Как найти радиус вписанной окружности треугольника формула

1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

Радиус вписанной окружности в ромб

a — сторона ромба

D — большая диагональ

d — меньшая диагональ

α — острый угол

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в ромб через диагонали ( r ) :

Формула 1 радиуса вписанной окружности в ромб

Формула радиуса вписанной окружности в ромб через сторону и угол ( r ) :

Формула 2 радиуса вписанной окружности в ромб

Формула радиуса вписанной окружности в ромб через диагональ и угол ( r ) :

Формула 3 радиуса вписанной окружности в ромб

Формула 4 радиуса вписанной окружности в ромб

Формула радиуса вписанной окружности в ромб через диагональ и сторону ( r ) :

Формула 5 радиуса вписанной окружности в ромб

Формула 6 радиуса вписанной окружности в ромб

2. Радиус вписанной окружности ромба, равен половине его высоты

Радиус вписанной окружности в ромб

a — сторона ромба

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в ромб ( r ) :

Формула 7 радиуса вписанной окружности в ромб

Как найти радиус вписанной окружности треугольника

Содержание:

  • Окружность, вписанная в треугольник — как найти радиус
  • Свойства вписанной в треугольник окружности

    • Первое свойство
    • Второе свойство
    • Третье свойство
  • Формулы вычисления радиуса вписанной окружности

    • Произвольный треугольник
    • Прямоугольный треугольник
    • Равнобедренный треугольник
    • Равносторонний треугольник
  • Как найти через высоту или стороны, примеры решения

Окружность, вписанная в треугольник — как найти радиус

Определение

Вписанной в треугольник окружностью называют такую окружность, которая занимает внутреннее пространство геометрической фигуры, соприкасаясь со всеми ее сторонами.

В таком случае грани треугольника представляют собой касательные к этой окружности. Сама геометрическая фигура с тремя углами считается описанной вокруг рассматриваемой окружности.

Вписанная окружность

Источник: people-ask.ru

Свойства вписанной в треугольник окружности

Окружность, которую вписали в треугольник, обладает определенными свойствами. Основные из них можно записать таким образом:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  1. Центр окружности, которую вписали в треугольник, совпадает с точкой пересечения биссектрис этой геометрической фигуры.
  2. Во внутреннее пространство любого треугольника можно вписать лишь одну окружность.
  3. Формула радиуса окружности, который вписали во многоугольник с тремя углами, будет иметь такой вид:

Радиус

Источник: people-ask.ru

В представленной формуле радиуса окружности использованы следующие величины:

  • S – является площадью треугольника;
  • р – представляет собой полупериметр геометрической фигуры;
  • a, b, c – являются сторонами треугольника.

Перечисленные свойства необходимо доказать.

Первое свойство

Требуется доказать, что центр окружности, которую вписали в фигуру с тремя углами, совпадает с точкой пересечения биссектрис.

Доказательство построено в несколько этапов:

  1. Необходимо опустить из центральной точки окружности перпендикулярные прямые OL, OK и OM, которые опускаются на стороны треугольника АВС. Из вершин треугольника следует провести прямые, соединяющие их с центром фигуры OA, OC и OB.

3 Доказательство

Источник: people-ask.ru
  1. Далее можно рассмотреть пару треугольников AOM и AOK. Можно отметить, что они являются прямоугольными, так как OM и OK являются перпендикулярами к сторонам AC и AB. Гипотенуза OA является общей для пары этих фигур.
  2. Исходя из того, что касательная к окружности является перпендикуляром к радиусу, который проведен в точку касания, согласно свойству касательной к окружности, то катеты OМ и OК представляют собой радиусы окружности и, следовательно, равны.
  3. Согласно полученным утверждениям, можно сделать вывод о равенстве прямоугольных треугольников AOМ и AOК по гипотенузе и катету. Таким образом, углы OAМ и OAК тоже равны. Получается, что OA является биссектрисой угла BAC.
  4. Аналогично можно доказать, что OC является биссектрисой угла ACB, а OB – биссектрисой угла ABC.
  5. Таким образом, биссектрисы треугольника совпадают в одной точке, которая представляет собой центр вписанной окружности.

Данное свойство окружности доказано.

Второе свойство

Необходимо представить доказательства свойства окружности, согласно которому в любой треугольник можно вписать окружность, причем только одну.

Доказательство состоит из нескольких этапов:

  1. Окружность получится вписать в треугольник в том случае, когда существует точка, удаленная на равные расстояния от сторон геометрической фигуры.
  2. Можно построить пару биссектрис ОА и ОС. Из точки, в которой они пересекаются, необходимо опустить перпендикулярные прямые OK, OL и OM ко всем граням многоугольника с тремя углами ABC.

4 Второе свойство

Источник: people-ask.ru
  1. Затем следует рассмотреть пару треугольников AOK и AOM.
  2. Эти фигуры обладают общей гипотенузой АО. Углы OAK и OAM равны, так как OA является биссектрисой угла KAM. Углы OKA и OMA прямые, то есть также равны, так как OK и OM являются перпендикулярами к сторонам AB и AC.
  3. Исходя из того, что две пары углов равны, можно сделать вывод о равенстве третьей пары AOM и AOK.
  4. Таким образом, получилось подтвердить равенство треугольников AOK и AOM по стороне AO и двум углам, которые к ней прилегают.

5 Второе свойство

Источник: people-ask.ru
  1. Удалось определить равенство сторон ОМ и ОК, то есть они удалены на одинаковое расстояние от сторон геометрической фигуры АС и АВ.
  2. Аналогично можно доказать, что OM и OL равны, то есть равноудалены от граней AC и BC.
  3. Таким образом, точка равноудалена от сторон треугольника, что делает ее центром окружности, которая вписана в этот многоугольник.
  4. Аналогичным способом можно определить точку во внутреннем пространстве любой геометрической фигуры с тремя углами, которая будет удалена на равные расстояния от его сторон, и представляет собой центр окружности, вписанной в этот треугольник.
  5. Исходя из вышесказанного, можно сделать вывод о том, что в любой треугольник можно вписать окружность.
  6. Необходимо заметить, что центральная точка окружности совпадает с точкой, в которой пересекаются биссектрисы треугольника.
  7. Можно допустить ситуацию, при которой в геометрическую фигуру с тремя углами можно вписать две и более окружности.
  8. Необходимо провести три прямые из вершин геометрической фигуры к центральной точке окружности, вписанной в нее, и опустить перпендикулярные прямые к каждой грани треугольника. Таким образом, будет доказано, что рассматриваемая окружность лежит на пересечении биссектрис треугольника, согласно доказательству ее первого свойства.
  9. Получим совпадение центральной точки окружности и центра первой окружности, которая уже была вписана в этот треугольник, а ее радиус соответствует перпендикуляру, опущенному на сторону треугольника так же, как и в первом случае. Можно сделать вывод о совпадении этих окружностей.
  10. Аналогично любая другая окружность, вписанная в геометрическую фигуру с тремя углами, будет совпадать с первой окружностью.
  11. Таким образом, в треугольник получается вписать лишь одну окружность.

Свойство доказано.

Третье свойство

Требуется доказать, что радиус окружности, которую вписали в геометрическую фигуру с тремя углами, представляет собой отношение площади треугольника к полупериметру:

6 Формула

Источник: people-ask.ru

Кроме того, необходимо представить доказательства следующему равенству:

7 Формула

Источник: people-ask.ru

Доказательство:

8 Треугольник

Источник: people-ask.ru
  1. Следует рассмотреть произвольный треугольник АВС, стороны которого соответствуют a, b и c. Для расчета полупериметра данного треугольника целесообразно использовать формулу:

9 Формула

Источник: people-ask.ru
  1. Центральная точка окружности совпадает с точкой пересечения биссектрис геометрической фигуры с тремя углами. Прямые OA, OB и OC, которые соединяют O с вершинами треугольника АВС, разделяют геометрическую фигуру на три части: AOC, COB, BOA. Площадь треугольника ABC представляет собой сумму площадей этих трех частей.

10 Формула

Источник: people-ask.ru
  1. Исходя из того, что площадь какого-либо треугольника представляет собой половину произведения его основания на высоту, а высота треугольников AOC, COB, BOA рассчитывается, как радиус окружности r, то площади треугольников AOC, COB и BOA можно определить по формулам:

11 Формула

Источник: people-ask.ru
  1. Далее необходимо представить площадь S геометрической фигуры АВС, как сумму площадей нескольких треугольников:

12 Формула

Источник: people-ask.ru
  1. Следует отметить, что второй множитель является полупериметром геометрической фигуры с тремя углами АВС, что можно записать в виде равенства:

13 Формула

Источник: people-ask.ru

14 Формула

Источник: people-ask.ru
  1. Таким образом, доказано равенство радиуса вписанной окружности и отношения площади треугольника к полупериметру.
  2. Можно записать формулу Герона, смысл которой заключается в следующем: площадь треугольника (S) равняется квадратному корню из произведения его полупериметра (p) на разности полупериметра и каждой из его сторон (a, b, c)

15 Формула

Источник: people-ask.ru
  1. Далее следует преобразовать формулу для расчета радиуса:

16 Формула

Источник: people-ask.ru

Свойство окружности доказано.

Формулы вычисления радиуса вписанной окружности

Параметры окружности, которую вписали в геометрическую фигуру с тремя углами, можно рассчитать с помощью стандартных формул. Радиус окружности будет определен в зависимости от типа треугольника.

Произвольный треугольник

Определить радиус окружности, которая вписана в какой-либо треугольник, можно, как удвоенную площадь треугольника, поделенную на его периметр.

17 Формула

Источник: microexcel.ru

В данном случае, a, b, c являются сторонами геометрической фигуры с тремя углами, S – ее площадь.

Прямоугольный треугольник

Радиус окружности, которую вписали в треугольник с прямым углом, представляет собой дробь с числителем в виде суммы катетов за минусом гипотезы и знаменателем, равным числу 2.

18 Формула

Источник: microexcel.ru

В формуле a и b являются катетами, c – гипотенузой треугольника.

Равнобедренный треугольник

Радиус окружности, которая вписана в равнобедренный треугольник, определяют по формуле:

19 Формула

Источник: microexcel.ru

В этом случае a – боковые стороны, b – основание треугольника.

Равносторонний треугольник

Расчет радиуса окружности, которая вписана в правильный или равносторонний треугольник, выполняют по формуле:

20 Формула

Источник: microexcel.ru

где a – сторона геометрической фигуры с тремя углами.

Как найти через высоту или стороны, примеры решения

Задача 1

Имеется геометрическая фигура с тремя углами, стороны которой составляют 5, 7 и 10 см. Требуется определить радиус окружности, которая вписана в этот треугольник.

Решение

В первую очередь необходимо определить, какова площадь треугольника. Для этого можно воспользоваться формулой Герона:

21 Формула

Источник: microexcel.ru

Затем применим формулу для расчета радиуса круга:

22 Формула

Источник: microexcel.ru

Ответ: радиус окружности составляет примерно 1,48 см.

Задача 2

Необходимо рассчитать радиус окружности, которая вписана в равнобедренный треугольник. Боковые стороны геометрической фигуры составляют 16 см, а основание равно 7 см.

Решение

Следует использовать подходящую формулу для расчета радиуса, подставив в нее известные величины:

23 Формула

Источник: microexcel.ru

Ответ: радиус окружности примерно равен 2,8 см.

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, вписанной в произвольный (любой), прямоугольный, равнобедренный или равносторонний треугольник. Также разберем примеры решения задач для закрепления представленного теоретического материала.

  • Формулы вычисления радиуса вписанной окружности

    • Произвольный треугольник

    • Прямоугольный треугольник

    • Равнобедренный треугольник

    • Равносторонний треугольник

  • Примеры задач

Формулы вычисления радиуса вписанной окружности

Произвольный треугольник

Радиус окружности, вписанной в любой треугольник, равняется удвоенной площади треугольника, деленной на его периметр.

Формула расчета радиуса вписанной в треугольник окружности

Треугольник abc со вписанной окружностью с радиусом r

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, вписанной в прямоугольный треугольник, равняется дроби, в числителе которого сумма катетов минус гипотенуза, в знаменателе – число 2.

Формула вычисления радиуса вписанной в прямоугольный треугольник окружности

Прямоугольный треугольник со вписанной окружностью

где a и b – катеты, c – гипотенуза треугольника.

Равнобедренный треугольник

Радиус вписанной в равнобедренный треугольник окружности вычисляется по формуле ниже:

Формула вычисления радиуса вписанной в равнобедренный треугольник окружности

Равнобедренный треугольник со вписанной окружностью

где a – боковые стороны, b – основание треугольника.

Равносторонний треугольник

Радиус вписанной в правильный (равносторонний) треугольник окружности рассчитывается следующим образом:

Формула вычисления радиуса вписанной в равносторонний треугольник окружности

Равносторонний треугольник со вписанной окружностью

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 5, 7 и 10 см. Вычислите радиус вписанной в него окружности.

Решение
Сперва вычислим площадь треугольника. Для этого применим формулу Герона:

Примера расчета площади треугольника по формуле Герона

Остается только применить соответствующую формулу для вычисления радиуса круга:

Пример расчета радиуса вписанной в треугольник окружности через стороны и площадь

Задание 2
Боковые стороны равнобедренного треугольника равны 16 см, а основание 7 см. Найдите радиус вписанной в фигуру окружности.

Решение
Воспользуемся подходящей формулой, подставив в нее известные значения:

Пример вычисления радиуса вписанной в равнобедренный треугольник окружности

В любой треугольник можно вписать окружность. Радиус такой окружности будет представлять собой квадратный корень из отношения разности полупериметра с каждой стороной к самому полупериметру.


Если упростить данную формулу для прямоугольного треугольника, воспользовавшись теоремой Пифагора, то мы получим следующее выражение:


Так как в равнобедренном треугольнике боковые стороны равны, то в формуле остаются только обозначения a и b, и ее вид упрощается из все того же первого радикала до следующей формы:


В случае с равносторонним треугольником все еще гораздо проще, и его формула может быть выведена не только из формулы для произвольного треугольника, но также и из свойств высоты-медианы-биссектрисы, которые совпадают и делят любую из сторон на две равные части:

Удобно, когда все формулы, по которым можно найти радиус вписанной в треугольник и в многоугольник окружности, размещены на одной странице.

Радиус вписанной в многоугольник окружности

Если в многоугольник можно вписать окружность, то формула для вычисления радиуса вписанной окружности:

    [r = frac{S}{p},]

где p — полупериметр, то есть полусумма длин всех сторон этого многоугольника.

radius vpisannoy okruzhnostiНапример, для пятиугольника со сторонами a, b, c, d, e радиус вписанной окружности находится по формуле

    [r = frac{S}{p},]

    [p = frac{{a + b + c + d + e}}{2},]

откуда

    [r = frac{{2S}}{{a + b + c + d + e}}.]

По этой же формуле ищут радиус вписанной в треугольник окружности.

Радиус вписанной в треугольник окружности

formula radiusa vpisannoy v treugolnik okruzhnosti

Формула для нахождения радиуса вписанной в треугольник окружности (верна для треугольника любого вида)

    [r = frac{S}{p},]

где p — полупериметр,

    [p = frac{{a + b + c}}{2},]

где a, b, c — стороны треугольника.

Радиус вписанной в прямоугольный треугольник окружности

formula radiusa vpisannoy v pryamougolnyiy treugolnik okruzhnostiФормула для нахождения радиуса окружности, вписанной в прямоугольный треугольник

    [r = frac{{a + b - c}}{2},]

где a и b — катеты, c — гипотенуза.

Радиус окружности, вписанной в правильный многоугольник

Формула радиуса вписанной в правильный многоугольник окружности

    [r = frac{a}{{2tgfrac{{{{180}^o}}}{n}}},]

где a — сторона многоугольника, n — количество сторон.

Частные случаи — правильный (равносторонний) треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник.

Радиус окружности, вписанной в правильный треугольник

radius vpisannoy v pravilnyiy treugolnik okruzhnostiФормула радиуса вписанной окружности для правильного треугольника:

    [r = frac{a}{{2sqrt 3 }}]

В правильном треугольнике радиус вписанной окружности вдвое меньше радиуса описанной окружности:

    [r = frac{R}{2}.]

Радиус окружности, вписанной в квадрат

radius vpisannoy v kvadrat okruzhnosti

Формула радиуса вписанной в квадрат окружности:

    [r = frac{a}{2},]

где a — сторона квадрата.

Радиус окружности, вписанной в правильный шестиугольник

radius vpisannoy v pravilnyiy shestiugolnik okruzhnosti

Формула радиуса вписанной в правильный шестиугольник окружности:

    [r = frac{{asqrt 3 }}{2},]

где a — сторона правильного шестиугольника.

Для любого многоугольника центр вписанной окружности лежит в точке пересечения его биссектрис.

Понравилась статья? Поделить с друзьями:
  • Как найти исполнителя по музыкальному треку
  • Как линзами исправить зрение
  • Как найти красную кнопку у человека
  • Как правильно найти сколько процентов
  • Как в эксель составить график отпусков на