Как найти радиус сходимости ряда тейлора

Определение

Степенным рядом называется функциональный
ряд


,
элементы которого произведения постоянных

на степенные функции с целыми
показателями степеней от разности



коэффициенты степенного ряда (обычно
действительные функции).

В частности, если

,то
мы будем иметь степенной ряд, расположенный
по степеням x

В дальнейшем рассматриваем именно такие
ряды (замена

)

Для удобства n-м элементом
степенного ряда называют элемент

(хотя он стоит на n+1 месте).
Свободный элемент

считается
нулевым элементом ряда.

Рассмотрим ряд

(*)

и докажем очень важную теорему, на
которой будет основано изучение таких
рядов.

Теорема Абеля

Если степенной ряд (*) сходится в точке

,
то он сходится и притом абсолютно, в
интервале

,
т. е. при всяком x ,
удовлетворяющем условию

.

Доказательство:

Заметим, что вследствие сходимости ряда

его
общий элемент

.
Поэтому все элементы этого ряда ограничены
в совокупности, т.е. существует М>0,
такое, что при всяком n


.
Запишем ряд (*) так

и составим ряд их абсолютных величин
элементов этого ряда:

В силу установленного неравенства
каждый элемент здесь меньше соответствующего
элемента геометрической прогрессии со
знаменателем

:

Если

,
то

и прогрессия сходится, поэтому сходится
ряд из абсолютных величин, а значит,
абсолютно сходится сам ряд (*). Теорема
доказана.

Несмотря на то, что

нельзя сразу воспользоваться признаком
сравнения, поскольку в условиях теоремы
не сказано, что ряд в самой точке

сходится абсолютно.

Следствие

Если степенной ряд (*) расходится при

, то он расходится и при всяком х,
большем по абсолютной величине

,
то есть при

Область сходимости степенного ряда

Здесь возможны три случая:

  1. Область сходимости состоит только из
    одной точки х=0, то есть ряд расходится
    для всех значений х, кроме х=0.
    Пример

Если х фиксировано и х не равно
0,то, начиная с достаточно большого n,
будет

,
откуда вытекает неравенство
,
означающее, что общий элемент ряда не
стремится к нулю.

  1. Область сходимости состоит из всех
    точек оси ОХ, то есть ряд сходится
    при всех значениях х. Пример

Для любого х, начиная с достаточно
большого n, будет

,
так как


и т.д.

Начиная с номера n,
элементы ряда по абсолютной величине
будут меньше элементов сходящейся
геометрической прогрессии. Следовательно,
при любом х ряд сходится.

  1. Область сходимости состоит более чем
    из одной точки оси ОХ, причем есть
    точки оси, не принадлежащие области
    сходимости. Пример

Это геометрическая прогрессия со
знаменателем х. Ряд сходится при
|x|<1 и расходится
при

.

В этом случае на числовой оси наряду с
точками сходимости ряда имеются и точки
его расходимости.

Из теоремы Абеля и ее следствия вытекает,
что все точки сходимости расположены
от начала координат не дальше, чем любая
из точек расходимости. Точки сходимости
будут целиком заполнять некоторый
интервал с центром в начале координат.

Таким образом

Для каждого степенного ряда, имеющего
как точки сходимости , так и точки
расходимости, существует такое
положительное число R,
что для всех х по модулю меньшим R
(
),
ряд абсолютно сходится, а для всех |x|>R
ряд расходится. При x=R
и x=-R различные
варианты:

А) ряд сходится в обеих точках.

Б) ряд сходится в одной из точек.

В) ряд расходится в обеих точках.

Определение

Радиусом сходимости степенного ряда
(*) называется такое число R,
что для любых х, |x|<R,
степенной ряд сходится, а для всех х,
|x|>R,
расходится. Интервал (-R,R)
называется интервалом сходимости.

Считаем, что если ряд расходится для
любого х, кроме х=0, R=0.

Если ряд сходится при всех х, то
считаем

или

.

Для ряда

центр интервала сходимости в точке

( а не х=0) и интервал сходимости

.

Способ отыскания радиуса сходимости
степенного ряда

Отметим, что для нахождения радиуса
сходимости можно исследовать ряд,
составленный из абсолютных величин
элементов исходного ряда, то есть

(**) так как интервалы сходимости ряда
(*) и ряда (**) совпадают. К ряду (**) применим
признак Даламбера.

будет
содержать |x| или
степень |x|

Для тех значений х, при которых
получаемый предел меньше 1, ряд сходится,
а для тех, при которых x>1,
ряд расходится. Отсюда следует, что
значения |x|,
при которых этот предел равен 1, и будет
являться радиусом сходимости ряда.

Может случиться, что найденный предел
при всех х будет равен 0. Это означает,
что ряд (*) сходится при всех х и

.

Наоборот, если для любых х кроме х=0
предел равен бесконечности, то ряд будет
везде расходиться, кроме х=0, то есть
R=0.

Примеры

  1. Найти радиус сходимости ряда


,
то есть для всякого х ряд сходится

.

  1. Найти радиус сходимости ряда

Если |x|<1
ряд сходится

Если |x|>1
ряд расходится

При х=1 получаем гармонический ряд,
который расходится.

При х=-1 ряд

сходится условно.

  1. Найти радиус сходимости ряда


,
то есть R=1

При |x|<1
ряд сходится

При |x|>1
ряд расходится

При |x|=1 – ряд
сходится абсолютно.

  1. Найти радиус сходимости ряда

Если

ряд сходится, то есть при -2<x-1<2.
Получаем интервал сходимости (-1,3)
с центром х=1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

From Wikipedia, the free encyclopedia

In mathematics, the radius of convergence of a power series is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or infty . When it is positive, the power series converges absolutely and uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges. In case of multiple singularities of a function (singularities are those values of the argument for which the function is not defined), the radius of convergence is the shortest or minimum of all the respective distances (which are all non-negative numbers) calculated from the center of the disk of convergence to the respective singularities of the function.

Definition[edit]

For a power series f defined as:

f(z) =  sum_{n=0}^infty c_n (z-a)^n,

where

  • a is a complex constant, the center of the disk of convergence,
  • cn is the n-th complex coefficient, and
  • z is a complex variable.

The radius of convergence r is a nonnegative real number or infty such that the series converges if

{displaystyle |z-a|<r}

and diverges if

{displaystyle |z-a|>r.}

Some may prefer an alternative definition, as existence is obvious:

{displaystyle r=sup left{|z-a| left| sum _{n=0}^{infty }c_{n}(z-a)^{n} {text{ converges }}right.right}}

On the boundary, that is, where |z − a| = r, the behavior of the power series may be complicated, and the series may converge for some values of z and diverge for others. The radius of convergence is infinite if the series converges for all complex numbers z.[1]

Finding the radius of convergence[edit]

Two cases arise. The first case is theoretical: when you know all the coefficients c_{n} then you take certain limits and find the precise radius of convergence. The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms. In this second case, extrapolating a plot estimates the radius of convergence.

Theoretical radius[edit]

The radius of convergence can be found by applying the root test to the terms of the series. The root test uses the number

{displaystyle C=limsup _{nto infty }{sqrt[{n}]{|c_{n}(z-a)^{n}|}}=limsup _{nto infty }left({sqrt[{n}]{|c_{n}|}}right)|z-a|}

«lim sup» denotes the limit superior. The root test states that the series converges if C < 1 and diverges if C > 1. It follows that the power series converges if the distance from z to the center a is less than

{displaystyle r={frac {1}{limsup _{nto infty }{sqrt[{n}]{|c_{n}|}}}}}

and diverges if the distance exceeds that number; this statement is the Cauchy–Hadamard theorem. Note that r = 1/0 is interpreted as an infinite radius, meaning that f is an entire function.

The limit involved in the ratio test is usually easier to compute, and when that limit exists, it shows that the radius of convergence is finite.

{displaystyle r=lim _{nto infty }left|{frac {c_{n}}{c_{n+1}}}right|.}

This is shown as follows. The ratio test says the series converges if

 lim_{ntoinfty} frac{|c_{n+1}(z-a)^{n+1}|}{|c_n(z-a)^n|} < 1.

That is equivalent to

 |z - a| < frac{1}{lim_{ntoinfty} frac{|c_{n+1}|}{|c_n|}} = lim_{ntoinfty} left|frac{c_n}{c_{n+1}}right|.

Practical estimation of radius in the case of real coefficients[edit]

Plots of the function f(varepsilon)=frac{varepsilon(1+varepsilon^3)}{sqrt{1+2varepsilon}}.
The solid green line is the straight-line asymptote in the Domb–Sykes plot,[2] plot (b), which intercepts the vertical axis at −2 and has a slope +1. Thus there is a singularity at {displaystyle varepsilon =-1/2} and so the radius of convergence is {displaystyle r=1/2.}

Usually, in scientific applications, only a finite number of coefficients c_{n} are known. Typically, as n increases, these coefficients settle into a regular behavior determined by the nearest radius-limiting singularity. In this case, two main techniques have been developed, based on the fact that the coefficients of a Taylor series are roughly exponential with ratio 1/r where r is the radius of convergence.

Radius of convergence in complex analysis[edit]

A power series with a positive radius of convergence can be made into a holomorphic function by taking its argument to be a complex variable. The radius of convergence can be characterized by the following theorem:

The radius of convergence of a power series f centered on a point a is equal to the distance from a to the nearest point where f cannot be defined in a way that makes it holomorphic.

The set of all points whose distance to a is strictly less than the radius of convergence is called the disk of convergence.

A graph of the functions explained in the text: Approximations in blue, circle of convergence in white

The nearest point means the nearest point in the complex plane, not necessarily on the real line, even if the center and all coefficients are real. For example, the function

{displaystyle f(z)={frac {1}{1+z^{2}}}}

has no singularities on the real line, since 1+z^2 has no real roots. Its Taylor series about 0 is given by

sum_{n=0}^infty (-1)^n z^{2n}.

The root test shows that its radius of convergence is 1. In accordance with this, the function f(z) has singularities at ±i, which are at a distance 1 from 0.

For a proof of this theorem, see analyticity of holomorphic functions.

A simple example[edit]

The arctangent function of trigonometry can be expanded in a power series:

{displaystyle arctan(z)=z-{frac {z^{3}}{3}}+{frac {z^{5}}{5}}-{frac {z^{7}}{7}}+cdots .}

It is easy to apply the root test in this case to find that the radius of convergence is 1.

A more complicated example[edit]

Consider this power series:

{displaystyle {frac {z}{e^{z}-1}}=sum _{n=0}^{infty }{frac {B_{n}}{n!}}z^{n}}

where the rational numbers Bn are the Bernoulli numbers. It may be cumbersome to try to apply the ratio test to find the radius of convergence of this series. But the theorem of complex analysis stated above quickly solves the problem. At z = 0, there is in effect no singularity since the singularity is removable. The only non-removable singularities are therefore located at the other points where the denominator is zero. We solve

{displaystyle e^{z}-1=0}

by recalling that if z = x + iy and eiy = cos(y) + i sin(y) then

{displaystyle e^{z}=e^{x}e^{iy}=e^{x}(cos(y)+isin(y)),}

and then take x and y to be real. Since y is real, the absolute value of cos(y) + i sin(y) is necessarily 1. Therefore, the absolute value of ez can be 1 only if ex is 1; since x is real, that happens only if x = 0. Therefore z is purely imaginary and cos(y) + i sin(y) = 1. Since y is real, that happens only if cos(y) = 1 and sin(y) = 0, so that y is an integer multiple of 2π. Consequently the singular points of this function occur at

z = a nonzero integer multiple of 2πi.

The singularities nearest 0, which is the center of the power series expansion, are at ±2πi. The distance from the center to either of those points is 2π, so the radius of convergence is 2π.

Convergence on the boundary[edit]

If the power series is expanded around the point a and the radius of convergence is r, then the set of all points z such that |za| = r is a circle called the boundary of the disk of convergence. A power series may diverge at every point on the boundary, or diverge on some points and converge at other points, or converge at all the points on the boundary. Furthermore, even if the series converges everywhere on the boundary (even uniformly), it does not necessarily converge absolutely.

Example 1: The power series for the function f(z) = 1/(1 − z), expanded around z = 0, which is simply

 sum_{n=0}^infty z^n,

has radius of convergence 1 and diverges at every point on the boundary.

Example 2: The power series for g(z) = −ln(1 − z), expanded around z = 0, which is

 sum_{n=1}^infty frac{1}{n} z^n,

has radius of convergence 1, and diverges for z = 1 but converges for all other points on the boundary. The function f(z) of Example 1 is the derivative of g(z).

Example 3: The power series

{displaystyle sum _{n=1}^{infty }{frac {1}{n^{2}}}z^{n}}

has radius of convergence 1 and converges everywhere on the boundary absolutely. If h is the function represented by this series on the unit disk, then the derivative of h(z) is equal to g(z)/z with g of Example 2. It turns out that h(z) is the dilogarithm function.

Example 4: The power series

{displaystyle sum _{i=1}^{infty }a_{i}z^{i}{text{ where }}a_{i}={frac {(-1)^{n-1}}{2^{n}n}}{text{ for }}n=lfloor log _{2}(i)rfloor +1{text{, the unique integer with }}2^{n-1}leq i<2^{n},}

has radius of convergence 1 and converges uniformly on the entire boundary |z| = 1, but does not converge absolutely on the boundary.[5]

Rate of convergence[edit]

If we expand the function

{displaystyle sin x=sum _{n=0}^{infty }{frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots {text{ for all }}x}

around the point x = 0, we find out that the radius of convergence of this series is infty meaning that this series converges for all complex numbers. However, in applications, one is often interested in the precision of a numerical answer. Both the number of terms and the value at which the series is to be evaluated affect the accuracy of the answer. For example, if we want to calculate sin(0.1) accurate up to five decimal places, we only need the first two terms of the series. However, if we want the same precision for x = 1 we must evaluate and sum the first five terms of the series. For sin(10), one requires the first 18 terms of the series, and for sin(100) we need to evaluate the first 141 terms.

So for these particular values the fastest convergence of a power series expansion is at the center, and as one moves away from the center of convergence, the rate of convergence slows down until you reach the boundary (if it exists) and cross over, in which case the series will diverge.

Abscissa of convergence of a Dirichlet series[edit]

An analogous concept is the abscissa of convergence of a Dirichlet series

{displaystyle sum _{n=1}^{infty }{frac {a_{n}}{n^{s}}}.}

Such a series converges if the real part of s is greater than a particular number depending on the coefficients an: the abscissa of convergence.

Notes[edit]

  1. ^ Mathematical Analysis-II. Krishna Prakashan Media. 16 November 2010.
  2. ^ See Figure 8.1 in: Hinch, E.J. (1991), Perturbation Methods, Cambridge Texts in Applied Mathematics, vol. 6, Cambridge University Press, p. 146, ISBN 0-521-37897-4
  3. ^ Domb, C.; Sykes, M.F. (1957), «On the susceptibility of a ferromagnetic above the Curie point», Proc. R. Soc. Lond. A, 240 (1221): 214–228, Bibcode:1957RSPSA.240..214D, doi:10.1098/rspa.1957.0078, S2CID 119974403
  4. ^ Mercer, G.N.; Roberts, A.J. (1990), «A centre manifold description of contaminant dispersion in channels with varying flow properties», SIAM J. Appl. Math., 50 (6): 1547–1565, doi:10.1137/0150091
  5. ^ Sierpiński, W. (1918). «O szeregu potęgowym, który jest zbieżny na całem swem kole zbieżności jednostajnie, ale nie bezwzględnie». Prace Matematyczno-Fizyczne. 29 (1): 263–266.

References[edit]

  • Brown, James; Churchill, Ruel (1989), Complex variables and applications, New York: McGraw-Hill, ISBN 978-0-07-010905-6
  • Stein, Elias; Shakarchi, Rami (2003), Complex Analysis, Princeton, New Jersey: Princeton University Press, ISBN 0-691-11385-8

See also[edit]

  • Abel’s theorem
  • Convergence tests
  • Root test

External links[edit]

  • What is radius of convergence?

Содержание:

Степенные ряды:

До сих пор мы рассматривали ряды, членами которых были числа, т.е. числовые ряды. Теперь перейдем к рассмотрению рядов, членами которых являются функции, в частности степенные функции

Степенные ряды - определение, сходимость и примеры с решением

Такие ряды называются степенными, а числа Степенные ряды - определение, сходимость и примеры с решением

Область сходимости степенного ряда

Совокупность тех значений Степенные ряды - определение, сходимость и примеры с решением, при которых степенной ряд (14.1) сходится, называется областью сходимости степенного ряда.

Пример:

Найти область сходимости степенного ряда

Степенные ряды - определение, сходимость и примеры с решением

Решение:

Данный ряд можно рассматривать как геометрический ряд со знаменателем Степенные ряды - определение, сходимость и примеры с решением, который сходится при Степенные ряды - определение, сходимость и примеры с решениемСтепенные ряды - определение, сходимость и примеры с решением Отсюда Степенные ряды - определение, сходимость и примеры с решением, т.е. областью сходимости является интервал Степенные ряды - определение, сходимость и примеры с решением

Структура области сходимости степенного ряда устанавливается с помощью теоремы Абеля.

Теорема Абеля. 1) Если степенной ряд сходится при значении Степенные ряды - определение, сходимость и примеры с решением (отличном от нуля), то он сходится и, притом абсолютно, при всех значениях х таких, что Степенные ряды - определение, сходимость и примеры с решением. 2) Если степенной ряд расходится при Степенные ряды - определение, сходимость и примеры с решением то он расходится при всех значениях х таких, что Степенные ряды - определение, сходимость и примеры с решением.

1) По условию ряд (14.1) сходится при Степенные ряды - определение, сходимость и примеры с решением следовательно, выполняется необходимый признак сходимости Степенные ряды - определение, сходимость и примеры с решениемСтепенные ряды - определение, сходимость и примеры с решением Отсюда следует, что последовательность Степенные ряды - определение, сходимость и примеры с решениемограничена, т.е. существует такое число Степенные ряды - определение, сходимость и примеры с решением что для всех п выполняется неравенство

Степенные ряды - определение, сходимость и примеры с решением

Рассмотрим ряд, составленный из абсолютных величин членов ряда (14.1) Степенные ряды - определение, сходимость и примеры с решением который представим в виде

Степенные ряды - определение, сходимость и примеры с решением

Члены ряда (14.3) согласно неравенству (14.2) меньше соответствующих членов ряда

Степенные ряды - определение, сходимость и примеры с решением

представляющего геометрический ряд, который сходится, когда его знаменатель Степенные ряды - определение, сходимость и примеры с решениемосновании признака сравнения ряд (14.1) сходится.

2) По условию ряд (14.1) расходится при Степенные ряды - определение, сходимость и примеры с решением . Покажем, что он расходится для всех Степенные ряды - определение, сходимость и примеры с решением, удовлетворяющих условию Степенные ряды - определение, сходимость и примеры с решением Предположим противное, т.е. при Степенные ряды - определение, сходимость и примеры с решением ряд (14.1) сходится. Тогда по доказанному выше он должен сходиться и в точке Степенные ряды - определение, сходимость и примеры с решением (ибо Степенные ряды - определение, сходимость и примеры с решением), что противоречит условию. Таким образом, для всех х таких, что Степенные ряды - определение, сходимость и примеры с решением ряд (14.1) расходится. ■

Степенные ряды - определение, сходимость и примеры с решением

Из теоремы Абеля (см. рис. 14.1) следует, что существует такое число Степенные ряды - определение, сходимость и примеры с решением что при Степенные ряды - определение, сходимость и примеры с решением ряд сходится, а при Степенные ряды - определение, сходимость и примеры с решением — расходится.

Число Степенные ряды - определение, сходимость и примеры с решением получило название радиуса сходимости, а интервал Степенные ряды - определение, сходимость и примеры с решениеминтервала сходимости степенного ряда. На концах интервала сходимости, т.е. при Степенные ряды - определение, сходимость и примеры с решением ряд может как сходиться, так и расходиться (см. рис. 14.1).

Найдем выражение радиуса сходимости степенного ряда (14.1) через его коэффициенты. Рассмотрим ряд, составленный из абсолютных величин его членов

Степенные ряды - определение, сходимость и примеры с решением

в котором все коэффициенты Степенные ряды - определение, сходимость и примеры с решением, по крайней мере начиная с некоторого номера Степенные ряды - определение, сходимость и примеры с решением, отличны от нуля. По признаку Даламбера ряд (14.4) сходится, если

Степенные ряды - определение, сходимость и примеры с решением будет меньше 1, т.е. Степенные ряды - определение, сходимость и примеры с решением Если этот предел существует, то он и является радиусом сходимости ряда (14.1), т.е.

Степенные ряды - определение, сходимость и примеры с решением

Замечание. Следует отметить, что у некоторых рядов интервал сходимости вырождается в точку Степенные ряды - определение, сходимость и примеры с решением, у других охватывает всю ось Степенные ряды - определение, сходимость и примеры с решением

Пример:

Найти область сходимости степенного ряда

Степенные ряды - определение, сходимость и примеры с решением

Решение:

Найдем радиус сходимости ряда по формуле (14.5) Степенные ряды - определение, сходимость и примеры с решением т.е. интервал сходимости ряда Степенные ряды - определение, сходимость и примеры с решением

Теперь выясним поведение ряда на концах интервала сходимости. На левом конце при Степенные ряды - определение, сходимость и примеры с решением данный степенной ряд принимает вид Степенные ряды - определение, сходимость и примеры с решением этот ряд сходится по признаку Лейбница. На правом конце при Степенные ряды - определение, сходимость и примеры с решением получаем ряд Степенные ряды - определение, сходимость и примеры с решениемпредставляющий обобщенный гармонический ряд (13.12) при Степенные ряды - определение, сходимость и примеры с решением у которого все члены с четными номерами равны нулю. Так как Степенные ряды - определение, сходимость и примеры с решением то этот ряд сходится.

Следует отметить, что сходимость ряда на левом конце ин-тервала сходимости при Степенные ряды - определение, сходимость и примеры с решением могла быть установлена с помощью достаточного признака сходимости знакопеременного ряда (см. § 13.4), так как ряд, составленный из абсолютных величин его членов, т.е. ряд Степенные ряды - определение, сходимость и примеры с решением сходится.

Итак, область сходимости данного ряда Степенные ряды - определение, сходимость и примеры с решением

Замечание. При исследовании сходимости на концах интервала сходимости для получающегося ряда с положительными членами применять признак Даламбера не имеет смысла, так как в этом случае всегда будем получать Степенные ряды - определение, сходимость и примеры с решением с нерешенным вопросом о сходимости ряда; в этом случае рекомендуется рассматривать другие признаки сходимости (например, признак сравнения, необходимый признак и т.д.).

Пример:

Найти области сходимости степенных рядов:

Степенные ряды - определение, сходимость и примеры с решением

Решение:

а) Радиус сходимости ряда по (14.5)

Степенные ряды - определение, сходимость и примеры с решением т.е. область сходимости рядаСтепенные ряды - определение, сходимость и примеры с решением

б) Задачу можно решать аналогично предыдущим. Решение упрощается, если заметить, что Степенные ряды - определение, сходимость и примеры с решением , т.е. необходимый признак сходимости не выполняется, и ряд расходится.

Итак, область сходимости ряда состоит из одной точки Степенные ряды - определение, сходимость и примеры с решением

Пример:

Найти область сходимости ряда

Степенные ряды - определение, сходимость и примеры с решением

Решение:

Найти радиус сходимости по формуле (14.5) в данном случае не представляется возможным, так как коэффициенты ряда Степенные ряды - определение, сходимость и примеры с решением и т.д. равны нулю. Поэтому непосредственно применим признак Даламбера. Данный ряд будет абсолютно сходиться, если Степенные ряды - определение, сходимость и примеры с решениеми расходиться, если Степенные ряды - определение, сходимость и примеры с решением Поэтому найдем

Степенные ряды - определение, сходимость и примеры с решением Следовательно, ряд сходится при Степенные ряды - определение, сходимость и примеры с решением или на интервале Степенные ряды - определение, сходимость и примеры с решением

Исследуем сходимость на концах интервала сходимости: при Степенные ряды - определение, сходимость и примеры с решением ряд принимает вид Степенные ряды - определение, сходимость и примеры с решением а при Степенные ряды - определение, сходимость и примеры с решением вид Степенные ряды - определение, сходимость и примеры с решениемт.е. оба ряда расходятся, так как не выполняется необходимый признак сходимости.

Итак, область сходимости ряда Степенные ряды - определение, сходимость и примеры с решением

Свойства степенных рядов. Пусть функция Степенные ряды - определение, сходимость и примеры с решением является суммой степенного ряда, т.е.Степенные ряды - определение, сходимость и примеры с решением В подобных курсах математического анализа доказывается, что степенные ряды по своим свойствам напоминают конечные суммы (многочлены): на любом отрезке Степенные ряды - определение, сходимость и примеры с решением целиком принадлежащем интервалу сходимости Степенные ряды - определение, сходимость и примеры с решением функция Степенные ряды - определение, сходимость и примеры с решением является непрерывной, а следовательно, степенной ряд можно почленно интегрировать на этом отрезке:

Степенные ряды - определение, сходимость и примеры с решением

Кроме того, в интервале сходимости степенной ряд можно почленно дифференцировать:

Степенные ряды - определение, сходимость и примеры с решением

При этом после интегрирования или дифференцирования полученные ряды имеют тот же радиус сходимости Степенные ряды - определение, сходимость и примеры с решением

Определение степенного ряда и его сходимости

Понятое функциональной зависимости является одним из важнейших в математике. Всякая функция осуществляет некоторое соответствие между объектами, составляющими область задания этой функции, и объектами, составляющими область её значений. Так можно рассматривать функции, которые ставят в соответствие числам — ряды. Эти функции называются функциональными рядами, т.е. функциональный ряд это выражение

Степенные ряды - определение, сходимость и примеры с решением

членами которого являются некоторые функции переменной х. Например, ряд

Степенные ряды - определение, сходимость и примеры с решением

является функциональным рядом.

Придавая в выражении (29.1.1) переменной х некоторые значения Степенные ряды - определение, сходимость и примеры с решением мы будем получать числовые ряды

Степенные ряды - определение, сходимость и примеры с решением

которые могут оказаться, как сходящимися, так и расходящимися.

В простейших случаях для определения сходимости ряда (29.1.1) можно применять к нему известные признаки сходимости числовых рядов, считая х фиксированным.

Определение 29.1.1. Совокупность всех значений переменной х, для которых соответствующие числовые ряды сходятся, называется областью сходимости функционального ряда (29.1.1). Определение 29.1.2. Функциональный ряд вида

Степенные ряды - определение, сходимость и примеры с решением

где Степенные ряды - определение, сходимость и примеры с решением — действительные числа, независящие от переменной х, называется степенным относительно переменной х рядом. Числа Степенные ряды - определение, сходимость и примеры с решением называются коэффициентами этого ряда.

Если в ряде (29.1.2) сделать замену переменного, положив

Степенные ряды - определение, сходимость и примеры с решением, то получим ряд Степенные ряды - определение, сходимость и примеры с решением . В дальнейшем будем использовать букву x:

Степенные ряды - определение, сходимость и примеры с решением

Очевидно, что исследование сходимости ряда (29.1.2) эквивалентно исследованию сходимости ряда (29.1.3). Примером степенного ряда может служить ряд

Степенные ряды - определение, сходимость и примеры с решением

Сумма п первых членов рядаСтепенные ряды - определение, сходимость и примеры с решением называется n -ой частичноной суммой ряда и обозначается Степенные ряды - определение, сходимость и примеры с решением, т.е. Степенные ряды - определение, сходимость и примеры с решением

Для степенного ряда можно составить последовательность частичных сумм Степенные ряды - определение, сходимость и примеры с решениемОчевидно, что n-ые частичные суммы Степенные ряды - определение, сходимость и примеры с решением степенного ряда являются функциями.

Остатком степенного ряда после n -го его члена (или n -ым остатком) называется ряд, полученный из заданного исключением n его первых членов:

Степенные ряды - определение, сходимость и примеры с решением

Определение 29.1.3. Степенной ряд называется сходящимся на некотором множестве, если он сходится в любой точке этого множества.

Степенной ряд называется абсолютно сходящимся на некотором множестве, если в каждой точке этого множества сходится ряд из модулей его членов:

Степенные ряды - определение, сходимость и примеры с решением Степенной ряд (29.1.3) при тех или иных конкретных значениях переменной x превращается в числовой ряд; так если Степенные ряды - определение, сходимость и примеры с решением, то получим числовой ряд:

Степенные ряды - определение, сходимость и примеры с решением

Соответствующий числовой ряд а0 +о,л:0 +… сходится абсолютно, если сходится ряд Степенные ряды - определение, сходимость и примеры с решением составленный из модулей его членов.

Так как каждой точкеСтепенные ряды - определение, сходимость и примеры с решением сходимости ряда (29.1.3) ставится в соответствие определенное значение суммы (29.1.4), то сумма сходящегося на некотором множестве степенного ряда является функцией переменной x. Тогда Степенные ряды - определение, сходимость и примеры с решением Если обозначить сумму остатка через Степенные ряды - определение, сходимость и примеры с решением, то в области сходимости степенного ряда справедливо равенство:Степенные ряды - определение, сходимость и примеры с решением

Для сходящегося степенного ряда предел остатка равен нулю: Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды можно складывать, вычитать, умножать. Пусть заданы два степенных ряда:

Степенные ряды - определение, сходимость и примеры с решением

Сумма, разность и произведение заданных степенных рядов определяется формулами:

Степенные ряды - определение, сходимость и примеры с решением

где Степенные ряды - определение, сходимость и примеры с решением

Например, сумма, разность и произведение степенных рядов:

Степенные ряды - определение, сходимость и примеры с решением

имеет вид: Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

где Степенные ряды - определение, сходимость и примеры с решением

Радиус сходимости, интервал сходимости

Области сходимости степенных рядов устроены довольно просто. Они описываются следующей теоремой.

Теорема 29.2.1 (теорема Абеля). Если степенной ряд

Степенные ряды - определение, сходимость и примеры с решением

сходится при некотором Степенные ряды - определение, сходимость и примеры с решением, то он сходится абсолютно при всех значениях х, для которых Степенные ряды - определение, сходимость и примеры с решением

Если же степенной ряд (29.2.1) расходится при Степенные ряды - определение, сходимость и примеры с решением, то он расходится при всех значениях х, для которыхСтепенные ряды - определение, сходимость и примеры с решением.

Доказательство. Предположим сначала, что степенной ряд (29.2.1) сходится в точке Степенные ряды - определение, сходимость и примеры с решением. Это значит, что сходится числовой ряд

Степенные ряды - определение, сходимость и примеры с решением

Тогда, в силу необходимого признака сходимости, Степенные ряды - определение, сходимость и примеры с решениеми поэтому члены этого ряда ограничены, т.е. найдется такое К, что при любом номере Степенные ряды - определение, сходимость и примеры с решением. В силу этого для n -го члена ряда (29.2.1) получаем следующею оценку

Степенные ряды - определение, сходимость и примеры с решением

Если Степенные ряды - определение, сходимость и примеры с решением, то ряд Степенные ряды - определение, сходимость и примеры с решением, являясь геометрической прогрессией со знаменателем Степенные ряды - определение, сходимость и примеры с решением сходится. Поэтому, в силу I признака сравнения и так как Степенные ряды - определение, сходимость и примеры с решением, сходится и ряд Степенные ряды - определение, сходимость и примеры с решением А это означает абсолютную сходимость ряда (29.2.1), приСтепенные ряды - определение, сходимость и примеры с решением

Предположим теперь, что степенной ряд (29.2.1) расходится, при Степенные ряды - определение, сходимость и примеры с решением, т.е. расходится числовой ряд:

Степенные ряды - определение, сходимость и примеры с решением

Возьмём тогда некоторое значение х, для которого Степенные ряды - определение, сходимость и примеры с решениеми предположим, что ряд Степенные ряды - определение, сходимость и примеры с решением в этой точке

сходится. Но тогда из сходимости этого ряда, в силу первой части доказательства теоремы, вытекает сходимость ряда (29.2.2), что противоречит предположению, о его расходимости. Полученное противоречие означает, что для всех Степенные ряды - определение, сходимость и примеры с решением степенной ряд (29.2.1) расходится.Степенные ряды - определение, сходимость и примеры с решением

Если ряд (29.2.1) имеет вещественные коэффициенты и переменная х принимает только вещественные значения, то справедливо следующее определение, вытекающее из теоремы Абеля.

Определение 29.2.1. ВеличинаСтепенные ряды - определение, сходимость и примеры с решением (R-число или символСтепенные ряды - определение, сходимость и примеры с решением)

такая, что при всех х, у которыхСтепенные ряды - определение, сходимость и примеры с решением сходится, а при всех X у которых Степенные ряды - определение, сходимость и примеры с решениемрасходится, называется радиусом сходимости степенного ряда (29.2.1).

Множество точек х удовлетворяющих соотношению Степенные ряды - определение, сходимость и примеры с решением, называется интервалом сходимости.

Итак, из определения 29.2.1 и теоремы Абеля следует, что областью сходимости степенного ряда — является интервал сходимости. И если значение Степенные ряды - определение, сходимость и примеры с решением переменной х, принадлежит интервалу сходимости, то можно говорить о сумме степенного ряда (29.2.1) в точкеСтепенные ряды - определение, сходимость и примеры с решением. Таким образом, значение суммы степенного ряда зависит от значения Степенные ряды - определение, сходимость и примеры с решением переменной х, т.е. сумма степенного ряда сама является функцией переменной х. Эта функция ничем не отличается от обычной функции и, следовательно, можно говорить о дифференцировании, непрерывности, интегрируемости и других ее свойствах.

Свойства степенных рядов

Для степенных рядов справедливы следующие свойства:

1) Степенной ряд сходится равномерно внутри интервала сходимости.

2) Внутри интервала сходимости ряда сумма его является непрерывной функцией.

3) Если пределы интегрирования лежат внутри интервала сходимости степенного ряда, то последовательность интегралов от частичных сумм ряда сходится к интегралу от суммы ряда.

4) Если степенной ряд

Степенные ряды - определение, сходимость и примеры с решением

имеет радиус сходимости R , то и ряд

Степенные ряды - определение, сходимость и примеры с решением

получаемый в результате почленного дифференцирования ряда (29.2.3) также имеет радиус сходимости R. Производная суммы ряда (29.2.3) равна сумме ряда (29.2.4), т.е. Степенные ряды - определение, сходимость и примеры с решением

Вычисление интервала сходимости

Как уже было сказано в и. 2 областью сходимости степенного ряда является интервал сходимости. Более того, из теоремы Абеля следует, что областью сходимости степенного ряда является интервал с центром в начале координат (рис 29.1).

Степенные ряды - определение, сходимость и примеры с решением

Действительно, если Степенные ряды - определение, сходимость и примеры с решением есть точка сходимости, то весь интервал Степенные ряды - определение, сходимость и примеры с решениемзаполнен точками абсолютной сходимости, что следует из теоремы Абеля. Если же Степенные ряды - определение, сходимость и примеры с решением— точка расходимости, то вся бесконечная полупрямая вправо от точки Степенные ряды - определение, сходимость и примеры с решением и вся полупрямая влево от точки —Степенные ряды - определение, сходимость и примеры с решением состоят из точек расходимости, в противном случае мы бы получили, что степенной ряд в точке Степенные ряды - определение, сходимость и примеры с решениемили —Степенные ряды - определение, сходимость и примеры с решением сходится по теореме Абеля.

Заметим, что на концах интервала вопрос о сходимости или расходимости решается индивидуально в каждом конкретном случае. У некоторых рядов интервал сходимости может вырождаться в точку, у других охватывать всю ось Ох.

Укажем теперь способ вычисления радиуса сходимости степенного ряда.

Пусть задан степенной ряд Степенные ряды - определение, сходимость и примеры с решением Составим ряд из модулей членов данного ряда Степенные ряды - определение, сходимость и примеры с решениеми применим признак Д’Аламбера, т.е.

вычислим предел

Степенные ряды - определение, сходимость и примеры с решением

Если этот предел меньше единицы, то, как следует из признака Д’Аламбера, ряд, составленный из модулей членов ряда (29.2.1) сходится, т.е. ряд сходится если Степенные ряды - определение, сходимость и примеры с решением

Если же Степенные ряды - определение, сходимость и примеры с решением, то ряд (29.2.1) расходится.

А это означает, что если Степенные ряды - определение, сходимость и примеры с решением , то степенной ряд (29.2.1) сходится абсолютно, а при Степенные ряды - определение, сходимость и примеры с решением . степенной ряд расходится.

Учитывая определение радиуса сходимости степенного ряда, получим, что радиус сходимости можно вычислить по формуле:

Степенные ряды - определение, сходимость и примеры с решением

Рассуждая аналогичным образом можно получить еще одну формулу для определения радиуса сходимости:

Степенные ряды - определение, сходимость и примеры с решением

Если степенной ряд содержит только четные или нечетные степени х, то применяем признак Д’Аламбсра или Коши к ряду, составленному из модулей членов данного ряда.

Пример №1

Найти радиус и интервал сходимости степенного ряда:

Степенные ряды - определение, сходимость и примеры с решением

Решение:

Выпишем вначале значения Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Для определения радиуса сходимости воспользуемся формулой (29.3.1):

Степенные ряды - определение, сходимость и примеры с решением

Итак, степенной ряд сходится для |х| Степенные ряды - определение, сходимость и примеры с решением 1.

Исследуем сходимость ряда на концах интервала сходимости.

Пусть х =—1. Тогда получим знакочередующийся ряд Степенные ряды - определение, сходимость и примеры с решением который согласно признаку Лейбница сходится. Пусть х = 1. Получим числовой рядСтепенные ряды - определение, сходимость и примеры с решением который расходится, так как является гармоническим рядом.

Суммируя вышесказанное, получим интервал сходимостиСтепенные ряды - определение, сходимость и примеры с решением

Пример №2

Найти радиус и интервал сходимости степенного ряда Степенные ряды - определение, сходимость и примеры с решением

Решение:

Выпишем вначале значения Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Для определения радиуса сходимости воспользуемся формулой (29.3.2):

Степенные ряды - определение, сходимость и примеры с решением

Так как Степенные ряды - определение, сходимость и примеры с решением, то исследуемый ряд сходится для всех х.

Пример №3

Найти радиус и интервал сходимости степенного ряда:

Степенные ряды - определение, сходимость и примеры с решением

Решение:

Выпишем вначале значения Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Для определения радиуса сходимости воспользуемся формулой (29.3.1): Степенные ряды - определение, сходимость и примеры с решением

Так как радиус сходимости равен нулю, то ряд сходится только в одной точке x= 0.

Пример №4

Найти радиус и интервал сходимости степенного рядаСтепенные ряды - определение, сходимость и примеры с решением

Решение:

Данный ряд содержит только четные степени (а- — 5), коэффициенты при нечетных степенях равны нулю. Поэтому воспользоваться формулами (29.3.1) и (29.3.2) не представляется возможным.

Считая х фиксированным, применим признак Д’Аламбера к ряду, составленному из модулей членов данного ряда. Выпишем значенияСтепенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Тогда

Степенные ряды - определение, сходимость и примеры с решением

так как Степенные ряды - определение, сходимость и примеры с решением

Ряд сходится, если Степенные ряды - определение, сходимость и примеры с решением или

Степенные ряды - определение, сходимость и примеры с решением Это значит, что ряд сходится в интервале

Степенные ряды - определение, сходимость и примеры с решением

Исследуем сходимость ряда на концах интервала сходимости. Пусть Степенные ряды - определение, сходимость и примеры с решением. Подставив это значение х в исследуемый ряд, получим числовой ряд:

Степенные ряды - определение, сходимость и примеры с решением

который сходится, как ряд Дирихле, для которого а = 4. При Степенные ряды - определение, сходимость и примеры с решениемполучим тот же сходящийся числовой ряд. Следовательно, данный ряд сходится на отрезке

Степенные ряды - определение, сходимость и примеры с решением

Пример №5

Найти радиус и интервал сходимости степенного ряда Степенные ряды - определение, сходимость и примеры с решением

Решение:

Выпишем значение Степенные ряды - определение, сходимость и примеры с решением и вычислим радиус сходимости данного ряда по формуле (29.3.2):

Степенные ряды - определение, сходимость и примеры с решением Так как Степенные ряды - определение, сходимость и примеры с решением, то данный ряд сходится в интервале

Степенные ряды - определение, сходимость и примеры с решением

Исследуем его сходимость на концах интервала.

Пусть Степенные ряды - определение, сходимость и примеры с решением. Подставив это значение х в данный степенной ряд, получим числовой знакочередующийся ряд:

Степенные ряды - определение, сходимость и примеры с решениемПредел общего члена полученного ряда не стремится к нулю:

Степенные ряды - определение, сходимость и примеры с решением

Следовательно, данный ряд расходится. И приСтепенные ряды - определение, сходимость и примеры с решением получим расходящийся числовой ряд:Степенные ряды - определение, сходимость и примеры с решением Следовательно, Степенные ряды - определение, сходимость и примеры с решением интервал сходимости данного ряда.

Ряды Тейлора и Маклорена

Как уже отмечалось, сумма сходящегося степенного ряда является некоторой функцией, определенной внутри интервала сходимости. В связи с этим мы рассмотрим задачу разложения некоторой функции в ряд, т.е. будем по заданной функции искать сходящийся ряд того или иного типа, сумма которого в интервале сходимости равнялась бы заданной функции.

Известно, что если функция f имеет на некотором отрезке производные всех порядков, то можно написать формулу Тейлора для любого значения n:

Степенные ряды - определение, сходимость и примеры с решением

где Степенные ряды - определение, сходимость и примеры с решением заключено между Степенные ряды - определение, сходимость и примеры с решением и х. Формула (29.4.1) называется формулой Тейлора с оста точным членом в форме Лагранжа.

В формуле Тейлора обозначим:

Степенные ряды - определение, сходимость и примеры с решением

пункта 27.2 (теорема 27.2.1) следует, что если

Степенные ряды - определение, сходимость и примеры с решением

то степенной ряд

Степенные ряды - определение, сходимость и примеры с решением

сходится и его суммой будет функция f(х), так как Степенные ряды - определение, сходимость и примеры с решением Следовательно, Степенные ряды - определение, сходимость и примеры с решением

Справедливо и обратное утверждение, что если степенной ряд (29.4.3) сходится, то выполняется (29.4.2).

Определение 29.4.1. Представление функции f в виде ряда

Степенные ряды - определение, сходимость и примеры с решением

называется разложением этой функции в ряд Тейлора. Если же Степенные ряды - определение, сходимость и примеры с решением, то разложение в ряд Тейлора называется разложением в ряд Маклорена:

Степенные ряды - определение, сходимость и примеры с решением

Следует заметить, что остаточный член в формуле Тейлора для функции J не обязательно является остатком ряда Тейлора для этой функции. Поэтому из сходимости ряда Тейлора для функции f , еще не следует сходимость именно к этой функции. При разложении функции в ряд Тейлора необходимо проверять условие (29.4.2). Однако сели разложение функции в какой-либо степенной ряд вообще возможно, то оно является разложением в ряд Тейлора, т.е. справедлива следующая теорема.

Теорема 29.4.1. Пусть

Степенные ряды - определение, сходимость и примеры с решением

и стоящий справа ряд сходится в интервале Степенные ряды - определение, сходимость и примеры с решением к функции f . Тогда этот ряд является рядом Тейлора, т.е.

Степенные ряды - определение, сходимость и примеры с решением

Доказательство. Так как степенной ряд в интервале сходимости можно почленно дифференцировать, то n-ую производную функции (29.4.4) можно представить в виде:

Степенные ряды - определение, сходимость и примеры с решением

Полагая в последнем тождестве Степенные ряды - определение, сходимость и примеры с решением, получим Степенные ряды - определение, сходимость и примеры с решением (все другие слагаемые равны нулю). Откуда и следует (29.4.5).

Из доказанной теоремы вытекает, что в одной и той же области, для одной и той же функции существует единственное разложение.

На практике, для разложения функции в ряд Тейлора, удобно пользоваться следующей теоремой.

Теорема 29.4.2. Если при любых х, удовлетворяющих неравенствуСтепенные ряды - определение, сходимость и примеры с решениемпроизводные функции f(x) для любых п ограничены одним и тем же числом С > 0 т.е.

Степенные ряды - определение, сходимость и примеры с решением

то ряд Тейлора, для этой функции, сходится в интервалеСтепенные ряды - определение, сходимость и примеры с решением и его сумма равна f(x).

Доказательство. Из условия теоремы следует, что функцию f можно представить формулой Тейлора с остаточным членом в форме Лагранжа, т.е.

Степенные ряды - определение, сходимость и примеры с решением Оценим остаток: Степенные ряды - определение, сходимость и примеры с решением

Переходя к пределу приСтепенные ряды - определение, сходимость и примеры с решением, получим неравенство:

Степенные ряды - определение, сходимость и примеры с решением

Воспользовавшись асимптотической формулой СтерлингаСтепенные ряды - определение, сходимость и примеры с решением, получим:

Степенные ряды - определение, сходимость и примеры с решением

так как стспснно-показательная функция Степенные ряды - определение, сходимость и примеры с решениеми взрастает быстрее показательных функцийСтепенные ряды - определение, сходимость и примеры с решением

Тогда из неравенства (29.4.6) получим:Степенные ряды - определение, сходимость и примеры с решением. Слсдова-

Степенные ряды - определение, сходимость и примеры с решениемсходится к функции f(х). Теорема доказана.

Разложение некоторых элементарных функций в ряд Маклорена

Из пункта 29.4 следует, что для того чтобы некоторая функция разлагалась в ряд Тейлора нужно, чтобы она имела производные любого порядка и чтобы либо Степенные ряды - определение, сходимость и примеры с решением(где С> 0 — произвольная постоянная), для любых n и Степенные ряды - определение, сходимость и примеры с решением. Рассмотрим разложение некоторых функций в ряд Маклорена.

1. Разложение функцииСтепенные ряды - определение, сходимость и примеры с решением.

Находим производные данной функции и их значения при х=0. Так как Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решениеми формула Маклорена для функции Степенные ряды - определение, сходимость и примеры с решением имеет вид:

Степенные ряды - определение, сходимость и примеры с решением

где Степенные ряды - определение, сходимость и примеры с решением заключено между 0 и х.

Вычислим предел остаточного члена, для любого х: Степенные ряды - определение, сходимость и примеры с решением

Выражение Степенные ряды - определение, сходимость и примеры с решением как общий член сходящегося ряда Степенные ряды - определение, сходимость и примеры с решением . МножительСтепенные ряды - определение, сходимость и примеры с решением в выражении остаточного члена не превосходитСтепенные ряды - определение, сходимость и примеры с решением при х > 0 , и единицы при х Степенные ряды - определение, сходимость и примеры с решением 0. Это означает, что остаточный член стремится к нулю при всех значениях x Степенные ряды - определение, сходимость и примеры с решением

Следовательно, рядСтепенные ряды - определение, сходимость и примеры с решением сходится при любом х и суммой его является функция Степенные ряды - определение, сходимость и примеры с решением . Итак,Степенные ряды - определение, сходимость и примеры с решением Заменяя х на -x, получим ряд Степенные ряды - определение, сходимость и примеры с решением—, интервалом сходимости для которого является вся числовая ось.

2. Разложение функций cos х и sin х. Для функции cos x имеем:

Степенные ряды - определение, сходимость и примеры с решением

Следовательно,

Степенные ряды - определение, сходимость и примеры с решением и формула

Маклорена с остаточным членом в форме Лагранжа для функции cosx имеет вид:

Степенные ряды - определение, сходимость и примеры с решением

Ясно, что для любого X

Степенные ряды - определение, сходимость и примеры с решением

Поэтому, функция cos л- разлагается в ряд Маклорена вида:

Степенные ряды - определение, сходимость и примеры с решением

Аналогично получается разложение в ряд Маклорена функции sinx:Степенные ряды - определение, сходимость и примеры с решением

3. Биномиальный ряд.

Найдем разложение в степенной ряд функции

Степенные ряды - определение, сходимость и примеры с решением

где m -произвольное действительное число.

Дифференцируя равенство (29.5.1) n раз, получим:

Степенные ряды - определение, сходимость и примеры с решением

Значения функции и се производных при х = 0 равны:Степенные ряды - определение, сходимость и примеры с решением

Следовательно, ряд Маклорена имеет вид: Степенные ряды - определение, сходимость и примеры с решением

Если m- целое, то выражение (29.5.2) содержит конечное число членов. Если же m- нецелое, то выражение (29.5.2)- бесконечный ряд, называемый биномиальным.

Определим вначале радиус сходимости этого ряда, для чего применим признак Д’Аламбсра к ряду, составленному из модулей его членов:

Степенные ряды - определение, сходимость и примеры с решением

Следовательно, при |х| Степенные ряды - определение, сходимость и примеры с решением 1, биномиальный ряд абсолютно сходится, т.е. существует сумма S(x) этого ряда.

Покажем теперь, что ряд (29.5.2) сходится к функции Степенные ряды - определение, сходимость и примеры с решением‘. Для этого продифференцируем ряд (29.5.2) , получим:

Степенные ряды - определение, сходимость и примеры с решением

Умножим обе части (29.5.3) на Степенные ряды - определение, сходимость и примеры с решением и приведем подобные члены. Получим степенной ряд, в котором коэффициент при Степенные ряды - определение, сходимость и примеры с решением равен сумме двух слагаемых:

Степенные ряды - определение, сходимость и примеры с решением

Эта сумма, как показано, равна произведению коэффициента при Степенные ряды - определение, сходимость и примеры с решением, ряда (29.5.2), на m . Следовательно, в интервале сходимости биномиального ряда, имеем равенство:

Степенные ряды - определение, сходимость и примеры с решением

С другой стороны, вычисляя производную отношения

Степенные ряды - определение, сходимость и примеры с решениемполучим:-Степенные ряды - определение, сходимость и примеры с решениемв силу (29.5.4).

Решая дифференциальное уравнение Степенные ряды - определение, сходимость и примеры с решением, последовательно получим:

Степенные ряды - определение, сходимость и примеры с решением

Пусть x = 0, тогда S(0) = С. Из (29.5.2) следует, что S(0) = 1, тогда С = 1.

Следовательно, Степенные ряды - определение, сходимость и примеры с решением

Итак, разложение

Степенные ряды - определение, сходимость и примеры с решением

имеет место при всех х, удовлетворяющих условию Степенные ряды - определение, сходимость и примеры с решением. Придавая m конкретные значения можно получать разложения различных функций в степенные ряды. В общем случае разложение (29.5.5) даст обобщение бинома Ньютона для какого угодно показателя m.

Применение рядов в приближенных вычислениях

Разложения функций в ряд Маклорена позволяют во многих случаях вычислить с большой степенью точности значения этих функций, заменяя ее конечным числом членов разложения. Чем меньше х, тем меньше членов можно брать в этом разложении для вычисления f(х) с желаемой точностью. Если х весьма мало, то достаточно ограничится первыми двумя членами, отбросив все остальные. Например, при х близких к нулю можно пользоваться следующими приближенными формулами:

Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Например, вычислимСтепенные ряды - определение, сходимость и примеры с решением , до пяти знаков.

Имеем, Степенные ряды - определение, сходимость и примеры с решениемОстаточный член

Степенные ряды - определение, сходимость и примеры с решениемТак как близко к единице, то остальные члены в разложении не повлияют на первые пять знаков после запятой и их можно отбросить. Вычисление приводит к результату:Степенные ряды - определение, сходимость и примеры с решением

Иногда при вычислении значений функций удобно пользоваться почленным дифференцированием или интегрированием рядов.

Например, известно, чтоСтепенные ряды - определение, сходимость и примеры с решением

С другой стороны, Степенные ряды - определение, сходимость и примеры с решением

Следовательно,

Степенные ряды - определение, сходимость и примеры с решениемВ частности, при x = 0,1, получим:

Степенные ряды - определение, сходимость и примеры с решением

Этот ряд знакочередующийся. Поэтому, его остаток не превосходит первого «отброшенного» члена. Удерживая в разложении первых два слагаемых, получим значение arctg 0,1 = 0,09967 с пятью верными знаками.

При помощи биномиальною ряда можно быстро и довольно точно вычислять значение корней из чисел.

Пример №6

Вычислить Степенные ряды - определение, сходимость и примеры с решением с точностью до 0,0001.

Решение:

Представим, этот корень в виде

Степенные ряды - определение, сходимость и примеры с решением и воспользуемся разложением бинома:

Степенные ряды - определение, сходимость и примеры с решением

следующим член Степенные ряды - определение, сходимость и примеры с решением, поэтому точность нужная получена.

В общем случае можно записать:

Степенные ряды - определение, сходимость и примеры с решением

где Степенные ряды - определение, сходимость и примеры с решением, причемСтепенные ряды - определение, сходимость и примеры с решением, так как всегда можно подобрать целое число а так, чтобы m -ая степень а была, по возможности, ближе к А.

Кроме того, биномиальный ряд является основой многих дальнейших разложений функций в ряды. Например, можно найти разложение в ряд Маклорена функции:

Степенные ряды - определение, сходимость и примеры с решением

При помощи рядов можно вычислять определенные интегралы.

Например, вычислим интегральный синус: Степенные ряды - определение, сходимость и примеры с решением

Имеем

Степенные ряды - определение, сходимость и примеры с решением

тогда Степенные ряды - определение, сходимость и примеры с решением

Подставляя вместо x, те или иные конкретные значения переменной, мы можем вычислять интересующие нас значения интегрального синуса.

При помощи разложении в степенные ряды можно приближенно интегрировать разнообразные дифференциальные уравнения.

Например, найдем решение уравнения Степенные ряды - определение, сходимость и примеры с решениемпри начальных условиях Степенные ряды - определение, сходимость и примеры с решением

Будем искать решение этого уравнения в виде степенного ряда: Степенные ряды - определение, сходимость и примеры с решениемпри начальных условиях Степенные ряды - определение, сходимость и примеры с решением. Тогда получим:

Степенные ряды - определение, сходимость и примеры с решением

Вычислим первую и вторую производные от этого ряда:

Степенные ряды - определение, сходимость и примеры с решением

и подставив у, Степенные ряды - определение, сходимость и примеры с решением в заданное уравнение:

Степенные ряды - определение, сходимость и примеры с решением

приравняем коэффициенты при равных степенях .г, предварительно умножив правую часть на х: Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Получаем систему уравнений, из которой находим:

Степенные ряды - определение, сходимость и примеры с решением

Замечаем, что отличными от нуля будут лишь те коэффициенты, у которых индекс и степень делятся на 3. Получим решение заданного дифференциального уравнения в виде: Степенные ряды - определение, сходимость и примеры с решением

  • Заказать решение задач по высшей математике

Ряд Маклорена

Предположим, что функция Степенные ряды - определение, сходимость и примеры с решением, определенная и Степенные ряды - определение, сходимость и примеры с решением раз дифференцируемая в окрестности точки Степенные ряды - определение, сходимость и примеры с решением может быть представлена в виде суммы степенного ряда или, другими словами, может быть разложена в степенной ряд

Степенные ряды - определение, сходимость и примеры с решением

Выразим коэффициенты ряда через Степенные ряды - определение, сходимость и примеры с решением. Найдем производные функции Степенные ряды - определение, сходимость и примеры с решением, почленно дифференцируя ряд Степенные ряды - определение, сходимость и примеры с решением раз:

Степенные ряды - определение, сходимость и примеры с решением

Полагая в полученных равенствах Степенные ряды - определение, сходимость и примеры с решением получим Степенные ряды - определение, сходимость и примеры с решением Степенные ряды - определение, сходимость и примеры с решением Степенные ряды - определение, сходимость и примеры с решениемоткуда

Степенные ряды - определение, сходимость и примеры с решением

Подставляя значения коэффициентов Степенные ряды - определение, сходимость и примеры с решением получим ряд

Степенные ряды - определение, сходимость и примеры с решением

называемый рядом Маклорена.

Следует отметить, что не все функции могут быть разложены в ряд Маклорена. Может оказаться, что ряд Маклорена, составленный формально для функции Степенные ряды - определение, сходимость и примеры с решением, является расходящимся либо сходящимся не к функции Степенные ряды - определение, сходимость и примеры с решением.

Так же как и для числовых рядов, сумму Степенные ряды - определение, сходимость и примеры с решением ряда Маклорена можно представить в виде (13.9)

Степенные ряды - определение, сходимость и примеры с решением

где Степенные ряды - определение, сходимость и примеры с решениемСтепенные ряды - определение, сходимость и примеры с решением-я частичная сумма ряда; Степенные ряды - определение, сходимость и примеры с решениемСтепенные ряды - определение, сходимость и примеры с решением-й остаток ряда.

Тогда на основании свойства 4 сходящихся рядов (см. §13.1) можно сформулировать теорему.

Теорема. Для того чтобы ряд Маклорена сходился к функции Степенные ряды - определение, сходимость и примеры с решением, необходимо и достаточно, чтобы при Степенные ряды - определение, сходимость и примеры с решением остаток ряда стремился к нулю, т.е.

Степенные ряды - определение, сходимость и примеры с решением

для всех значений Степенные ряды - определение, сходимость и примеры с решением из интервала сходимости ряда.

Можно доказать, что если функция Степенные ряды - определение, сходимость и примеры с решением разложима в ряд Маклорена, то это разложение единственное.

Замечание. Ряд Маклорена является частным случаем ряда Тейлора:

Степенные ряды - определение, сходимость и примеры с решением

при Степенные ряды - определение, сходимость и примеры с решением

Ряд Тейлора тесно связан с формулой Тейлора.

Степенные ряды - определение, сходимость и примеры с решением

где Степенные ряды - определение, сходимость и примеры с решением— остаточный член формулы Тейлора:

Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением), записанный в форме Лагранжа.

Очевидно, что при выполнении условия (14.7) остаток Степенные ряды - определение, сходимость и примеры с решением ряда Тейлора равен остаточному члену Степенные ряды - определение, сходимость и примеры с решением формулы Тейлора.

Разложение в ряд Маклорена некоторых функций

Степенные ряды - определение, сходимость и примеры с решением

По формуле (13.6)

Степенные ряды - определение, сходимость и примеры с решением

Область сходимости ряда Степенные ряды - определение, сходимость и примеры с решением.

Степенные ряды - определение, сходимость и примеры с решением

Очевидно, что производные четного порядка Степенные ряды - определение, сходимость и примеры с решением, а нечетного порядка Степенные ряды - определение, сходимость и примеры с решением. По формуле (14.6)

Степенные ряды - определение, сходимость и примеры с решением

Область сходимости ряда Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением Рассматривая аналогично, получим

Степенные ряды - определение, сходимость и примеры с решением

Область сходимости ряда Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Интервал сходимости ряда Степенные ряды - определение, сходимость и примеры с решением (на концах интервала при Степенные ряды - определение, сходимость и примеры с решением сходимость ряда зависит от конкретных значений от).

Ряд (14.11) называется биномиальным. Если Степенные ряды - определение, сходимость и примеры с решением — целое положительное число, то биномиальный ряд представляет формулу бинома Ньютона, так как при Степенные ряды - определение, сходимость и примеры с решением Степенные ряды - определение, сходимость и примеры с решением-й член ряда и все последующие равны нулю, т.е. ряд. обрывается, и вместо бесконечного разложения получается конечная сумма.

Степенные ряды - определение, сходимость и примеры с решением

Получить разложение для этой функции можно проще, не вычисляя непосредственно коэффициенты ряда (14.6) с помощью производных.

Рассмотрим геометрический ряд

Степенные ряды - определение, сходимость и примеры с решением

со знаменателем Степенные ряды - определение, сходимость и примеры с решением который сходится при Степенные ряды - определение, сходимость и примеры с решением т.е. при Степенные ряды - определение, сходимость и примеры с решением к функции Степенные ряды - определение, сходимость и примеры с решением

Интегрируя почленно равенство (14.12) в интервале Степенные ряды - определение, сходимость и примеры с решением где Степенные ряды - определение, сходимость и примеры с решением, с учетом того, что Степенные ряды - определение, сходимость и примеры с решением получим

Степенные ряды - определение, сходимость и примеры с решением

Область сходимости ряда (после выяснения сходимости на концах интервала сходимости) есть Степенные ряды - определение, сходимость и примеры с решением

Можно доказать, что ряды, приведенные в формулах (14.8) — (14.13), сходятся к функциям, для которых они составлены.

При разложении более сложных функций используют непосредственно формулу (14.6) либо таблицу простейших разложений (14.8) — (14.13).

Пример №7

Разложить в ряд функции: Степенные ряды - определение, сходимость и примеры с решениемСтепенные ряды - определение, сходимость и примеры с решением

Решение:

а) Так как по (14.8) Степенные ряды - определение, сходимость и примеры с решением

то, заменяяСтепенные ряды - определение, сходимость и примеры с решением получим

Степенные ряды - определение, сходимость и примеры с решением

и, наконец,

Степенные ряды - определение, сходимость и примеры с решением

Область сходимости ряда Степенные ряды - определение, сходимость и примеры с решением

б) В разложении Степенные ряды - определение, сходимость и примеры с решением заменим Степенные ряды - определение, сходимость и примеры с решениемполучим

Степенные ряды - определение, сходимость и примеры с решением

Теперь

Степенные ряды - определение, сходимость и примеры с решением

Область сходимости ряда Степенные ряды - определение, сходимость и примеры с решением

Применение рядов в приближенных вычислениях

Степенные ряды имеют самые разнообразные приложения. С их помощью вычисляют с заданной степенью точности значения функций, определенных интегралов, которые являются «неберущимися» или слишком сложными для вычислений, интегрируются дифференциальные уравнения.

Пример №8

Вычислить приближенно с точностью до Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Решение:

а) Для вычисления Степенные ряды - определение, сходимость и примеры с решением запишем ряд (14.8) при Степенные ряды - определение, сходимость и примеры с решением принадлежащем области сходимости Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Взяв первые шесть членов разложения, на основании следствия из теоремы Лейбница (см. § 13.4) для сходящегося знакочередующегося ряда мы допустим погрешность Степенные ряды - определение, сходимость и примеры с решением не превышающую первого отброшенного члена (по абсолютной величине), т.е.

Степенные ряды - определение, сходимость и примеры с решением

б) Для вычисления Степенные ряды - определение, сходимость и примеры с решением запишем ряд (14.13) при Степенные ряды - определение, сходимость и примеры с решением входящем в область сходимости ряда Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Если в качестве Степенные ряды - определение, сходимость и примеры с решением взять первые четыре члена, мы допустим погрешность

Степенные ряды - определение, сходимость и примеры с решением

(Мы учли, что сумма сходящегося геометрического ряда в

скобках равна Степенные ряды - определение, сходимость и примеры с решением.) Итак, 1 -q 1-0,2

Степенные ряды - определение, сходимость и примеры с решением

Следует отметить, что для вычисления логарифмов более удобным является ряд (14.14), который сходится быстрее ряда (14.13). Действительно, пусть Степенные ряды - определение, сходимость и примеры с решением тогда Степенные ряды - определение, сходимость и примеры с решением и согласно (14.14)

Степенные ряды - определение, сходимость и примеры с решением

т.е. для вычисления Степенные ряды - определение, сходимость и примеры с решением с точностью до Степенные ряды - определение, сходимость и примеры с решениемпотребуется всего два члена. С помощью ряда (14.14) можно вычислять логарифмы любых чисел, в то время как с помощью ряда (14.13) -лишь логарифмы чисел, расположенных на промежутке Степенные ряды - определение, сходимость и примеры с решением

в) Представим Степенные ряды - определение, сходимость и примеры с решением в виде Степенные ряды - определение, сходимость и примеры с решением

Так как Степенные ряды - определение, сходимость и примеры с решением входит в область сходимости степенного ряда Степенные ряды - определение, сходимость и примеры с решением то при Степенные ряды - определение, сходимость и примеры с решением учитывая (14.11), получим

Степенные ряды - определение, сходимость и примеры с решением

(Для обеспечения данной точности расчета необходимо взять 4 члена, так как по следствию из признака Лейбница для сходящегося знакочередующегося ряда погрешность Степенные ряды - определение, сходимость и примеры с решениемСтепенные ряды - определение, сходимость и примеры с решением)

г) Для вычисления Степенные ряды - определение, сходимость и примеры с решением запишем ряд (14.9) при Степенные ряды - определение, сходимость и примеры с решениемпринадлежащем области сходимостиСтепенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

(Необходимо взять два члена, так как при этом погрешность

Степенные ряды - определение, сходимость и примеры с решением

д)«Точное» интегрирование здесь невозможно, так как интеграл «неберущийся». Заменив Степенные ряды - определение, сходимость и примеры с решением в разложении (14.8), получим

Степенные ряды - определение, сходимость и примеры с решением

Умножая полученный ряд на Степенные ряды - определение, сходимость и примеры с решениемСтепенные ряды - определение, сходимость и примеры с решением

и почленно интегрируя в интервале Степенные ряды - определение, сходимость и примеры с решением принадлежащем интервалу сходимости ряда Степенные ряды - определение, сходимость и примеры с решением, получим Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением Оценка погрешности вычисления производится так же, как в примерах а), в) и г). ►

Пример №9

Исследовать сходимость ряда

Степенные ряды - определение, сходимость и примеры с решением

Решение:

Радиус сходимости ряда (14.15), заданного по степеням Степенные ряды - определение, сходимость и примеры с решением находится по той же формуле (14.5);Степенные ряды - определение, сходимость и примеры с решением

т.е. Степенные ряды - определение, сходимость и примеры с решением Интервал сходимости ряда (14.15) определяется из условия Степенные ряды - определение, сходимость и примеры с решением В данном примере интервал сходимости ряда есть Степенные ряды - определение, сходимость и примеры с решением или Степенные ряды - определение, сходимость и примеры с решением

Исследуем сходимость ряда (14.15) на концах этого интервала. При Степенные ряды - определение, сходимость и примеры с решением ряд принимает вид Степенные ряды - определение, сходимость и примеры с решением т.е. представляет сумму двух рядов. Первый, знакочередующийся ряд Степенные ряды - определение, сходимость и примеры с решением сходится (условно) (см. § 13.4), а второй ряд Степенные ряды - определение, сходимость и примеры с решениемисследуем на сходимость с помощью признака Даламбера: Степенные ряды - определение, сходимость и примеры с решением т.е. ряд сходится, а следовательно, сходится и ряд (14.15) приСтепенные ряды - определение, сходимость и примеры с решением

При Степенные ряды - определение, сходимость и примеры с решением ряд (14.15) имеет вид Степенные ряды - определение, сходимость и примеры с решением Первый из полученных рядов — гармонический — расходится, а второй — сходится на основании признака абсолютной сходимости, так как выше было показано, что ряд из абсолютных величин его членов сходится. Следовательно, ряд (14.15) при Степенные ряды - определение, сходимость и примеры с решением расходится. (Установить расходимость этого ряда с положительными членамиСтепенные ряды - определение, сходимость и примеры с решением при любом Степенные ряды - определение, сходимость и примеры с решением можно было и с помощью признака сравнения, так как его члены при Степенные ряды - определение, сходимость и примеры с решениемпревосходят члены расходящегося гармонического ряда, умноженные на Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

Итак, область сходимости степенного ряда (14.15) Степенные ряды - определение, сходимость и примеры с решениемСтепенные ряды - определение, сходимость и примеры с решением

Пример №10

Разложить в ряд Маклорена функцию

Решение:

Первый способ. Применим метод непосредственного разложения по формуле (14.6).

Вначале найдем производные до «-го порядка и вычислим их значения при Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

При Степенные ряды - определение, сходимость и примеры с решением значения функции Степенные ряды - определение, сходимость и примеры с решением и ее производных:

Степенные ряды - определение, сходимость и примеры с решением

и т.д. Теперь по формуле (14.6) запишем ряд

Степенные ряды - определение, сходимость и примеры с решением

или

Степенные ряды - определение, сходимость и примеры с решением

Второй способ. Учитывая, что Степенные ряды - определение, сходимость и примеры с решениемиспользуем готовое разложение (14.10) для функции Степенные ряды - определение, сходимость и примеры с решением (в котором вместоСтепенные ряды - определение, сходимость и примеры с решением берем Степенные ряды - определение, сходимость и примеры с решением), умножаем обе части полученного равенства на Степенные ряды - определение, сходимость и примеры с решениема затем прибавляем к ним Степенные ряды - определение, сходимость и примеры с решениемПолучим

Степенные ряды - определение, сходимость и примеры с решением и

Степенные ряды - определение, сходимость и примеры с решением или

Степенные ряды - определение, сходимость и примеры с решением

т.е. то же разложение (14.16).

Третий способ. Разложение функции Степенные ряды - определение, сходимость и примеры с решением может быть осуществлено с помощью правила перемножения рядов. Если в некоторой окрестности точки Степенные ряды - определение, сходимость и примеры с решениемимеют место разложения

Степенные ряды - определение, сходимость и примеры с решением

то произведение функций разлагается в той же окрестности в степенной ряд

Степенные ряды - определение, сходимость и примеры с решением

В частности, при Степенные ряды - определение, сходимость и примеры с решением получаем следующее правило возведения в квадрат степенного ряда:

Степенные ряды - определение, сходимость и примеры с решением

Для функции Степенные ряды - определение, сходимость и примеры с решением имеющей разложение в ряд (14.9), т.е.

Степенные ряды - определение, сходимость и примеры с решением

находим по формуле (14.17)

Степенные ряды - определение, сходимость и примеры с решением

т.е. получили то же разложение (14.16).

Область сходимости ряда, как нетрудно убедиться, есть Степенные ряды - определение, сходимость и примеры с решением

Пример №11

Вычислить с точностью до Степенные ряды - определение, сходимость и примеры с решением

Решение:

Выражение данного интеграла в виде числового ряда находится

Степенные ряды - определение, сходимость и примеры с решением

Вычисление интеграла свелось не к нахождению суммы сходящегося знакочередующегося ряда, при вычислении которой погрешность оценивается с помощью следствия из теоремы Лейбница, а к определению суммы ряда с положительными членами с неизвестной оценкой погрешности.

Поступим следующим образом. Предположим, что для оценки суммы ряда мы взяли Степенные ряды - определение, сходимость и примеры с решением членов (вместе с первым при Степенные ряды - определение, сходимость и примеры с решением). Тогда погрешность вычисления суммы ряда будет определяться остатком ряда

Степенные ряды - определение, сходимость и примеры с решением

ибо выражение в круглых скобках представляет сумму сходящегося геометрического ряда (13.5) при Степенные ряды - определение, сходимость и примеры с решением

При Степенные ряды - определение, сходимость и примеры с решением

Степенные ряды - определение, сходимость и примеры с решением

(Легко вычислить, что при любых Степенные ряды - определение, сходимость и примеры с решением) Итак, для обеспечения данной в условии точности вычисления интеграла необходимо взять первые 7 членов:

Степенные ряды - определение, сходимость и примеры с решением

  • Элементы матричного анализа
  • Уравнение линии
  • Функции нескольких переменных
  • Комплексные числ
  • Линейные дифференциальные уравнения второго порядка
  • Системы дифференциальных уравнений
  • Числовые ряды
  • Знакопеременные ряды

Понравилась статья? Поделить с друзьями:
  • Cheat engine как найти изменяющееся значение
  • Как найти ссылку на страницу на сайте
  • Как найти видеокамеру в forest
  • Как найти квадрокоптер с камерой
  • Как найти международных перевозчиков