Как найти ранг матрицы 3х3

Перед тем как начать знакомство с темой, необходимо повторить правила нахождения определителей второго, третьего и высших порядков. Также необходимо знать, что детерминант 1-го порядка — число. Рассмотрим 2 метода вычисления ранга матриц.

Онлайн-калькулятор

Метод окаймляющих миноров

Для нахождения ранга матрицы данным методом требуется уметь находить миноры матриц.

Ранг матрицы

Рангом матрицы QQ называется наивысший порядок миноров, среди которых есть хотя бы один отличный от 00.

При этом ранг матрицы не может превышать порядка матрицы: 0⩽rang Qm×n⩽min(m,n)0leqslant rang Q_{mtimes n}leqslant min (m, n).

Обозначить ранг матрицы QQ можно следующим образом: rang Qrang Q или r(Q)r(Q).

Если ранг матрицы QQ равен rr, то это означает, что в матрице QQ имеется отличный от нуля минор порядка rr. При этом всякий минор порядка больше, чем rr равен нулю.

Исходя из определения ранга матрицы, следует, что если все миноры первого порядка (т. е. элементы матрицы QQ) равны 00, то rang Q=0rang Q=0. Если один из миноров первого порядка отличен от 00, а все миноры второго порядка равны 00, то rang Q=1rang Q=1. Если все миноры kk-го порядка равны 00, или миноров kk-го порядка не существует, то rang Q=k−1rang Q=k-1.

Рассмотрим примеры нахождения ранга матриц данным методом.

Пример 1

Найти ранг матрицы методом окаймляющих миноров

F=(03−1210−2−10)F=begin{pmatrix}0&3&-1\2&1&0\-2&-1&0end{pmatrix}.

Данная матрица имеет размер 3×33times3, поэтому ее ранг не может быть больше 33, т.е. rang F⩽3rang Fleqslant3.

Перейдем к вычислению ранга матрицы.

Среди миноров 1-го порядка (т.е. элементов определителя) есть хотя бы один, не равный 00, поэтому rang F≥1rang Fgeq1.

Перейдем к проверке миноров 2-го порядка. Например, на пересечении строк №1 и №2 и столбцов №1 и №2 получим минор: ∣0321∣=0⋅1−2⋅3=0−6=−6begin{vmatrix}0&3\2&1end{vmatrix}=0cdot1-2cdot3=0-6=-6. Значит, среди миноров 2-го порядка есть хотя бы один, не равный 00 и поэтому rang F≥2rang Fgeq2.

Перейдем к проверке миноров 3-го порядка. Минор 3-го порядка — определитель матрицы FF, поскольку она состоит из 3 строк и 3 столбцов: ∣03−1210−2−10∣=0begin{vmatrix}0&3&-1\2&1&0\-2&-1&0end{vmatrix}=0. Значит, ранг матрицы FF равен 22, или rang F=2rang F=2.

Пример 2

Найти ранг матрицы методом окаймляющих миноров

K=(21−23−121213−15−2−21243−31)K=begin{pmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}.

Данная матрица имеет размер 5×45times4. Из чисел 55 и 44 минимальным является 44, поэтому ее ранг не может быть больше 44, а значит rang K⩽4rang Kleqslant4.

Перейдем к вычислению ранга матрицы.

Среди миноров 1-го порядка (т.е. элементов определителя) есть хотя бы один, не равный 00, поэтому rang K≥1rang Kgeq1.

Перейдем к проверке миноров 2-го порядка. Например, на пересечении строк №1 и №2 и столбцов №1 и №2 получим минор: ∣21−12∣=2⋅2−(−1)⋅1=4+1=5begin{vmatrix}2&1\-1&2end{vmatrix}=2cdot2-(-1)cdot1=4+1=5. Значит, среди миноров 2-го порядка есть хотя бы один, не равный 00 и поэтому rang K≥2rang Kgeq2.

Перейдем к проверке миноров 3-го порядка. Например, на пересечении строк №1, №3 и №5 и столбцов №2, №3 и №4 получим минор:

∣1−233−153−31∣=1⋅(−1)⋅1+(−2)⋅5⋅3+3⋅(−3)⋅3−3⋅(−1)⋅3−(−2)⋅1⋅3−1⋅5⋅(−3)=−1−30−27+9+6+15=−28begin{vmatrix}1&-2&3\3&-1&5\3&-3&1end{vmatrix}=1cdot(-1)cdot1+(-2)cdot5cdot3+3cdot(-3)cdot3-3cdot(-1)cdot3-(-2)cdot1cdot3-1cdot5cdot(-3)=-1-30-27+9+6+15=-28.

Значит, среди миноров 3-го порядка есть хотя бы один, не равный 00 и поэтому rang K≥3rang Kgeq3.

Перейдем к проверке миноров 4-го порядка. Например, на пересечении строк №1, №2, №3 и №4 и столбцов №1, №2, №3 и №4 получим минор:

∣21−23−121213−15−2−212∣=2(−1)1+1∣2123−15−212∣−(−1)2+1∣1−233−15−212∣+(−1)3+1∣1−23212−212∣−2(−1)4+1∣1−232123−15∣=2(−1)2∣2123−15−212∣−(−1)3∣1−233−15−212∣+(−1)4∣1−23212−212∣−2(−1)5∣1−232123−15∣=2∣2123−15−212∣+∣1−233−15−212∣+∣1−23212−212∣+2∣1−232123−15∣=2(−4+6−10−4−10−6)−2+9+20−6−5+12+2+6+8+6−2+8+2(5−6−12−9+2+20)=−56+56+0=0begin{vmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\-2&-2&1&2end{vmatrix}=2(-1)^{1+1}begin{vmatrix}2&1&2\3&-1&5\-2&1&2end{vmatrix}-(-1)^{2+1}begin{vmatrix}1&-2&3\3&-1&5\-2&1&2end{vmatrix}+(-1)^{3+1}begin{vmatrix}1&-2&3\2&1&2\-2&1&2end{vmatrix}-2(-1)^{4+1}begin{vmatrix}1&-2&3\2&1&2\3&-1&5end{vmatrix}=2(-1)^{2}begin{vmatrix}2&1&2\3&-1&5\-2&1&2end{vmatrix}-(-1)^{3}begin{vmatrix}1&-2&3\3&-1&5\-2&1&2end{vmatrix}+(-1)^{4}begin{vmatrix}1&-2&3\2&1&2\-2&1&2end{vmatrix}-2(-1)^{5}begin{vmatrix}1&-2&3\2&1&2\3&-1&5end{vmatrix}=2begin{vmatrix}2&1&2\3&-1&5\-2&1&2end{vmatrix}+begin{vmatrix}1&-2&3\3&-1&5\-2&1&2end{vmatrix}+begin{vmatrix}1&-2&3\2&1&2\-2&1&2end{vmatrix}+2begin{vmatrix}1&-2&3\2&1&2\3&-1&5end{vmatrix}=2(-4+6-10-4-10-6)-2+9+20-6-5+12+2+6+8+6-2+8+2(5-6-12-9+2+20)=-56+56+0=0.

Остальные миноры 4-го порядка также равны нулю:
∣21−23−121213−1543−31∣=0begin{vmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\4&3&-3&1end{vmatrix}=0,

∣21−23−1212−2−21243−31∣=0begin{vmatrix}2&1&-2&3\-1&2&1&2\-2&-2&1&2\4&3&-3&1end{vmatrix}=0,

∣21−2313−15−2−21243−31∣=0begin{vmatrix}2&1&-2&3\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{vmatrix}=0,

∣−121213−15−2−21243−31∣=0begin{vmatrix}-1&2&1&2\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{vmatrix}=0.

Значит, ранг матрицы KK равен 33, или rang K=3rang K=3.

Данный метод не всегда удобен, поскольку связан с вычислением большого количества определителей. Рассмотрим метод нахождения ранга матриц, который наиболее часто применяется на практике.

Метод Гаусса (метод элементарных преобразований)

Метод основан на элементарных преобразованиях матриц, под которыми будем понимать такие преобразования, в результате которых сохраняется эквивалентность матриц:

  1. перестановка местами любых двух рядов (строк или столбцов) матрицы;
  2. умножение любого ряда матрицы (строки или столбца) на некоторое число, отличное от нуля;
  3. прибавление к любому ряду (строке или столбцу) матрицы другого ряда (строки или столбца), умноженного на некоторое число, отличное от нуля.
Ранг матрицы

Рангом матрицы называется количество ненулевых строк матрицы после ее приведения к ступенчатому виду при помощи элементарных преобразований над строками и столбцами.

Рассмотрим суть данного метода на примерах.

Пример 1

Найти ранг матрицы методом Гаусса F=(03−1210−2−10)F=begin{pmatrix}0&3&-1\2&1&0\-2&-1&0end{pmatrix}.

Приведем матрицу FF с помощью элементарных преобразований к ступенчатому виду.

Поменяем местами строки №1 и №2:

(03−1210−2−10)∼(21003−1−2−10)begin{pmatrix}0&3&-1\2&1&0\-2&-1&0end{pmatrix}sim begin{pmatrix}2&1&0\0&3&-1\-2&-1&0end{pmatrix}.

Прибавим к строке №3 строку №1, умноженную на 1:

(21003−1−2−10)∼(21003−1000)begin{pmatrix}2&1&0\0&3&-1\-2&-1&0end{pmatrix}simbegin{pmatrix}2&1&0\0&3&-1\0&0&0end{pmatrix}.

С помощью элементарных преобразований мы привели матрицу FF к ступенчатому виду. В ней остались 2 ненулевые строки, следовательно, rang F=2rang F=2.

Пример 2

Найти ранг матрицы методом Гаусса

K=(21−23−121213−15−2−21243−31)K=begin{pmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}.

Приведем матрицу KK с помощью элементарных преобразований к ступенчатому виду.

Поменяем местами строки №1 и №2:

(21−23−121213−15−2−21243−31)∼(−121221−2313−15−2−21243−31)begin{pmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}sim begin{pmatrix}-1&2&1&2\2&1&-2&3\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}.

Поменяем местами строки №2 и №4:

(−121221−2313−15−2−21243−31)∼(−1212−2−21213−1521−2343−31)begin{pmatrix}-1&2&1&2\2&1&-2&3\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}sim begin{pmatrix}-1&2&1&2\-2&-2&1&2\1&3&-1&5\2&1&-2&3\4&3&-3&1end{pmatrix}.

Поменяем местами строки №3 и №4:

(−1212−2−21213−1521−2343−31)∼(−1212−2−21221−2313−1543−31)begin{pmatrix}-1&2&1&2\-2&-2&1&2\1&3&-1&5\2&1&-2&3\4&3&-3&1end{pmatrix}sim begin{pmatrix}-1&2&1&2\-2&-2&1&2\2&1&-2&3\1&3&-1&5\4&3&-3&1end{pmatrix}.

Поменяем местами строки №4 и №5:

(−1212−2−21221−2313−1543−31)∼(−1212−2−21221−2343−3113−15)begin{pmatrix}-1&2&1&2\-2&-2&1&2\2&1&-2&3\1&3&-1&5\4&3&-3&1end{pmatrix}sim begin{pmatrix}-1&2&1&2\-2&-2&1&2\2&1&-2&3\4&3&-3&1\1&3&-1&5end{pmatrix}.

Прибавим к строке №2 строку №1, умноженную на -2:

(−1212−2−21221−2343−3113−15)∼(−12120−6−1−221−2343−3113−15)begin{pmatrix}-1&2&1&2\-2&-2&1&2\2&1&-2&3\4&3&-3&1\1&3&-1&5end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-6&-1&-2\2&1&-2&3\4&3&-3&1\1&3&-1&5end{pmatrix}.

Прибавим к строке №3 строку №1, умноженную на 2:

(−12120−6−1−221−2343−3113−15)∼(−12120−6−1−2050743−3113−15)begin{pmatrix}-1&2&1&2\0&-6&-1&-2\2&1&-2&3\4&3&-3&1\1&3&-1&5end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\4&3&-3&1\1&3&-1&5end{pmatrix}.

Прибавим к строке №4 строку №1, умноженную на 4:

(−12120−6−1−2050743−3113−15)∼(−12120−6−1−205070111913−15)begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\4&3&-3&1\1&3&-1&5end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\0&11&1&9\1&3&-1&5end{pmatrix}.

Прибавим к строке №5 строку №1, умноженную на 1:

(−12120−6−1−205070111913−15)∼(−12120−6−1−20507011190507)begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\0&11&1&9\1&3&-1&5end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\0&11&1&9\0&5&0&7end{pmatrix}.

Прибавим к строке №2 строку №3, умноженную на 1:

(−12120−6−1−20507011190507)∼(−12120−1−150507011190507)begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\0&11&1&9\0&5&0&7end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&5&0&7\0&11&1&9\0&5&0&7end{pmatrix}.

Прибавим к строке №5 строку №3, умноженную на -1:

(−12120−1−150507011190507)∼(−12120−1−150507011190000)begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&5&0&7\0&11&1&9\0&5&0&7end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&5&0&7\0&11&1&9\0&0&0&0end{pmatrix}.

Прибавим к строке №3 строку №2, умноженную на 5:

(−12120−1−150507011190000)∼(−12120−1−1500−532011190000)begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&5&0&7\0&11&1&9\0&0&0&0end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&11&1&9\0&0&0&0end{pmatrix}.

Прибавим к строке №4 строку №2, умноженную на 11:

(−12120−1−1500−532011190000)∼(−12120−1−1500−53200−10640000)begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&11&1&9\0&0&0&0end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&0&-10&64\0&0&0&0end{pmatrix}.

Прибавим к строке №4 строку №3, умноженную на -2:

(−12120−1−1500−53200−10640000)∼(−12120−1−1500−53200000000)begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&0&-10&64\0&0&0&0end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&0&0&0\0&0&0&0end{pmatrix}.

С помощью элементарных преобразований мы привели матрицу KK к ступенчатому виду. В ней остались 3 ненулевые строки, следовательно, rang K=3rang K=3.

Любым из рассмотренных методов можно найти ранг матрицы.

Наши эксперты готовы оказать вам помощь с решением задачи онлайн по самым низким ценам!

Тест по теме «Ранг матрицы»

© 2011-2023 Довжик Михаил
Копирование материалов запрещено.

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне support@onlinemschool.com

Ранг матрицы

Определение
Ранг матрицы $ A $ – это максимальное количество линейно-независимых строк (столбцов) этой матрицы. Обозначается $ rang A $ или $ r(A) $.

Формула ранга матрицы гласит, что он не должен превышать порядка этой же матрицы: 

$$ 0 leq rang A_{m times n} leq min (m,n) $$

Чтобы найти ранг матрицы существует два метода:

  1. Метод окамляющих миноров
  2. Метод элементарных преобразований

На практике применяется второй способ, так как он универсальный и позволяет вычислять ранг матриц любого порядка. Основан он на свойстве, заключаещегося в том, что $ rang A $ не меняется в случае проведения элементарных преобразований над матрицей. Путём приведения матрицы к ступенчатому виду мы узнаем количество линейно-независимых строк (столбцов), которое равно рангу матрицы.

Пример 1
Определить ранг матрицы $$ A = begin{pmatrix} 2&0&-2 \ -4&0&4 end{pmatrix} $$
Решение

Пример решаем с помощью элементарных преобразований. Приводим матрицу к ступенчатой форме. 

Прибавляем удвоенную первую строку ко второй:

$$ A = begin{pmatrix} 2&0&-2 \ -4&0&4 end{pmatrix} overset{c_2+2c_1}{thicksim} begin{pmatrix} 2&0&-2 \ 0&0&0 end{pmatrix} $$

В полученной матрице появилась нулевая строка, которую необходимо убрать из матрицы:

$$ begin{pmatrix} 2&0&-2 \ 0&0&0 end{pmatrix} thicksim begin{pmatrix} 2&0&-2 end{pmatrix} $$

Теперь после преобразований количество строк $ m = 1 $, количество столбцов $ n=3 $. Наименьшее число $ m = 1 $, поэтому $ rang A = 1 $.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ rang A = 1 $$
Пример 2
Найти ранг матрицы: $$ A = begin{pmatrix} 4&2&3 \ 5&2&1 \ 9&4&4 end{pmatrix} $$
Решение

Выполняем элементарные преобразования над матрицей, чтобы узнать количество линейно-независимых строк.

Вычитаем из второй строки, умноженной на четверку, первую строку, умноженную на пятерку:

$$ A = begin{pmatrix} 4&2&3 \ 5&2&1 \ 9&4&4 end{pmatrix} overset{4c_2-5c_1}{thicksim} begin{pmatrix} 4&2&3 \ 0&-2&-11 \ 9&4&4 end{pmatrix} $$

Вычитаем из третьей строки, умноженной на четыре, первую строку, умноженную на девять:

$$ begin{pmatrix} 4&2&3 \ 0&-2&-11 \ 9&4&4 end{pmatrix} overset{4c_3-9c_1}{thicksim}begin{pmatrix} 4&2&3 \ 0&-2&-11 \ 0&-2&-11 end{pmatrix} $$

Вычитаем из третьей строки вторую строку:

$$ begin{pmatrix} 4&2&3 \ 0&-2&-11 \ 0&-2&-11 end{pmatrix} overset{4c_3-9c_1}{thicksim}begin{pmatrix} 4&2&3 \ 0&-2&-11 \ 0&0&0 end{pmatrix} $$

Замечаем, что последняя строка матрицы нулевая, значит её можно вычеркнуть:

$$ begin{pmatrix} 4&2&3 \ 0&-2&-11 \ 0&-2&-11 end{pmatrix} thicksim begin{pmatrix} 4&2&3 \ 0&-2&-11 end{pmatrix} $$

После элементарных преобразований количество строк уменьшилось и стало $ m=2 $, а количество столбцов $ n = 3 $. По формуле ранга матрицы берем минимальные число из $ m $ и $ n $, то есть $ m=2 $. Получили, что $ rang A = 2 $

Ответ
$$ rang A = 2 $$

Ранг матрицы онлайн

В нашем калькуляторе вы сможете бесплатно найти ранг матрицы онлайн с подробным решением и даже с комплексными числами. Вычисления выполняются путем приведения матрицы к ступенчатому виду с помощью элементарных преобразований.

Подробнее о том, как пользоваться нашим онлайн калькулятором, вы можете прочитать в инструкции.

О методе

Чтобы вычислить ранг матрицы, нужно выполнить следующие шаги.

  1. Записывается матрица.
  2. Берется первый элемент в первом столбце и с его помощью зануляются элементы, расположенные ниже данного.
  3. Берется второй элемент во втором столбце и выполняются те же операции и т.д. до конца (иногда ключевые элементы в столбцах могут быть сдвинуты).
  4. Ранг матрицы равен количеству «ступенек» — числу линейно независимых уравнений.

Чтобы лучше всего понять нахождение ранга матрицы, введите любой пример, выберите «очень подробное решение» и изучите полученный ответ.

Найти ранг матрицы онлайн

На данной странице калькулятор поможет найти ранг матрицы онлайн с подробным решением. При решении используется метод Гаусса. Для расчета задайте целые или десятичные числа.
При использовании метода Гаусса ранг матрицы не меняется. В ходе элементарных преобразований удаляется все пропорциональные (линейно зависимые) строки.

Ранг матрицы


Строк:

Столбцов:


A


Другой материал по теме

Понравилась статья? Поделить с друзьями:
  • Как составить критерии оценивания анкеты
  • Как найти родителей ребенка по фамилии
  • Как найти цветы гладиолусы
  • Как в instagram найти людей по контактам
  • Как найти видео по его фрагменту