инструментальной рейки, называют делительной окружностью (рис. 1). Эта окружность принадлежит отдельно взятому колесу, ее диаметр d при изменении межосевого расстояния остается неизменным.

    Делительные окружности совпадают с начальными, если межосевое расстояние пары зубчатых колес равно сумме радиусов делительных окружностей.

    У большинства зубчатых передач диаметры делительных и начальных окружностей совпадают, т. е.:

    d1 = dw1     и     d2 = dw2.

    Исключение составляют передачи с угловой модификацией.

    ***

    Окружной шаг зубьев

    Расстояние между одноименными сторонами двух соседних зубьев, взятое по дуге делительной окружности, называют окружным шагом зубьев по делительной окружности и обозначают буквой p (рис. 1).
    Для пары зацепляющихся зубчатых колес окружной шаг зубьев должен быть одинаковым.

    ***

    Основной шаг

    Этот параметр, обозначаемый pb, относится к основной окружности. На основании второго и четвертого свойств эвольвенты расстояние по нормали между одноименными сторонами двух соседних зубьев равно шагу pb.
    Из треугольника О2ВП (см. рис. 1) диаметр основной окружности db2 = 2rb2 = d2 cos αw, откуда основной шаг может быть определен по формуле:

    pb = p cos α.

    ***

    Окружная толщина зуба и окружная ширина впадины

    Окружная толщина зуба st и окружная ширина впадины et по дуге делительной окружности колеса передачи без смещения теоретически равны. Однако при изготовлении зубчатых колес на теоретический размер st назначают такое расположение поля допуска, при котором зуб получается тоньше, чем и гарантируется боковой зазор j (рис. 1), необходимый для нормального зацепления.
    По делительной окружности всегда st + et = p.

    ***

    Окружной модуль зубьев

    Из определения окружного шага следует, что длина делительной окружности зубчатого колеса πd = pz, где z – число зубьев. Следовательно,

    d = pz/π.

    Шаг зубьев p, так же как длина окружности, включает в себя трансцендентное число π, а поэтом шаг — также число трансцендентное. Для удобства расчетов и измерения зубчатых колес в качестве основного расчетного параметра принято рациональное число p/π, которое называют модулем зубьев, обозначают m и измеряют в миллиметрах:

    m = p/π,

    тогда:

    d = mz     или     m = d/z.

    Модуль зубьев m – часть диаметра делительной окружности, приходящаяся на один зуб.

    Модуль является основной характеристикой размера зубьев. Для пары зацепляющихся колес модуль должен быть одинаковым.

    Для обеспечения взаимозаменяемости зубчатых колес и унификации дорогостоящего зубонарезного оборудования и инструмента значения m регламентируются стандартом в диапазоне от 0,05 до 100 мм.
    В соответствии со стандартным рядом I модуль может принимать следующие значения: 1,0, 1,25, 1,5, 2,0, 2,5, 3,0, 4,0, 5,0, 6,0, 8,0, 10,0.
    Стандартный ряд II значительно расширяет диапазон применяемых на практике модулей (m = 1,125, 1,375, 1,75 и т. д.).

    При выборе модулей из стандартных рядов первый ряд следует предпочитать второму.

    ***

    

    Высота головки и ножки зуба

    Делительная окружность делит зуб по высоте на головку ha и ножку hf. Для создания радиального зазора с (см . рис. 1) необходимо

    hf = ha + с.

    Для передачи без смещения ha = m.

    ***

    Длина активной линии зацепления

    При вращении зубчатых колес точка зацепления S (см. рис. 1) пары зубьев перемещается по линии зацепления NN. Зацепление профилей начинается в точке S’ пересечения линии зацепления с окружностью вершин колеса и заканчивается в точке пересечения линии зацепления с окружностью вершин шестерни.
    Отрезок S’S» линии зацепления называют длиной активной линии зацепления и обозначают gα. Длину gα легко определить графически, для чего радиусами окружностей вершин обоих колес отсекают на линии зацепления NN отрезок S’S» и замеряют gα.

    геометрические характеристики эвольвентного зацепления

    ***

    Коэффициент торцового перекрытия

    Коэффициентом торцового перекрытия εα называют отношение длины активной линии зацепления к основному шагу:

    εα = gα/pb,

    или приближенно

    εα = [1,88 – 3,2(1/z1 + 1/z2)cos β],

    где z1 и z2 – числа зубьев шестерни и колеса; β – угол наклона линии зуба косозубого колеса.

    Непрерывность работы зубчатой передачи возможна при условии, когда последующая пара зубьев входит в зацепление до выхода предыдущей, т. е. когда обеспечивается перекрытие работы одной пары зубьев другой. Чем больше пар зубьев одновременно находится в зацеплении, тем выше плавность работы передачи.

    За период работ пары зубьев точка их зацепления проходит путь, равный по длине gα (см. рис. 1), а расстояние между профилями соседних зубьев по линии зацепления равно основному шагу pb. При gα > pb необходимое перекрытие зубьев обеспечивается.

    По условию непрерывности зацепления должно быть εα > 1. С увеличением количества зубьев z увеличивается и коэффициент торцового перекрытия εα.

    ***

    Основы расчета зубчатых колес на прочность

    

    Параметры и обозначения Расчетные формулы
    и указания Числовые значения шестерни
    ведущей шестерни ведомой
    (колеса) — 90 Модуль, m,мм — 8 Угол наклона зуба на делительной окружности β  17.2342 Угол профиля α — 20 Коэффициент высоты головки ha — 1 Коэффициент граничной высоты h1 — 2 Коэффициент радиального зазора (для стандартного контура) c>=0.25 — 0.25 Коэффициент высоты модификации головки hg — 0.4 Коэффициент глубины модификации головки Δ — 0.008 Коэффициент смещения (коррекции) — x1= 0.35 x2= 0.3 Размер притупления продольной кромки вершины зубьев — k1=1.5 k2=1.5 Ширина венца у шестерни, — b1=55 b2=55 Расчет основных геометрических параметров Делительное межосевое расстояние, a, мм  376.92322 Угол профиля в торцовой плоскости αto  20.86085 Расчет межосевого расстояния при заданных коэффициентах смещения Угол зацепления в торцовой плоскости inv αtwo  Межосевое расстояние, мм  Коэффициент суммы смещени ∑x=x1+x2 Делительный диаметр, мм d = z m /cos(β ) Передаточное число u = z1 / z2 Начальный диаметр, мм dw1 = 2 aw /(u+1);
    dw2 = 2 aw u/(u+1) Коэффициент воспринимаемого смещения y = (aw -a ) / m Коэффициент уравнительного смещения Δy = ∑x — y Диаметр вершин зубьев, мм da = d +2 (ha+x-Δy)m; Диаметр впадин, мм df = d — 2 (ha+c-x)m; Диаметр притупления кромок вершин зубьев, мм dk = da — 2 k Расчет размеров для контроля номинальной поверхности зуба. Расчет размеров для контроля торцового профиля зуба. Основной диаметр, мм db = d cos(αt) Угол профиля зуба в точке на окружности вершин, αao αa = acos(db/da) Угол профиля зуба в точке на окружности притупления кромок вершин, αko αk = acos(db/dk) Радиус кривизны активного профиля зуба в нижней точке (без учета притупления), мм ρp1 = aw sin(αtw)-0,5 db2 tan(αa2)
    ρp2 = aw sin(αtw)-0,5 db1 tan(αa1) Радиус кривизны активного профиля зуба в нижней точке (c учетом притупления), мм ρp1 = aw sin(αtw)-0,5 db2 tan(αk2)
    ρp2 = aw sin(αtw)-0,5 db1 tan(αk1) Угол развернутости активного профиля зуба в нижней точке, νpo νp = 2 ρp / db Диаметр окружности нижних точек активных профилей зубьев, dp мм  Расчет размера для контроля контактной линии поверхности зуба. Основной угол наклона βbo βb=asin(sin(β) cos(α)) Дополнительный расчет при модификации головки исходного контура. Радиус кривизны профиля зуба в начальной точке модификации головки, мм., ρg ρg = 0.5 d1 sin(αt)+(ha-hb+x)m/ sin(αt) Угол развернутости профиля зуба, соответствующий начальной точке модификации головки. νgo νg = 2 ρg/ db Диаметр окружности нижних точек активных профилей зубьев, dp мм  Угол линии модификации головки торцового исходного контура в начальной точке модификации.αtMo Справедливы, если линия модификации головки исходного контура — прямая.
     Диаметр основной окружности эвольвенты, являющейся линией модификации головки зуба, мм Справедливы, если линия модификации головки исходного контура — прямая.
    dbM = d cos(αtM) Нормальная глубина модификации торцового профиля головки зуба, мм.Δat Справедливы, если линия модификации головки исходного контура — прямая.

    Если имеется притупление продольной кромки зуба
     Дополнительный расчет при модификации головки исходного контура. Расчет размеров для контроля взаимного положения разноименных профилей зубьев.
    Расчет постоянной хорды и высоты до постоянной хорды. Постоянная хорда, мм sc = [ (π / 2) (cos(α))2 + x sin(2 α)] m Радиус кривизны разноименных профилей зуба в точках, определяющих постоянную хорду, мм ρs = 0.5 ( db tan(αt)+ sc cos(βb) / cos(α) ) Условие ρs > ρp Высота до постоянной хорды, мм hc = 0.5 ( da — d -sc tan(α)) Расчет длины общей нормали. Угол профиля в точке на концентрической окружности диаметра dx =d + 2 x m, o  Расчетное число зубьев в длине общей нормали  Длина общей нормали, мм W=[π ( ZW — 0,5) + 2 x tan(α) + Z inv(αt )] m cos(α) Радиус кривизны разноименных профилей зубьев в точках, определяющих длину общей нормали, мм ρg = 0,5 W cos(βb) Радиус кривизны профиля зуба в точке на окружности вершин, мм ρa = 0,5 da sin(αa) Должно выполняться условие ρp < ρW < ρα ρs < ρg Для косозубых зубчатых колес W < b / sin(βb) Расчет толщины по хорде и высоты до хорды. Угол профиля в точке на концентрической окружности заданного диаметра dy

    dy = d1 αy = acos[ (d1/dy ) ⋅ cos(αt) ] в нижней активной точке зуба dp αy = acos[ (d1/dp ) ⋅ cos(αt) ] Окружная толщина зуба на заданном диаметре dy  в нижней активной точке зуба dy  Угол наклона линии зуба соосной цилиндрической поверхности диаметра dy βy = atan [ (dy ⋅ tan(β) / d ] βp = atan [ (dp ⋅ tan(β) / d ] Половина угловой толщины зуба эквивалентного зубчатого колеса, соответствующая концентрической окружности диаметра , град ψyv = (sty / dy) ⋅ cos(βy)3 ψpv = (sty / dp) ⋅ cos(βp)3 Толщина по хорде, мм sy = dy ⋅ sin(ψyv) / cos(βy)2 sp = dp ⋅ sin(ψpv) / cos(βp)2 Высота до хорды, мм hay = 0.5 [da — dy + dy ⋅ (1 — cos(ψyv)) / cos(βy)2] hpy = 0.5 [da — dp + dp ⋅ (1 — cos(ψpv)) / cos(βp)2] Расчет размера по роликам (шарикам). Диаметр ролика (шарика), мм.
    при a=20 град. рекомендуется D = 1,7 ⋅ m Угол профиля на концентрической окружности, проходящей через центр шарика αDo  Диаметр концентрической окружности, проходящей через центр шарика, проходящей через центр шарика, мм dD = d ⋅ cos(αt) / cos(aD) Радиус кривизны разноименных профилей зубьев в точках контакта поверхности ролика (шарика) с главными поверхностями зубьев, мм ρM = 0,5 ⋅ (db ⋅ tan(aD) — D ⋅ cos(βb)) Размер по роликам (шарикам) зубчатых колес с числом зубьев (в торцовом сечении), мм четным M = dD + D

    нечетным M = dD ⋅ cos(90o / z) + D Минимальный размер по роликам (шарикам) косозубых зубчатых колес с нечетным числом зубьев, а также с четным числом зубьев при β >45°
    Минимальный размер по роликам (шарикам) косозубых зубчатых колес с четным числом зубьев β < 45° совпадает с размером в торцовом сечении  βD = atan(cos(αt) ⋅ tan(β) / cos(aD)) при z четным γ = 0
    при z нечетным γ = 180 / z λ — корень уравнения
    sin(γ + λ) ⋅ tan2D) — λ = 0 Должны выполняться условия ρp <  ρM < ρα dD + D > da dD — D > df Нормальная толщин sn = ( π / 2 + 2 ⋅ x ⋅ tan(α) )⋅ m Расчет размеров для контроля взаимного положения одноименных профилей зубьев Шаг зацепления, мм Pa = π ⋅ m ⋅ cos(α) Осевой шаг зубьев, мм Px = π ⋅ m / sin(β) Ход зуба, мм Pz = z ⋅ Px Проверка качества зацепления по геометрическим показателям
    Проверка отсутствия подрезания зуба Коэффициент наименьшего смещения xmin = h1 — ha — z ⋅ sin2t) / 2 ⋅ cos(β) подрезание зуба исходной производящей рейкой x ≥ xmin Проверка отсутствия интерференции зубьев Радиус кривизны в граничной точке профиля зуба, мм ρ1 = 0,5 ⋅ d ⋅ sin(αt) — (h1 — ha — x) ⋅ m / sin(αt) интерференция зубьев ρ1 ≤ ρp Проверка коэффициента перекрытия Коэффициент торцового перекрытия
    При наличии притупления продольной кромки вершин зубьев εα = [z1 ⋅ tan(αa1) + z2 ⋅ tan(αa2) — (z1+z2 ) ⋅ tan(αtw) ] / ( 2 ⋅ π)
    εαk = [z1 ⋅ tan(αk) + z2 ⋅ tan(αk2) — (z1+z2 ) ⋅ tan(αtw) ] / ( 2 ⋅ π)
    прямозубые εα > 1,2
    косозубые εα > 1,0 Коэффициент осевого перекрытия ε β = bw / ρx > 1,0
    bw — рабочая ширина венца Коэффициент перекрытия ε = εα + ε β > 2 Угол профиля зуба в начальной точке модификации головки cos(αg) = db / dg Часть коэффициента торцового перекрытия, определяемая участками торцовых профилей зубьев, совпадающих с главными профилями εαM = [z1 ⋅ tan(αg1) + z2 ⋅ tan(αg2) — (z1+z2 ) ⋅ tan(αtw) ] / ( 2 ⋅ π) Угол наклона линии вершины зуба tan(βα) = tan(β) ⋅ da / d Нормальная толщина на поверхности вершин, мм
    sna > 0.4 m

    Понравилась статья? Поделить с друзьями:
  • Как найти путь тела по графику скорости
  • Как найти длину стороны треугольника по квадратам
  • Как найти подписки в яндексе на айфоне
  • Истекшая ссылка телеграм как исправить
  • Как исправить свои ошибки в тексте онлайн