Как найти расход газа в трубе

Как пользоваться калькулятором:

Укажите расчитываемый газ из перечисленных вариантов в верхней части калькулятора

Заполните одно из требуемых значений калькулятора

Нажмите кнопку «Рассчитать» или перейдите в другое поле ввода

Главная > Документ

Расчет количества опасного вещества, находящегося в газопроводах ИП .

В соответствии со ст. 2 и приложением 1 к Федеральному закону от 21.07.1997 года №116-ФЗ «О промышленной безопасности опасных производственных объектов», опасными производственными объектами являются сети газораспределения и сети газопотребления, на которых используется природный газ в количествах, указанных в приложении 2, а именно свыше 1 тонны.

1. Объем участка газопровода определяется по формуле:

где dвн – внутренний диаметр участка газопровода, м;

Как рассчитать пропускную способность газовой трубы

Газ – это один из самых сложных материалов для транспортировки, в частности потому, что имеет свойство сжиматься и потому способен утекать через мельчайшие зазоры в трубах. К расчету пропускной способности газовых труб (как и к проектированию газовой системы в целом) предъявляют особые требования.

Формула расчета пропускной способности газовой трубы

Максимальная пропускная способность газопроводов определяется по формуле:

Qmax = 0.67 Ду2 * p

где p — равно рабочему давлению в системе газопровода + 0,10 мПа или абсолютному давлению газа;

Ду — условный проход трубы.

Существует сложная формула для расчета пропускной способности газовой трубы. При проведении предварительных расчетов, а также при расчетах бытового газопровода обычно не используется.

Qmax = 196,386 Ду2 * p/z*T

где z — коэффициент сжимаемости;

Т- температура перемещаемого газа, К;

Согласно этой формуле определяется прямая зависимость температуры перемещаемой среды от давления. Чем выше значение Т, тем больше газ расширяется и давит на стенки. Поэтому инженеры при расчетах крупных магистралей учитывают возможные погодные условия в местности, где проходит трубопровод. Если номинальное значение трубы DN будет меньше давления газа, образующегося при высоких температурах летом (например, при +38…+45 градусов Цельсия), тогда вероятно повреждение магистрали. Это влечет утечку ценного сырья, и создает вероятность взрыва участка трубы.

Таблица пропускных способностей газовых труб в зависимости от давления

Существует таблица расчетов пропускных способностей газопровода для часто применяемых диаметров и номинального рабочего давления труб. Для определения характеристики газовой магистрали нестандартных размеров и давления потребуются инженерные расчеты. Также на давление, скорость движения и объем газа влияет температура наружного воздуха.

Максимальная скорость (W) газа в таблице — 25 м/с, а z (коэффициент сжимаемости) равен 1. Температура (Т) равна 20 градусов по шкале Цельсия или 293 по шкале Кельвина.
Таблица 2. Пропускная способность газового трубопровода в зависимости от давления

Pраб.(МПа) Пропускная способность трубопровода (м?/ч), при wгаза=25м/с;z=1;Т=20?С=293?К
DN 50 DN 80 DN 100 DN 150 DN 200 DN 300 DN 400 DN 500
0,3 670 1715 2680 6030 10720 24120 42880 67000
0,6 1170 3000 4690 10550 18760 42210 75040 117000
1,2 2175 5570 8710 19595 34840 78390 139360 217500
1,6 2845 7290 11390 25625 45560 102510 182240 284500
2,5 4355 11145 17420 39195 69680 156780 278720 435500
3,5 6030 15435 24120 54270 96480 217080 385920 603000
5,5 9380 24010 37520 84420 150080 337680 600320 938000
7,5 12730 32585 50920 114570 203680 458280 814720 1273000
10,0 16915 43305 67670 152255 270680 609030 108720 1691500

Расчет параметров трубы: как правильно рассчитать вес, массу и объем трубы

Трубопроводный транспорт в условиях России играет очень важную роль. По нему перекачиваются огромные количества жидких продуктов. Кроме воды транспортируется сжиженный газ, нефть и продукты её переработки и другие жидкости, в ряде случаев агрессивные.

Вместимость такого изделия определяется диаметром внутреннего пространства, например для размера 820 х 10 миллиметров рабочий диаметр мы можем определить соотношением Д = 820 – 10 х 2 = 800 мм. Однако, лучше сразу перейти к общепринятой единице – метру. При внутреннем диаметре изделия 0,8 метра соотношение для расчёта выглядит следующим образом:

Однако высчитывать объем одиночного изделия не имеет смысла. Лучше сразу применить это соотношение для определения объёма всего трубопровода.

Этот показатель важен для того чтобы знать количества перекачиваемого продукта, которое останется в трубопроводе по окончании транспортировки нужного объема. Однако трубопроводы не используются в режиме разовой перекачки. Они предназначены для постоянной эксплуатации.

По такой же методике рассчитываются объёмы емкостей цилиндрической формы – цистерн, бочек и прочих подобных.

В трубопроводном транспорте для магистралей используются в основной массе электро сварные одно или двух шовные трубы с различной толщиной стенок. Для повышения производительности трубопровода продукты по нему перекачиваются под большим давлением – до 130 атмосфер.

Поэтому для производства используется листовой металл толщиной до 36 миллиметров. Основной способ соединения в трубопроводах – электросварка, поэтому в качестве материала изготовления используются стали с низким содержанием углерода, такие, как 09Г2С, 09Г2ФБ и другие подобные.

Расчет объема газа в баллоне

При составлении сметы на выполнение разнообразных работ с использованием технических газовых смесей возникает необходимость рассчитать их точный объем. В сметной документации содержание газа зачастую рассчитано в таких измерительных единицах, как литры, кубометры, килограммы, и даже количество баллонов. Задача специалистов – унифицировать единицы измерения, уточнив размеры, емкость и прочие параметры газовых баллонов. Для расчета в кубометрах можно использовать госстандарты, и применив определенную формулу, рассчитать объем газа. Но есть способ выполнить расчеты проще – использовать онлайн калькулятор расчета объема газа в баллоне.

С его помощью можно вычислить объем таких находящихся под давлением газов как:

При расчете учитывается также температура и давление, разные для каждого типа газовой смеси. Онлайн калькулятор газа потребуется и при переводе газовых величин – с его помощью рассчитывается значение единицы измерения газа зависимо от агрегатного состояния. Это удобный и простой в использовании инструмент, разработанный для широкого применения специалистами разных отраслей промышленности, конструкторов, инженеров, технологов. Калькуляторы разных типов применяются:

  • Для расчетов параметров рабочей среды
  • Уточнения номинального объема при заправке автомобиля
  • В химической отрасли и на производствах
  • В медицинской отрасли

Расчет расхода сжиженного газа

Расчет газа с применением пропана или бутана имеет свои особенности, но не представляет особых сложностей. Имеет значение плотность горючего вещества, которая изменяется с повышением или понижением температуры и зависит от состава газовой смеси. Постоянным остается только вес сжиженного топлива.

Объем используемого газа отличается зимой и летом, поэтому нет смысла применять единицы м³ для определения расхода сжиженного газа на 1 кВт тепла, для обозначения берутся килограммы, которые не меняются при смене сезонов.

Расчет на 1 кВт тепла

Количество рассчитывается на отопление дома и подогрев воды в системе. Если на газе готовится еда, это нужно учитывать дополнительно.

Используется формула Q = (169.95 / 12.88) · F, где:

  • Q — масса топлива;
  • 169,95 — годовая сумма кВт на обогрев 1 м² дома;
  • 12,88 — теплотворная способность пропана;
  • F — квадратура строения.

Полученное значение умножается на стоимость 1 кг сжиженной смеси, чтобы посчитать расход на закупку требуемого количества. Цена обычно дается за 1 кг, а не за 1 м³, что следует учитывать.

Для чего нужны расчеты параметров труб

В современном строительстве используются не только стальные или оцинкованные трубы. Выбор уже довольно широк — ПВХ, полиэтилен (ПНД и ПВД), полипропилен, металлопластк, гофрированная нержавейка.

Они хороши тем, что имеют не такую большую массу, как стальные аналоги. Тем не менее, при транспортировке полимерных изделий в больших объемах знать их массу желательно — чтобы понять, какая машина нужна.

Вес металлических труб еще важнее — доставку считают по тоннажу. Так что этот параметр желательно контролировать.

То, что нельзя измерить, можно рассчитать

Знать площадь наружной поверхности трубы надо для закупки краски и теплоизоляционных материалов. Красят только стальные изделия, ведь они подвержены коррозии в отличие от полимерных. Вот и приходится защищать поверхность от воздействия агрессивных сред.

Используют их чаще для строительства заборов, каркасов для хозпостроек (гаражей, сараев, беседок, бытовок), так что условия эксплуатации — тяжелы, защита необходима, потому все каркасы требуют окраски.

Вот тут и потребуется площадь окрашиваемой поверхности — наружная площадь трубы.

При сооружении системы водоснабжения частного дома или дачи, трубы прокладывают от источника воды (колодца или скважины) до дома — под землей.

И все равно, чтобы они не замерзли, требуется утепление. Рассчитать количество утеплителя можно зная площадь наружной поверхности трубопровода.

Только в этом случае надо брать материал с солидным запасом — стыки должны перекрываться с солидным запасом.

Сечение трубы необходимо для определения пропускной способности — сможет ли данное изделие провести требуемое количество жидкости или газа. Этот же параметр часто нужен при выборе диаметра труб для отопления и водопровода, расчета производительности насоса и т.д.

Внутренний и наружный диаметр, толщина стенки, радиус

Трубы — специфический продукт. Они имеют внутренний и наружный диаметр, так как стенка у них толстая, ее толщина зависит от типа трубы и материала из которого она изготовлена. В технических характеристиках чаще указывают наружный диаметр и толщину стенки.

Внутренний и наружный диаметр трубы, толщина стенки

Имея эти два значения, легко высчитать внутренний диаметр — от наружного отнять удвоенную толщину стенки: d = D — 2*S. Если у вас наружный диаметр 32 мм, толщина стенки 3 мм, то внутренний диаметр будет: 32 мм — 2 * 3 мм = 26 мм.

Если же наоборот, имеется внутренний диаметр и толщина стенки, а нужен наружный — к имеющемуся значению добавляем удвоенную толщину стеки.

С радиусами (обозначаются буквой R) еще проще — это половина от диаметра: R = 1/2 D. Например, найдем радиус трубы диаметром 32 мм. Просто 32 делим на два, получаем 16 мм.

Измерения штангенциркулем более точные

Что делать, если технических данных трубы нет? Измерять. Если особая точность не нужна, подойдет и обычная линейка, для более точных измерений лучше использовать штангенциркуль.

Расчет площади поверхности трубы

Труба представляет собой очень длинный цилиндр, и площадь поверхность трубы рассчитывается как площадь цилиндра. Для вычислений потребуется радиус (внутренний или наружный — зависит от того, какую поверхность вам надо рассчитать) и длина отрезка, который вам необходим.

Формула расчета боковой поверхности трубы

Чтобы найти боковую площадь цилиндра, перемножаем радиус и длину, полученное значение умножаем на два, а потом — на число «Пи», получаем искомую величину. При желании можно рассчитать поверхность одного метра, ее потом можно умножать на нужную длину.

Для примера рассчитаем наружную поверхность куска трубы длиной 5 метров, с диаметром 12 см. Для начала высчитаем диаметр: делим диаметр на 2, получаем 6 см.

Теперь все величины надо привести к одним единицам измерения. Так как площадь считается в квадратных метрах, то сантиметры переводим в метры. 6 см = 0,06 м.

Дальше подставляем все в формулу: S = 2 * 3,14 * 0,06 * 5 = 1,884 м2. Если округлить, получится 1,9 м2.

Расчет веса

С расчетом веса трубы все просто: надо знать, сколько весит погонный метр, затем эту величину умножить на длину в метрах.

Вес круглых стальных труб есть в справочниках, так как этот вид металлопроката стандартизован. Масса одного погонного метра зависит от диаметра и толщины стенки.

Один момент: стандартный вес дан для стали плотностью 7,85 г/см2 — это тот вид, который рекомендован ГОСТом.

Таблица веса круглых стальных труб

В таблице Д — наружный диаметр, условный проход — внутренний диаметр, И еще один важный момент: указана масса обычных стального проката, оцинкованные на 3% тяжелее.

Таблица веса профилированной трубы квадратного сечения

Как высчитать площадь поперечного сечения

Формула нахождения площади сечения круглой трубы

Если труба круглая, площадь сечения считать надо по формуле площади круга: S = π*R2. Где R — радиус (внутренний), π — 3,14. Итого, надо возвести радиус в квадрат и умножить его на 3,14.

Расчет расхода газа

Мощность котла или конвектора зависит от потерь тепла в строении. Средний подсчет проводится с учетом общей площади дома.

При расчете расхода газа учитываются нормы прогрева квадратного метра при высоте потолков до 3 м:

  • в южных регионах берется 80 Вт/м²;
  • в северных — до 200 Вт/м².

В формулах учитывается суммарная кубатура отдельных комнат и помещений в здании. На нагревание каждого 1 м³ общего объема выделяется 30 – 40 Вт в зависимости от района.

По мощности котла

Объем природного газа измеряется в м³/ч, а сжиженный — в кг/ч. Практика показывает, что на получение 1 кВт тепловой мощности расходуется 0,112 м³/ч магистральной топливной смеси.

По квадратуре

Удельное потребление тепла рассчитывается по представленной формуле, если разница между уличной и внутренней температурой составляет примерно 40°С.

Используется соотношение V = Q / (g · K / 100), где:

  • V — объем природного газового топлива, м³;
  • Q — тепловая мощность оборудования, кВт;
  • g — наименьшая калорийность газа, обычно равняется 9,2 кВт/м³;
  • K — коэффициент полезного действия установки.

В зависимости от давления

Ротационные счетные приборы используются для измерения давления больше 0,1 МПа, а разница уличной и внутренней температуры составляет 50°С. Показатель расхода газового топлива считывается при нормальном состоянии окружающей среды. В промышленности пропорциональными условиями считается давление 10 – 320 Па, разница температур 20°С и относительная влажность воздуха 0. Расход топлива выражается в м³/ч.

Расчет по диаметру

Пропускная способность находится по формуле: Q = 0.67 · D² · p, где:

  • Q — расход газа;
  • D — условный проходной диаметр газопровода;
  • p — рабочее давление в газопроводной трубе или показатель абсолютного давления смеси.

На величину показателя влияет наружная температура, нагрев смеси, избыточное давление, атмосферные характеристики и влажность. Расчет диаметра газопровода делается при составлении проекта системы.

С учетом теплопотерь

Для расчета потребления газовой смеси требуется знать тепловые потери строения.

Используется формула Q = F (T1 – T2) (1 + Σb) · n / R, где:

  • Q — теплопотери;
  • F — площадь утепляющего слоя;
  • Т1 — наружная температура;
  • Т2 — внутренняя температура;
  • Σb — сумма дополнительных потерь тепла;
  • n — коэффициент расположения защитного слоя (в специальных таблицах);
  • R — сопротивление передаче тепла (рассчитывается в конкретном случае).

Определение теплопотерь представляет собой сложный подсчет и проводится специалистами на стадии проекта. Можно заказать нахождение потерь на любом этапе эксплуатации строения.

По счетчику и без

Показатель устанавливается местными органами самоуправления и зависит от климатических условий. Расчет ведется с учетом числа владельцев помещения и людей, фактически проживающих на указанной жилплощади.

Для чего определяется пропускная способность?

При расчете водопровода стоит задача определить оптимальный диаметр трубы для обеспечения нормативного потребления воды.

Если сечение слишком мало, это приводит к недостаточному напору в трубах даже при большом давлении, в результате:

  • насосное оборудование быстрее изнашивается,
  • чаще происходят аварии на линии,
  • увеличивается расход энергии.

Для ремонта систем требуются дополнительные траты, что повышает стоимость эксплуатации.

В гидравлике пропускная способность всей системы рассчитывается по самому узкому месту. Часто трубопроводы сравнивают с электропроводкой, только по трубам бежит вода, а по проводам — электрический ток.

Пропускная способность водопроводной трубы

Водопроводные трубы в доме используются чаще всего. А так как на них идёт большая нагрузка, то и расчет пропускной способности водопроводной магистрали становится важным условием надежной эксплуатации.

Водопроводная труба

Проходимость трубы в зависимости от диаметра

Диаметр – не самый важный параметр при расчете проходимости трубы, однако тоже влияет на ее значение. Чем больше внутренний диаметр трубы, тем выше проходимость, а также ниже шанс появления засоров и пробок. Однако помимо диаметра нужно учитывать коэффициент трения воды о стенки трубы (табличное значение для каждого материала), протяженность магистрали и разницу давлений жидкости на входе и выходе. Кроме того, на проходимость будет сильно влиять число колен и фитингов в трубопроводе.

Таблица пропускной способности труб по температуре теплоносителя

Чем выше температура в трубе, тем ниже её пропускная способность, так как вода расширяется и тем самым создаёт дополнительное трение. Для водопровода это не важно, а в отопительных системах является ключевым параметром.

Существует таблица для расчетов по теплоте и теплоносителю.
Таблица 5. Пропускная способность трубы в зависимости от теплоносителя и отдаваемой теплоты

Диаметр трубы, мм Пропускная способность
По теплоте По теплоносителю
Вода Пар Вода Пар
Гкал/ч т/ч
15 0,011 0,005 0,182 0,009
25 0,039 0,018 0,650 0,033
38 0,11 0,05 1,82 0,091
50 0,24 0,11 4,00 0,20
75 0,72 0,33 12,0 0,60
100 1,51 0,69 25,0 1,25
125 2,70 1,24 45,0 2,25
150 4,36 2,00 72,8 3,64
200 9,23 4,24 154 7,70
250 16,6 7,60 276 13,8
300 26,6 12,2 444 22,2
350 40,3 18,5 672 33,6
400 56,5 26,0 940 47,0
450 68,3 36,0 1310 65,5
500 103 47,4 1730 86,5
600 167 76,5 2780 139
700 250 115 4160 208
800 354 162 5900 295
900 633 291 10500 525
1000 1020 470 17100 855

Таблица пропускной способности труб в зависимости от давления теплоносителя

Существует таблица, описывающая пропускную способность труб в зависимости от давления.
Таблица 6. Пропускная способность трубы в зависимости от давления транспортируемой жидкости

Расход Пропускная способность
Ду трубы 15 мм 20 мм 25 мм 32 мм 40 мм 50 мм 65 мм 80 мм 100 мм
Па/м — мбар/м меньше 0,15 м/с 0,15 м/с 0,3 м/с
90,0 — 0,900 173 403 745 1627 2488 4716 9612 14940 30240
92,5 — 0,925 176 407 756 1652 2524 4788 9756 15156 30672
95,0 — 0,950 176 414 767 1678 2560 4860 9900 15372 31104
97,5 — 0,975 180 421 778 1699 2596 4932 10044 15552 31500
100,0 — 1,000 184 425 788 1724 2632 5004 10152 15768 31932
120,0 — 1,200 202 472 871 1897 2898 5508 11196 17352 35100
140,0 — 1,400 220 511 943 2059 3143 5976 12132 18792 38160
160,0 — 1,600 234 547 1015 2210 3373 6408 12996 20160 40680
180,0 — 1,800 252 583 1080 2354 3589 6804 13824 21420 43200
200,0 — 2,000 266 619 1151 2486 3780 7200 14580 22644 45720
220,0 — 2,200 281 652 1202 2617 3996 7560 15336 23760 47880
240,0 — 2,400 288 680 1256 2740 4176 7920 16056 24876 50400
260,0 — 2,600 306 713 1310 2855 4356 8244 16740 25920 52200
280,0 — 2,800 317 742 1364 2970 4356 8566 17338 26928 54360
300,0 — 3,000 331 767 1415 3076 4680 8892 18000 27900 56160

Таблица пропускной способности трубы в зависимости от диаметра (по Шевелеву)

Таблицы Ф.А и А. Ф. Шевелевых являются одним из самых точных табличных методов расчета пропускной способности водопровода. Кроме того, они содержат все нужные формулы расчета для каждого конкретного материала. Это объемный информативный материал, используемый инженерами-гидравликами чаще всего.

В таблицах учитываются:

  1. диаметры трубы – внутренний и наружный;
  2. толщина стенки;
  3. срок эксплуатации водопровода;
  4. длина магистрали;
  5. назначение труб.

Формула гидравлического расчета

Для водопроводных труб применяется следующая формула расчета:

Как узнать сечение провода по его диаметру для многожильного или сегментного кабеля

Если определение диаметра для одножильного проводника не вызывает никаких проблем, то измерение многожильного или сегментного может вызвать определенные сложности.

Измерение сечения многожильного провода

При определении диаметра жилы данного кабеля нельзя измерять этот размер сразу для всех проволочек жилы: значение получится неточным, так как между жилами имеется пространство. Поэтому данный кабель сначала необходимо зачистить от изоляции, затем распушить многожильный проводник и посчитать количество проволок в жиле. Далее любым способом (штангенциркуль, линейка, микрометр) измеряют диаметр одной жилы и определяют площадь поперечного сечения проволочки. После этого полученное значение умножают на количество проволочек в пучке и получают точный размер имеющегося проводника.

Измерение сегментного проводника

Определение размеров сегментного проводника несколько сложнее, чем измерения круглого одножильного или многожильного кабеля. Для того, чтобы правильно оценить площадь поперечного сечения такого проводника необходимо использовать специальные таблицы. Например, для расчёта площади сечения сегмента алюминиевого проводника определяют высоту и ширину сегмента и используют следующую таблицу:

Определение площади поверхности трубы

Важно определять площадь поверхности, так как это позволяет рассчитать, какое количество грунта, краски или укрывного материала потребуется для той или иной трубы с учетом ее формы, материала и веса. Масса труб, изготовленных из ПВХ или пропилена, значительно меньше, чем стальных, хотя площадь их одинакова

Для вычисления площади трубы, потребуется выполнить следующие действия:

  • Определить радиус трубы сначала в сантиметрах;
  • После перевести полученный результат в метры;
  • После следует высчитать длину трубы также в метрах;
  • Умножить полученный результат на известный радиус, в результате чего можно узнать внешнюю площадь трубы.

Можно вычислить площадь и прямоугольной трубы с учетом веса, достаточно знать, сколько весит погонный метр, тоннаж можно определить по специальным таблицам, применяемым в строительстве. Данную величину следует умножить на длину трубы в метрах. Такие расчеты позволяют определить количество краски, грунта и теплоизоляционного материала, а также потери тепла при передаче последнего от такого теплового узла, как котельная.

Уменьшение потребления газа

Экономия газа напрямую связана с уменьшением потерь тепла. Ограждающие конструкции, такие как стены, потолок, пол в доме обязательно защищаются от влияния холодного воздуха или грунта. Применяется автоматическая регулировка работы отопительного оборудования для результативного взаимодействия наружного климата и интенсивности работы газового котла.

Утепление стен, кровли, потолков

Уменьшить расход газа можно с помощью утепления стен Наружный теплозащитный слой создает преграду для охлаждения поверхностей, чтобы потребить наименьшее количество топлива.
Статистика показывает, что часть нагретого воздуха уходит через конструкции:

  • крыша — 35 – 45%;
  • неутепленные оконные проемы — 10 – 30%;
  • тонкие стены — 25 – 45%;
  • входные двери — 5 – 15%.

Полы защищаются материалом, который имеет допустимую влагопроницаемость по норме, т. к. при намокании теряются теплоизоляционные характеристики. Стены лучше изолировать снаружи, потолок утепляется со стороны чердака.

На чтение 7 мин Просмотров 5.7к. Опубликовано 06.04.2020 Обновлено 21.10.2022

Затраты газа в квартире или частном домостроении рассчитываются для определения расходов на отопление, подогрев воды и приготовление пищи. Расчет производится на проектном этапе или перед приобретением котельного оборудования. Средний и максимальный расход газа в этих случаях подсчитывается по определенной методике, результат дает представление о количестве потребляемого топлива.

Содержание

  1. Влияние на расход газа
  2. Расчет расхода газа
  3. По мощности котла
  4. По квадратуре
  5. Зависимость расхода газа от давления
  6. Расчет расхода газа по давлению и диаметру
  7. С учетом теплопотерь
  8. По счетчику и без
  9. Расчет расхода сжиженного газа
  10. Расчет на 1 кВт тепла
  11. Какое количество тепла отдает сжиженный газ и природный
  12. Уменьшение потребления газа
  13. Утепление стен, кровли, потолков
  14. Замена окон
  15. Другие способы

Влияние на расход газа

На расход газа влияет мощность котла и качество смеси

Потребление газа зависит от различных факторов. В больших домах ставятся котлы, которые расходуют больше топливной смеси, чем агрегаты в маленьких строениях или квартирах.

На расход топлива влияет:

  • мощность котла;
  • температура на улице;
  • качество газовой смеси.

Некоторые газораспределительные компании подают в трубопровод неосушенные газовые смеси, которые содержат влагу и примеси. Калорийность снижается и увеличивается потребляемый объем.

Расчет расхода газа

Мощность котла или конвектора зависит от потерь тепла в строении. Средний подсчет проводится с учетом общей площади дома.

При расчете расхода газа учитываются нормы прогрева квадратного метра при высоте потолков до 3 м:

  • в южных регионах берется 80 Вт/м²;
  • в северных — до 200 Вт/м².

В формулах учитывается суммарная кубатура отдельных комнат и помещений в здании. На нагревание каждого 1 м³ общего объема выделяется 30 – 40 Вт в зависимости от района.

По мощности котла

Баллонный и природный газ рассчитывается в разных единицах

Расчет основывается на мощности и площади отопления. Применяется усредненный показатель расхода — 1 кВт на 10 м². Следует уточнить, что берется не электрическая мощность котла, а тепловая мощность оборудования. Часто такие понятия подменяются, и получается неправильный расчет потребления газа в частном доме.

Объем природного газа измеряется в м³/ч, а сжиженный — в кг/ч. Практика показывает, что на получение 1 кВт тепловой мощности расходуется 0,112 м³/ч магистральной топливной смеси.

По квадратуре

Удельное потребление тепла рассчитывается по представленной формуле, если разница между уличной и внутренней температурой составляет примерно 40°С.

Используется соотношение V = Q / (g · K / 100), где:

  • V — объем природного газового топлива, м³;
  • Q — тепловая мощность оборудования, кВт;
  • g — наименьшая калорийность газа, обычно равняется 9,2 кВт/м³;
  • K — коэффициент полезного действия установки.

Зависимость расхода газа от давления

Количество газа фиксируется счетчиком

Объем газа, проходящего по трубопроводу, измеряется счетчиком, а расход подсчитывается в виде разницы между показаниями в начале и конце пути. Измерение зависит от порога давления в суживающемся сопле.

Ротационные счетные приборы используются для измерения давления больше 0,1 МПа, а разница уличной и внутренней температуры составляет 50°С. Показатель расхода газового топлива считывается при нормальном состоянии окружающей среды. В промышленности пропорциональными условиями считается давление 10 – 320 Па, разница температур 20°С и относительная влажность воздуха 0. Расход топлива выражается в м³/ч.

Расчет расхода газа по давлению и диаметру

Расчет диаметра газопровода выполняется перед началом строительства

Скорость газа в газопроводе высокого давления зависит от площади сечения коллектора и составляет в среднем 2 – 25 м/с.

Пропускная способность находится по формуле: Q = 0.67 · D² · p, где:

  • Q — расход газа;
  • D — условный проходной диаметр газопровода;
  • p — рабочее давление в газопроводной трубе или показатель абсолютного давления смеси.

На величину показателя влияет наружная температура, нагрев смеси, избыточное давление, атмосферные характеристики и влажность. Расчет диаметра газопровода делается при составлении проекта системы.

С учетом теплопотерь

Для расчета потребления газовой смеси требуется знать тепловые потери строения.

Используется формула Q = F (T1 – T2) (1 + Σb) · n / R, где:

  • Q — теплопотери;
  • F — площадь утепляющего слоя;
  • Т1 — наружная температура;
  • Т2 — внутренняя температура;
  • Σb — сумма дополнительных потерь тепла;
  • n — коэффициент расположения защитного слоя (в специальных таблицах);
  • R — сопротивление передаче тепла (рассчитывается в конкретном случае).

Определение теплопотерь представляет собой сложный подсчет и проводится специалистами на стадии проекта. Можно заказать нахождение потерь на любом этапе эксплуатации строения.

По счетчику и без

Расход газа зависит от утепления стен и климатических условий региона

По прибору определяется расход газа за месяц. Применяются стандартные нормы расхода смеси, если счетчик не установлен. Для каждого региона страны нормативы устанавливаются отдельно, но в среднем принимаются из расчета 9 — 13 м³ в месяц на одного человека.

Показатель устанавливается местными органами самоуправления и зависит от климатических условий. Расчет ведется с учетом числа владельцев помещения и людей, фактически проживающих на указанной жилплощади.

Расчет расхода сжиженного газа

Расчет газа с применением пропана или бутана имеет свои особенности, но не представляет особых сложностей. Имеет значение плотность горючего вещества, которая изменяется с повышением или понижением температуры и зависит от состава газовой смеси. Постоянным остается только вес сжиженного топлива.

Объем используемого газа отличается зимой и летом, поэтому нет смысла применять единицы м³ для определения расхода сжиженного газа на 1 кВт тепла, для обозначения берутся килограммы, которые не меняются при смене сезонов.

Расчет на 1 кВт тепла

Количество рассчитывается на отопление дома и подогрев воды в системе. Если на газе готовится еда, это нужно учитывать дополнительно.

Используется формула Q = (169.95 / 12.88) · F, где:

  • Q — масса топлива;
  • 169,95 — годовая сумма кВт на обогрев 1 м² дома;
  • 12,88 — теплотворная способность пропана;
  • F — квадратура строения.

Полученное значение умножается на стоимость 1 кг сжиженной смеси, чтобы посчитать расход на закупку требуемого количества. Цена обычно дается за 1 кг, а не за 1 м³, что следует учитывать.

Какое количество тепла отдает сжиженный газ и природный

Состав природного вида топлива (метан) определяется местом его залегания в земле. Теплота сгорания вещества — от 7 тыс. 600 до 8 тыс. 500 ккал/м³, т. е. такое количество тепла отдает при сжигании 1 м³ газа.

В качестве конденсированного топлива используется смесь бутана и пропана. Аналогичный показатель вещества составляет 9 тыс. 500 ккал/м³. Паровая фаза смеси (сгораемая взвесь в м³) считается при испарении жидких литров (в килограммах или литрах).

Уменьшение потребления газа

Экономия газа напрямую связана с уменьшением потерь тепла. Ограждающие конструкции, такие как стены, потолок, пол в доме обязательно защищаются от влияния холодного воздуха или грунта. Применяется автоматическая регулировка работы отопительного оборудования для результативного взаимодействия наружного климата и интенсивности работы газового котла.

Утепление стен, кровли, потолков

Уменьшить расход газа можно с помощью утепления стен

Наружный теплозащитный слой создает преграду для охлаждения поверхностей, чтобы потребить наименьшее количество топлива.

Статистика показывает, что часть нагретого воздуха уходит через конструкции:

  • крыша — 35 – 45%;
  • неутепленные оконные проемы — 10 – 30%;
  • тонкие стены — 25 – 45%;
  • входные двери — 5 – 15%.

Полы защищаются материалом, который имеет допустимую влагопроницаемость по норме, т. к. при намокании теряются теплоизоляционные характеристики. Стены лучше изолировать снаружи, потолок утепляется со стороны чердака.

Замена окон

Пластиковые окна пропускают меньше тепла зимой

Современные металлопластиковые рамы с двух- и трехконтурными стеклопакетами не пропускают воздушных потоков и препятствуют сквознякам. Это ведет к уменьшению потерь через щели, которые были в старых деревянных рамах. Для проветривания предусматриваются поворотно-откидные механизмы створок, способствующие экономному расходованию внутреннего тепла.

Стекла в конструкциях оклеиваются специальной энергосберегающей пленкой, которая пропускает внутрь ультрафиолетовые и инфракрасные лучи, но препятствует обратному их проникновению. Стекла снабжаются сетью элементов, подогревающих площадь для оттаивания снега и льда. Существующие конструкции рам дополнительно утепляются полиэтиленовой пленкой снаружи или используются плотные шторы.

Другие способы

Выгодно применять современные конденсационные котлы на газовом топливе и ставить автоматизированную координационную систему. На все радиаторы устанавливаются термоголовки, а на обвязке агрегата монтируется гидрострелка, что экономит 15 – 20% тепла.

В отопительной системе ставятся детекторы, регуляторы температуры, которые регулируют мощность котла в зависимости от состояния наружного климата. Если на улице теплая погода, результативнее и экономичнее перейти на отопление кондиционерами.

Расход газа выражают
как в единицах массы, так и в единицах
объема. Массовый расход, если нет путевых
отборов или подкачек, не изменяется по
длине газопровода. Объемный расход
возрастает, так как давление по длине
газопровода снижается. Объемный расход
на входе в газоперекачивающий агрегат,
т.е. при условиях всасывания, называют
объемной подачей. Объемный расход,
приведенный к стандартным условиям,
называют коммерческим. Коммерческий
расход – аналог массового: по длине
газопровода он остается неизменным.
Особенностью
работы МГ является сжимаемость
транспортируемой среды
(изменение плотности). Перемещение газа
по трубопроводу связано с преодолением
сил трения,
что приводит к снижению его давления.
При снижении давления плотность
газа уменьшается и при постоянном
массовом расходе это приводит
к увеличению объемной производительности
и скорости течения
газа.

С
другой стороны газ после компримирования
имеет температуру, значительно превышающую
температуру грунта и перемещение его
по трубопроводу сопровождается
снижением температуры, что вызывает
повышение плотности.
Давление газа на участке между КС
снижается в 1,45-1,50 раза. Температура
при этом максимально может измениться
от 325 К до 273 К, то
есть менее чем в 1,2 раза. Таким образом,
объемная производительность газа
в участке, а, следовательно, и скорость
его течения возрастет более чем
в 1,45:1,2=1,2 раза. Возрастание скорости
течения газа сопровождается
увеличением потерь давления на преодоление
сил трения и
переходом части потенциальной энергии
в кинетическую. Отсюда можно сделать
вывод о том, что при движении газа по
участку между КС потери давления
на единице длины трубопровода возрастают,
и линия изменения давления газа по длине
участка не будет прямой.

Основным уравнением
для расчета МГ является уравнение
пропускной способности .

Для горизонтального
газопровода (ΔZ
< 100 м), работающего в стационарном
режиме, уравнение движения газа можно
представить в следующем виде


,
(2.22)

где dP
– изменение давления на длине dx;
λ – коэффициент гидравлического
сопротивления; U
– скорость течения газа; D
– внутренний диаметр газопровода; ρ –
плотность газа при давлении и температуре
в точке X.

При отсутствии
ответвлений для любой точки МГ можно
записать уравнение неразрывности
движения газа в виде


,
(2.23)

где М – массовый
расход газа; F
– площадь поперечного сечения
трубопровода.

Связь между
параметрами газа устанавливается
уравнением состояния


,
(2.24)

где Z
– коэффициент сжимаемости газа; R
– газовая постоянная


,
(2.25)

где Rв
= 287 Дж/кг ·
0К
– газовая постоянная воздуха; Δ –
относительная плотность газа.

Из (2.24)

(2.26)

Подставляя (2.26) в
(2.23) и выражая скорость, получим

(2.27)

С учетом (2.26) и
(2.27) уравнение (2.22) примет вид

(2.28)

Приняв

λ
= const, Т
= Тср
= const, Z = Zср
= const (2.29)

и проинтегрировав
(2.28) в пределах изменения х от 0 до L
и Р от Рн
до Рк,
получим

(2.30)

или


,
(2.31)

где
Рн
и Рк

давление
газа в начале и в конце участка
(абсолютное), Па; М

массовая
производительность МГ, кг/с;
Т

средняя температура газа в участке,
0К;
z

среднее значение коэффициента сжимаемости
газа в участке; L

длина
участка, м;
F

площадь
поперечного сечения трубопровода, м2;
D

внутренний
диаметр трубопровода, м;
λ
– коэффициент гидравлических
сопротивлений.

По этой формуле
можно определить падение давления в
трубопроводе, если задан массовый расход
М.

Решим
(2.31) относительно массовой производительности,
выразив предварительно
площадь поперечного сечения через
диаметр

(2.32)

Как
уже было сказано ранее, расчетной
величиной при проектировании
и эксплуатации МГ является объемная
суточная производительность,
приведенная к стандартным условиям.

Разделив
(2.32) на плотность газа при стандартных
условиях и выразив
газовую постоянную газа через газовую
постоянную воздуха, получаем

(2.33)

где Q

объемная пропускная способность участка,
м3
(коммерческий расход).

Стоящие
перед корнем величины являются постоянными
и их можно объединить
в один коэффициент К:


, (2.34)

где

или

(в системе Si).

При
использовании смешанной системы единиц
D
в м, Т в оК,
производительность
в млн. м3/сут,
давление
в МПа и длину участка в км, коэффициент
К будет учитывать
помимо величии указанных выше
еще и переходные коэффициенты
и его значение составит 105,087.

К=105,087
– в смешанной системе единиц.

Для
определения пропускной способности
необходимо найти:


коэффициент
гидравлического сопротивления;


среднее давление
газа на участке;


среднюю температуру
газа на участке;


коэффициент
сжимаемости газа Z
при Рср
и Тср.

Формула
для разности квадратов давлений в этом
случае примет вид

(2.35)

Давление
в начале участка газопровода определяется
по формуле:


,

где
δрВЫХ


потери
давления в трубопроводе между компрессорным
цехом и
узлом подключения к линейной части
магистрального газопровода (без учета
потерь
давления в системе охлаждения
транспортируемого газа); δpОХЛ

потери
давления
в системе охлаждения газа, включая его
обвязку.

Для
охлаждения газа в аппаратах воздушного
охлаждения (АВО) следует принимать
δрОХЛ
=
0,06
МПа.
При отсутствии охлаждения газа δрОХЛ
=
0.

Потери
давления могут быть приняты по табл.
2.3

Таблица
2.3 – Потери давления газа на КС [84]

Давление в
газопроводе (избыточное), МПа

Потери давления
газа на КС, МПа

на всасывании
ΔрВС

на нагнетании
δрВЫХ

при одноступенчатой
очистке газа

при двухступенчатой
очистке газа

5,40

0,08

0,13

0,07

7,35

0,12

0,19

0,11

9,81

0,13

0,21

0,13

Давление в конце
участка газопровода

где
Δрвс

потери давления газа на входе КС с учетом
потерь давления в подводящих
шлейфах и на узле очистки газа (принимается
по табл. 2.3)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Б.К. Ковалев, заместитель директора по НИОКР

В последнее время все чаще приходится сталкиваться с примерами, когда оформление заказов на промышленное газовое оборудование ведут менеджеры, не имеющие достаточного опыта и технических знаний в отношении предмета закупок. Иногда результатом становится не вполне корректная заявка или принципиально неверный подбор заказываемого оборудования. Одной из наиболее распространенных ошибок является выбор номинальных сечений входного и выходного трубопроводов газораспределительной станции, сориентированный только на номинальные значения давления газа в трубопроводе без учета скорости потока газа. Цель данной статьи – выдача рекомендаций по определению пропускной способности трубопроводов ГРС, позволяющих при выборе типоразмера газораспределительной станции проводить предварительную оценку ее производительности для конкретных значений рабочих давлений и номинальных диаметров входного и выходного трубопроводов.

При выборе необходимых типоразмеров оборудования ГРС одним из основных критериев является производительность, которая в значительной мере зависит от пропускной способности входного и выходного трубопроводов.

Пропускная способность трубопроводов газораспределительной станции рассчитывается с учетом требований нормативных документов, ограничивающих максимально допустимую скорость потока газа в трубопроводе величиной 25м/с. В свою очередь, скорость потока газа зависит главным образом от давления газа и площади сечения трубопровода, а также от сжимаемости газа и его температуры.

Пропускную способность трубопровода можно рассчитать из классической формулы скорости движения газа в газопроводе (Справочник по проектированию магистральных газопроводов под редакцией А.К. Дерцакяна, 1977):

где W— скорость движения газа в газопроводе, м/сек;
Q — расход газа через данное сечение (при 20°С и 760 мм рт. ст.), м3/ч;
z — коэффициент сжимаемости (для идеального газа z = 1);
T = (273 + t °C) — температура газа, °К;
D — внутренний диаметр трубопровода, см;
p = (Pраб + 1,033) — абсолютное давление газа, кгс/см2 (атм);
В системе СИ (1 кгс/см2 = 0,098 МПа; 1 мм = 0,1 см) указанная формула примет следующий вид:

где D — внутренний диаметр трубопровода, мм;
p = (Pраб + 0,1012) — абсолютное давление газа, МПа.
Отсюда следует, что пропускная способность трубопровода Qmax, соответствующая максимальной скорости потока газа w = 25м/сек, определяется по формуле:

Для предварительных расчетов можно принять z = 1; T = 20?С = 293 ?К и с достаточной степенью достоверности вести вычисления по упрощенной формуле:

Значения пропускной способности трубопроводов с наиболее распространенными в ГРС условными диаметрами при различных величинах давления газа приведены в таблице 1.

Рраб.(МПа) Пропускная способность трубопровода (м?/ч),
при wгаза=25 м/с; z = 1; T= 20?С = 293?К
DN 50 DN 80 DN 100 DN 150 DN 200 DN 300 DN 400 DN 500

0,3

670

1715

2680

6030

10720

24120

42880

67000

0,6

1170

3000

4690

10550

18760

42210

75040

117000

1,2

2175

5570

8710

19595

34840

78390

139360

217500

1,6

2845

7290

11390

25625

45560

102510

182240

284500

2,5

4355

11145

17420

39195

69680

156780

278720

435500

3,5

6030

15435

24120

54270

96480

217080

385920

603000

5,5

9380

24010

37520

84420

150080

337680

600320

938000

7,5

12730

32585

50920

114570

203680

458280

814720

1273000

10,0

16915

43305

67670

152255

270680

609030

108720

1691500

Примечание: для предварительной оценки пропускной способности трубопроводов, внутренние диаметры труб приняты равными их условным величинам (DN 50; 80; 100; 150; 200; 300; 400; 500).

Примеры пользования таблицей:

1. Определить пропускную способность ГРС с DNвх=100мм, DNвых=150мм, при PNвх=2,5 – 5,5 МПа и PNвых=1,2 МПа.

Из таблицы 1 находим, что пропускная способность выходного трубопровода DN=150мм при PN=1,2 МПа составит 19595 м3/ч, в то же время входной трубопровод DN=100мм при PN=5,5 МПа сможет пропустить 37520 м3/ч, а при PN=2,5 МПа — только 17420 м3/ч. Таким образом, данная ГРС при PNвх=2,5 – 5,5 МПа и PNвых=1,2 МПа сможет максимально пропустить от 17420 до 19595 м3/ч. Примечание: более точные значения Qmax можно получить из формулы (3).

2. Определить диаметр выходного трубопровода ГРС, производительностью 5000 м3/ч при Pвх=3,5 МПа для выходных давлений Pвых1=1,2 МПа и Pвых2=0,3 МПа.

Из таблицы 1 находим, что пропускную способность 5000м3/час при Pвых=1,2 МПа обеспечит трубопровод DN=80мм, а при Pвых=0,3 МПа — только DN=150мм. При этом на входе ГРС достаточно иметь трубопровод DN=50мм.

Выберите подписку для получения дополнительных возможностей Kalk.Pro

Любая активная подписка отключает

рекламу на сайте

    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов

Более 10 000 пользователей уже воспользовались расширенным доступом для успешного создания своего проекта. Подробные чертежи и смета проекта экономят до 70% времени на подготовку элементов конструкции, а также предотвращают лишний расход материалов.

Подробнее с подписками можно ознакомиться здесь.

Понравилась статья? Поделить с друзьями:
  • Как найти утерянный смартфон на базе андроид
  • Как по валентности найти число атомов
  • Как офицеру найти жену
  • Как найти историю чата в телеграм
  • Как найти gps conf в андроиде