Свойства тонкой линзы определяются главным образом расположением ее главных фокусов. Поэтому, зная расстояние от источника света до линзы, а также ее фокусное расстояние (положение фокусов), мы можем определить расстояние до изображения, опустив описание хода лучей внутри самой линзы. Поэтому в изображении на чертеже точного вида сферических поверхностей линзы необходимость отсутствует.
Схематически тонкие линзы обозначают отрезком со стрелками на конце. Они смотрят от центра в противоположные стороны, если линза собирающая, и они направлены к центру отрезка, если линза рассеивающая.
Внимание!
Напомним, что линзы могут давать действительные и мнительные изображения. Причем, собирающая линза может давать как действительные, так и мнимые изображения. Рассеивающая линза всегда дает только мнимые изображения.
Способ построения изображений, а также вид самих изображений в линзе зависит от того, где расположен изображаемый предмет. Он может располагаться за двойным фокусным расстоянием, в фокальной плоскости второго фокуса, между вторым и первым фокусом, в фокальной плоскости главного фокуса и на расстоянии меньше фокусного расстояния линзы.
Определение
Вторым фокусом называют точку, которая расположена на главной оптической оси от главного фокуса на расстоянии, равном фокусному расстоянию линзы. Относительно линзы он располагается на расстоянии, равном двойному фокусному расстоянию линзы.
Построение изображения в собирающей линзе
Предметы схематично изображаются в виде стрелки. Чтобы построить изображение предмета в собирающей линзе, нужно найти положение верхней и нижней точки этого изображения. Сначала находят положение точки изображения, соответствующей верхней точки предмета (точки А). Для этого из этой точки нужно пустить два луча:
Два вида лучей при построении изображений в линзе
Первый луч проходит из верхней точки предмета (точки А) параллельно главной оптической оси. На линзе (в точке С) луч преломляется и проходит через точку фокуса (точку F).
Второй луч необходимо направить из верхней точки предмета (точки А) через оптический центр линзы (точку О). Он пройдет, не преломившись.
На пересечении двух лучей обозначаем точку А1. Это и будет изображение верхней точки предмета. Таким же образом нужно поступить с нижней точкой предмета. Но на пересечении вышедших из линзы лучей нужно поставить точку В1. Изображение предмета при этом — А1 В1.
В зависимости от того, где расположен предмет, изображение может получиться действительным или мнимым, увеличенным или уменьшенным, перевернутым или прямым. Построим изображения для каждого из таких случаев.
Схема построения изображения | Расположение предмета относительно линзы + характеристика изображение |
Предмет располагается за двойным фокусом.
Изображение:
|
|
Предмет располагается в фокальной плоскости второго фокуса.
Изображение:
|
|
Предмет располагается в пространстве между фокусом и двойным фокусом.
Изображение:
|
|
Предмет находится в фокальной плоскости.
Изображения нет, поскольку лучи идут параллельно друг другу и не пересекаются. |
|
Предмет располагается между линзой и фокусом.
Изображение:
|
Пример №1. Построить изображение предмета, изображенного на рисунке. Определить тип изображения.
Чтобы построить изображение предмета, достаточно определить его положение одной точки — верхней. Поскольку предмет расположен параллельно линзе, для построения изображения, достаточно будет соединить найденную точку изображения для верхней точки предмета перпендикуляром, проведенным к главной оптической оси.
Чтобы построить изображение верхней точки, пустим от нее два луча — побочную оптическую ось через оптический центр и перпендикуляр к линзе. Затем найдем пересечение побочной оптической оси с преломленным лучом. Теперь пустим перпендикуляр к главной оптической оси и получим изображение. Оно является действительным, увеличенным и перевернутым.
Частный случай — построение изображения точки
Положение изображения точки можно найти тем же способом, описанным выше. Нужно лишь построить два луча и найти их пересечение после выхода из линзы (см. рисунок ниже). Так, изображению точки S соответствует точка S´.
Особую сложность составляет случай, когда точка расположена на главной оптической оси. Сложность заключается в том, что все лучи, которые можно построить, будут совпадать с главной оптической осью. Поэтому возникает необходимость в определении хода произвольного луча. Направим луч от точки S (луч SB) к собирающей линзе. Затем построим побочную оптическую ось PQ такую, которая будет параллельна лучу SB. После этого построим фокальную плоскость и найдем точку пересечения (точка С) фокальной плоскости с побочной оптической осью. Теперь соединим полученную точку С с точкой В. Это будет преломленный луч. Продолжим его до пересечения с главной оптической осью. Точка пересечения с ней и будет изображением точки S. В данном случае оно является мнимым.
Пример №2. Построить изображение точки, расположенной на главной оптической оси.
Чтобы построить изображение, пустим произвольный луч к линзе. Затем построим параллельную ему побочную оптическую ось и фокальную плоскость. Из места пересечения этой оси с фокальной плоскостью пустим луч, также проходящий через точку пересечения линзы с произвольным лучом. Построим продолжение луча до получения точки пересечения с главной оптической осью. Отметим точку пересечения — она является действительным изображением точки.
Построение изображения в рассеивающей линзе
Чтобы построить изображение предмета в рассеивающей линзе, нужно определить положения точек изображения, соответствующих верхней и нижней точкам предмета. Вот как определить положение точки изображения для верхней точки предмета:
- Нужно пустить луч, перпендикулярный главной оптической оси. Этот луч после преломления отклонится. Но его продолжение обязательно пересечет главный фокус линзы.
- Нужно пустить луч от верхней точки предмета через оптический центр линзы (построить побочную оптическую ось).
- Точку пересечения продолжения луча, полученного в шаге 1, с побочной оптической осью, нужно обозначить за изображение верхней точки предмета (на рисунке это точка А´).
Точно такие же действия нужно выполнить для нижней точки предмета. В результате получится точка пересечения, соответствующая изображению нижней точки предмета (на рисунке это точка А´´).
Внимание! Независимо от расположения предмета относительно рассеивающей линзы, изображение всегда получается прямым, уменьшенным, мнимым.
Пример №3. Построить изображение предмета в рассеивающей линзе.
Чтобы построить изображение, пустим от верхней точки предмета побочную оптическую ось через оптический центр и проведем перпендикуляр к линзе. Затем из точки главного фокуса проведем луч через точку пересечения линзы с перпендикуляром. Пересечение этого луча с побочной оптической осью есть изображение верхней точки предмета. Теперь проведем от нее перпендикуляр к главной оптической оси. Это и будет являться изображением предмета. Оно является мнимым, уменьшенным и прямым.
Построение изображений в плоском зеркале
Определение
Плоское зеркало — это плоская поверхность, зеркально отражающая свет.
Построение изображения в зеркалах основывается на законах прямолинейного распространения и отражения света. Продемонстрируем это с помощью рисунка ниже.
Построим изображение точечного источника S. От точечного источника света лучи распространяются во все стороны. На зеркало падает пучок света ASB, и изображение создается всем пучком сразу. Но для построения изображения достаточно взять любые два луча из этого пучка. Пусть это будут лучи SO и SC. Луч SO падает перпендикулярно поверхности зеркала АВ. Поскольку угол между ним и перпендикуляром, восстановленным в точке падения, равен 0, то угол падения принимаем равным за 0. поэтому отраженный пойдет в обратном направлении OS. Луч SC отразится под углом γ=α. Отраженные лучи OS и СК расходятся и не пересекаются, но если они попадают в глаз человека, то человек увидит изображение S1, которое представляет собой точку пересечения продолжения отраженных лучей.
Таким образом, чтобы получить изображение в плоском зеркале, нужно:
- Пустить от источника света луч, перпендикулярный к плоскости зеркала (падающий луч совпадает с отраженным лучом).
- Пустить от источника света к плоскости зеркала еще один луч под произвольным углом.
- Построить отраженный луч от падающего луча, построенного в шаге 2, используя закон отражения света.
- Найти пересечение продолжений отраженных от зеркала лучей (пущенного под прямым углом и произвольным углом).
Внимание!
Изображение в зеркале всегда является мнимым. Это связано с тем, что изображение строится на пересечении продолжении лучей, а не на самих лучах.
Изображение в плоском зеркале находится от зеркала на таком же расстоянии, как предмет от этого зеркала. Это легко доказать тем, что треугольники SOC и S1OC равны по стороне и двум углам. Следовательно SO = S1O. Отсюда делаем вывод, что для построения изображения точечного источника света достаточно знать расстояние, на котором он находится от зеркала. Останется только провести к зеркалу перпендикулярную прямую и отложить на ней точку на нужном расстоянии.
При построении изображения какого-либо предмета последний представляют как совокупность точечных источников света. Поэтому достаточно найти изображение крайних точек предмета. Так, изображение А1В1 соответствует предмету АВ.
Изображение и сам предмет всегда симметричны относительно зеркала.
Пример №4. Построить изображение треугольника ABC в плоском зеркале.
Чтобы построить изображение, пустим к плоскому зеркалу перпендикулярные прямые. Затем измерим расстояние от каждой точки до зеркала и отложим их по перпендикуляру от зеркала в обратную сторону. Так для точки А мы находим точку А´, для В — В´, для С — С´.
Видно, что треугольник отразился зеркально (изображение и предмет симметричны друг другу). Так и должно быть в случае с зеркалом.
Задание EF17760
Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.
Алгоритм решения
1.Записать исходные данные и перевести единицы измерения в СИ.
2.Сделать рисунок — построить изображение в линзе.
3.Записать формулу для нахождения площади полученной фигуры.
4.Выполнить решение в общем виде.
5.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Оптическая сила линзы: D = 2,5 дптр.
• Сторона треугольника AC = 4 см.
4 см = 0,04 м
Построим изображение в линзе. Для этого достаточно построить изображение точки В. Сначала пустим луч, параллельный главной оптической оси, к плоскости линзы. Он будет преломляться, после чего пройдет через фокус. Затем пустим луч через оптический центр. На месте пересечения двух лучей поставим точку и обозначим ее за B´.
Так как точки B и C предмета лежат на одной прямой, перпендикулярной главной оптической оси, для нахождения точки изображения C´ достаточно пустить перпендикуляр от B´ этой оси. На месте пересечения поставим точку и обозначим ее C´.
Рассматривать ход лучей для построения точки A´ тоже не будем. Точка A лежит в плоскости второго фокуса. Значит, она будет находиться в этой же точке и с противоположной стороны линзы. Это легко доказать с помощью формулы тонкой линзы:
1d+1f=1F
Если расстояние от предмета до линзы равно 2F, то и расстояние от линзы до его изображения будет 2F:
12F+1f=1F
1f=1F−12F=2−12F=12F
f=2F
Теперь соединим все найденные точки и получим треугольник A´ B´ C´. Найдем его площадь. Поскольку это прямоугольный треугольник, его площадь будет равна половине произведения двух катетов — B´ C´и A´ C´:
S=A´C´·B´C´2
Из формулы оптической силы линзы найдем фокусное расстояние:
F=1D=12,5=0,4 (м)
Известно, что точка A находится в точке двойного фокусного расстояния. И ее изображение тоже находится на таком же расстоянии от линзы. Следовательно, чтобы найти длину катета A´ C´, нужно найти расстояние от точки C до ее изображения. Расстояние от этой точки до линзы равно разности двойного фокусного расстояния и длины отрезка AC:
dC=2F−AC=2·0,4−0,04=0,76 (м)
Используя формулу тонкой линзы, вычислим расстояние от линзы до изображения этой точки:
10,76+1f=1F
1fC=1F−10,76=0,76−F0,76F=0,76−0,40,76·0,4
fC=0,76·0,40,76−0,4=0,844 (м)
Тогда длина катета A´ C´ будет равна:
A´C´=fC−fA=fC−2F=0,844−0,4·2=0,044 (м)
Треугольники BCO и B´ C´O подобны по 3 углам. Углы O равны как вертикальные. Углы C и C´ как прямые, а B и B´ как накрест лежащие (полученные при пересечении секущей в виде луча через оптический центр и параллельных фокальных плоскостей). Следовательно BC относится к B´ C´ так же, как OC относится к C´O:
BCB´C´=ACA´C´
Треугольник ABC равнобедренный, поэтому BC = AС. Тогда:
ACB´C´=ACA´C´
Следовательно:
B´C´=A´C´
Отсюда площадь треугольника равна:
S=A´C´·A´C´2=(0,044)22=0,000968 (м2)=9,68 (см2)
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18181
Предмет S отражается в плоском зеркале ab. На каком рисунке верно показано изображение S1 этого предмета?
Ответ:
Алгоритм решения
- Записать, какое изображение дает плоское зеркало.
- Выбрать изображение, которое соответствует типу описанного изображения.
Решение
Зеркало дает мнимое изображение предмета без увеличения в зеркальном отражении. Это значит, что предмет и его изображение должны быть симметричны относительно плоскости зеркала. Симметричными являются только предмет и его изображение на последнем рисунке — Г.
Ответ: Г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18876
Какая точка является изображением точки S (см. рисунок), создаваемым тонкой собирающей линзой с фокусным расстоянием F?
Алгоритм решения
1.Построить изображение точки.
Решение
Построим изображение точки с учетом того, что линза собирающая. Для этого пустим из этой точки луч света, параллельный главной оптической оси. После прохождения через линзу луч преломится и пройдет через фокус. Затем пустим луч от этой точки через оптический центр линзы. Точка, в которой оба луча пересекутся, будет искомой. В данном случае это точка 4.
Ответ: 4
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 32.5k
В уроках «Изображение светящейся точки, даваемое линзой» и «Изображение предмета, даваемое линзой», мы уже рассматривали построение различных изображений. Также в этих уроках находятся памятки для построения изображения точки или предмета, которые могут вам пригодиться.
В данном уроке представлены дополнительные интересные задачи на построение изображений. И, конечно, вы можете ознакомиться с их решением, разбором построения и итоговым чертежом.
Задача №1
На рисунке 1 показан ход светового луча, падающего на рассеивающую линзу. Выполнив необходимые построения, найдите положения фокусов линзы и положение изображения светящейся точки $S$.
Показать готовый чертеж и пояснения
Скрыть
Построение изображения:
Если луч падает параллельно оптической оси на рассеивающую линзу и преломляется, то продолжение этого преломленного луча пересечет оптическую ось в мнимом фокусе рассеивающей линзы.
Поэтому мы продолжим преломленный луч (отмечен синим цветом) до пересечения с оптической осью. Точка пересечения — это мнимый фокус $F$. Отметим его на чертеже (рисунок 2, а).
С другой стороны от линзы отмерим точно такое же фокусное расстояние и отметим второй фокус линзы.
Теперь нужно построить изображение светящейся точки (рисунок 2, б). Один преломленный луч у нас на чертеже уже есть (использовать мы будем его продолжение). Значит, нужно провести второй луч.
Выберем и проведем на чертеже луч, проходящий через оптический центр линзы $O$. После прохождения через линзу он не изменит направления своего распространения. Поэтому его продолжение совпадет с падающим лучом $SO$.
В итоге, на пересечении двух продолжений преломленных лучей мы получаем мнимое изображение светящейся точки $S_1$.
Задача №2
На рисунке 3 изображены положения главной оптической оси линзы, источника света $S$ и его изображения $S_1$. С помощью этих данных постройте оптический центр, отметьте на чертеже саму линзу и ее фокусы.
Показать готовый чертеж и пояснения
Скрыть
Построение изображения:
В этой задаче у нас уже есть изображение светящейся точки. Обычно, когда мы занимаемся его построением, мы используем два световых луча. Один из них — это луч, проходящий через оптический центр $O$, который лежит на оптической оси линзы. После прохождения через линзу (ее оптический центр) он не изменяет своего направления.
А изображение $S_1$ лежит на пересечении этого луча с другим. Значит, мы можем соединить точки $S$ и $S_1$ друг с другом (рисунок 4, а).
Полученная прямая $SS_1$ пересекает оптическую ось в точке — это и есть оптический центр $O$. Отметим его на рисунке.
Зная положение оптического центра, мы можем отметить на чертеже и саму линзу. Какая это будет линза: собирающая или рассеивающая? Изображение $S_1$ является действительным, так как оно находится по другую сторону от линзы и явно будет на пересечении двух преломленных лучей. Действительное изображение мы можем получить только с помощью собирающей линзы (рисунок 4, б).
Теперь у нас на чертеже есть: оптическая линза, оптическая ось, оптический центр $O$, точка $S$, ее изображение $S_1$, падающий луч $SO$ и преломленный луч $OS_1$. Построим ход второго луча.
Луч $SC$ падает на линзу параллельно ее оптической оси. По определению, после преломления он должен пройти через фокус линзы и пересечься с другим преломленным лучом.
Этот преломленный луч будет выходить из точки $C$ и пересекаться с другим преломленным лучом в точке $S_1$. Отметим на чертеже этот луч $CS_1$ (рисунок 4, в).
Он пересек оптическую ось в точке — это и есть фокус линзы $F$. Чтобы отметить второй фокус, нужно отложить такое же фокусное расстояние с другой стороны линзы.
Задача №3
Постройте оптический центр, отметьте линзу и ее фокусы на чертеже, используя данные рисунка 5.
Показать готовый чертеж и пояснения
Скрыть
Построение изображения:
По аналогии с построением в предыдущей задаче соединим прямой точку $S$ и ее изображение $S_1$. Но в этом случае прямая $SS_1$ не пересекла оптическую ось. Продолжим ее до пересечения, чтобы получить положение оптического центра $O$ (рисунок 6, а).
Мы видим, что точка и ее изображение находятся по одну сторону от линзы (ее оптического центра). Значит, изображение $S_1$ — мнимое. В точке $S_1$ должны пересечься продолжения преломленных лучей. Это возможно, если мы будем использовать рассеивающую линзу. Отметим ее на чертеже (рисунок 6, б).
Луч $SO$ после прохождения сквозь линзу не изменит своего направления. Продолжение преломленного луча совпадает с самим падающим лучом $SO$.
Проведем второй луч, идущий параллельно оптическое оси — луч $SС$. После прохождения сквозь линзу продолжение преломленного луча пересекается с продолжением другого преломленного луча $SO$ в точке $S_1$. Продолжим его до пересечения с оптической осью.
Так мы получили положение мнимого фокуса $F$ (рисунок 6, в). Чтобы отметить второй фокус, нужно отложить такое же фокусное расстояние с другой стороны линзы.
Задача №4
Постройте изображение предмета, расположение которого показано на рисунке 7. Охарактеризуйте его.
Показать готовый чертеж и пояснения
Скрыть
Построение изображения:
На исходном рисунке 7 изображена выпуклая линза — собирающая. Отметим саму линзу и ее оптический центр $O$ на чертеже. Обозначим крайние точки предмета точками $A$ и $B$ (рисунок 8, а).
Начнем построение изображения предмета. Так как обе его точки не лежат на оптической оси, то и изображение нужно будет строить сначала для одной точки, а потом — для второй.
Займемся построением изображения точки $A$ (рисунок 8, б). Проведем два падающих луча $AC$ и $AO$. Луч $AO$ после преломления не изменит своего направления, а луч $AC$ преломится в линзе и после пройдет через фокус $F$.
Продолжим эти два преломленных луча до пересечения друг с другом. Получим изображение $A_1$.
Теперь построим изображение точки $B$ (рисунок 8, в). На линзу падают лучи $BO$ и $BD$. После преломления они пересекутся в точке $B_1$.
Соединим точки $A_1$ и $B_1$. Так мы получили изображение предмета $A_1B_1$. Охарактеризуем его.
Полученное изображение предмета:
1. Действительное
2. Увеличенное
3. Перевернутое
4. $f > 2F$
Описывая положение изображения в последнем пункте, под величиной $f$ мы принимаем расстояние от изображения предмета до линзы.
Задача №5
Постройте изображение предмета, находящегося в фокусе собирающей и рассеивающей линз (рисунок 9). Сравните полученные изображения.
Показать готовый чертеж и пояснения
Скрыть
Построение изображения:
Предмет располагается перпендикулярно оптической оси. При этом одна его крайняя точка ($B$) лежит на оптической оси. Поэтому, для построения изображения достаточно будет построить изображение крайней точки $A$ и опустить перпендикуляр на оптическую ось, чтобы получить изображение точки $B$.
Начнем с построения изображения предмета, даваемого собирающей линзой (рисунок 10, а). Из точки выходят два луча $AC$ и $AO$. Как видно из чертежа после прохождения сквозь линзу преломленные лучи параллельны друг другу — они никогда не пересекутся. Значит, изображения мы не получим.
Теперь построим изображение предмета в рассеивающей линзе (рисунок 10, б). Из крайней точки $A$ выходят два луча $AC$ и $AO$. Так как линза рассеивающая, изображение точки $A_1$ мы получим на пересечении продолжений преломленных лучей. Опустим перпендикуляр на оптическую ось и получим точку $B_1$. Соединим полученные точки друг с другом — получим изображение предмета $A_1B_1$.
Если предмет находится в фокусе собирающей линзы, то мы не получим его изображения.
Если предмет находится в фокусе рассеивающей линзы, то изображение предмета:
1. Мнимое
2. Уменьшенное
3. Прямое
4. $f < F$
Описывая положение изображения в последнем пункте, под величиной $f$ мы принимаем расстояние от изображения предмета до линзы.
Задача №6
Постройте изображение предмета, расположенного от собирающей линзы на расстоянии $3F$ (рисунок 11).
Показать готовый чертеж и пояснения
Скрыть
Построение изображения:
Предмет располагается перпендикулярно оптической оси. При этом одна его крайняя точка ($B$) лежит на оптической оси. Поэтому, для построения изображения достаточно будет построить изображение крайней точки $A$ и опустить перпендикуляр на оптическую ось, чтобы получить изображение точки $B$.
Из точка $A$ на линзу падают лучи $AC$ и $AO$ (рисунок 12). После прохождения сквозь линзу они преломляются и пересекаются друг с другом в точке $A_1$ — изображении точки $A$.
Опустим перпендикуляр на оптическую ось и получим точку $B_1$ — изображение точки $B$. Соединим точки $A_1$ и $B_1$ между собой и получим изображение предмета $A_1B_1$.
Охарактеризуем полученное изображение. При этом $d$ — это расстояние от предмета до линзы, а $f$ — расстояние от изображения предмета до линзы.
Если $d = 3F$, то изображение предмета, даваемое собирающей линзой:
1. Действительное
2. Уменьшенное
3. Перевернутое
2. $2F > f >F$
Задача №7
Постройте изображение предмета, расположенного от собирающей линзы на расстоянии $4F$ (рисунок 13). Сравните его с изображением предмета, полученным в задаче №6.
Показать готовый чертеж и пояснения
Скрыть
Построение изображения:
Предмет располагается перпендикулярно оптической оси. При этом одна его крайняя точка ($B$) лежит на оптической оси. Поэтому, для построения изображения достаточно будет построить изображение крайней точки $A$ и опустить перпендикуляр на оптическую ось, чтобы получить изображение точки $B$.
Построим изображение точки $A$ (рисунок 14). Из нее выходят два луча: $AC$ и $AO$. После преломления они пересекаются в точке $A_1$. Опустим перпендикуляр на оптическую ось, чтобы получить изображение точки $B$ — $B_1$.
Соединим точки $A_1$ и $B_1$ между собой и получим изображение предмета $A_1B_1$.
Охарактеризуем полученное изображение. При этом $d$ — это расстояние от предмета до линзы, а $f$ — расстояние от изображения предмета до линзы.
Если $d = 4F$, то изображение предмета, даваемое собирающей линзой:
1. Действительное
2. Уменьшенное
3. Перевернутое
2. $2F > f >F$
Сравнивая полученное изображение предмета с изображением, полученным в предыдущей задаче, мы уже можем сделать определенные выводы. Для полной картины используем полученное изображение в задаче, рассмотренной в уроке «Изображение предмета, даваемое линзой». Там предмет находился в двойном фокусе линзы, а его полученное изображение было действительным, перевернутым, равным по размеру предмету и находилось в двойном фокусе с другой стороны линзы.
Тогда мы можем сделать вывод:
по мере отдаления предмета от линзы на двойное фокусное расстояние и дальше, действительное и перевернутое изображение предмета уменьшается и приближается к фокусу линзы, но никогда не окажется в нем.
Постройте изображение предмета, расположение которого показано на рисунке 15, и охарактеризуйте его.
Показать готовый чертеж и пояснения
Скрыть
Построение изображения:
Хоть одна из крайних точек предмета и находится на оптической оси, сам предмет расположен под углом к ней. Поэтому, при построении изображения необходимо будет отдельно строить изображения крайних точек $A$ и $B$.
Начнем с более сложного построения. Построим изображение точки, лежащей на оптической оси линзы — точки $B$ (рисунок 16).
Луч $BO$ проходит через оптический центр и после преломления не изменит своего направления. Эти лучи лежат оптической оси линзы.
Произвольный луч $BC$ падает на линзу. Теперь нам нужно построить ход этого луча после преломления в линзе. Для этого проведем побочную оптическую ось $MN$, параллельную этому лучу.
Далее отметим на чертеже фокальную плоскость, перпендикулярную оптической оси и проходящую через фокус $F$ (обозначена на рисунке пунктирной линией-перпендикуляром, опущенным в точку $F$).
Побочная оптическая ось $MN$ пересечет фокальную плоскость в точке $F’$ — побочном фокусе.
Преломленный луч будет проходить через этот побочный фокус. Соединим точки $C$ и $F’$ — получим преломленный луч $CF’$. Продолжим его до пересечения с первым преломленным лучом (который совпадает с оптической осью). На этом пересечении мы получаем точку $B_1$ — изображение точки $B$.
Теперь привычным для нас способом построим изображение точки $A$ (рисунок 17).
Лучи $AD$ и $AO$ после преломления в линзе пересекаются в точке $A_1$. Соединим точки $A_1$ и $B_1$ и получим изображение предмета $A_1B_1$.
Полученное изображение предмета, находящегося от линзы на расстоянии $2F > d >F$:
1. Действительное
2. Увеличенное
3. Перевернутое
4. $f > 3F$
Всякая задача, которую задаёт нам жизнь, обязательно имеет решение, причём такое, какое нам по силам.
Примеры решения расчетных задач
Задача 1. Заданы главная оптическая ось линзы NN, положение источника S и его изображения S´. Найдите построением положение оптического центра линзы С и ее фокусов для трех случаев (рис. 1).
Решение:
Для нахождения положения оптического центра С линзы и ее фокусов F
используем основные свойства линзы и лучей, проходящих через оптический
центр, фокусы линзы или параллельно главной оптической оси линзы.
Случай 1. Предмет S и его изображение расположены по одну сторону от главной оптической оси NN (рис. 2).
Проведем через S и S´ прямую (побочную ось) до пересечения с главной оптической осью NN в точке С. Точка С определяет положение оптического центра линзы, расположенной перпендикулярно оси NN. Лучи, идущие через оптический центр С, не преломляются. Луч SA, параллельный NN, преломляется и идет через фокус F и изображение S´, причем через S´ идет продолжение луча SA. Это значит, что изображение S´ в линзе является мнимым. Предмет S расположен между оптическим центром и фокусом линзы. Линза является собирающей.
Случай 2. Проведем через S и S´ побочную ось до пересечения с главной оптической осью NN в точке С — оптическом центре линзы (рис. 3).
Луч SA, параллельный NN, преломляясь, идет через фокус F и изображение S´, причем через S´ идет продолжение луча SA. Это значит, что изображение мнимое, а линза, как видно из построения, рассеивающая.
Случай 3. Предмет S и его изображение лежат по разные стороны от главной оптической оси NN (рис. 4).
Соединив S и S´, находим положение оптического центра линзы и положение линзы. Луч SA, параллельный NN, преломляется и через фокус F идет в точку S´. Луч через оптический центр идет без преломления.
Задача 2. На рис. 5 изображен луч АВ, прошедший сквозь рассеивающую линзу. Постройте ход луча падающего, если положение фокусов линзы известно.
Решение:
Продолжим луч АВ до пересечения с фокальной плоскостью РР в точке F´ и проведем побочную ось ОО через F´ и С (рис. 6).
Луч, идущий вдоль побочной оси ОО, пройдет, не меняя своего направления, луч DA, параллельный ОО, преломляется по направлению АВ так, что его продолжение идет через точку F´.
Задача 3. На собирающую линзу с фокусным расстоянием F1 = 40 см падает параллельный пучок лучей. Где следует поместить рассеивающую линзу с фокусным расстоянием F2 = 15 см, чтобы пучок лучей после прохождения двух линз остался параллельным?
Решение:
По условию пучок падающих лучей ЕА параллелен главной оптической оси NN,
после преломления в линзах он должен таковым и остаться. Это возможно,
если рассеивающая линза расположена так, чтобы задние фокусы линз F1 и F2 совпали. Тогда продолжение луча АВ (рис. 7), падающего на рассеивающую линзу, проходит через ее фокус F2, и по правилу построения в рассеивающей линзе преломленный луч BD будет параллелен главной оптической оси NN, следовательно, параллелен лучу ЕА. Из рис. 7 видно, что рассеивающую линзу следует поместить на расстоянии d=F1-F2=(40-15)(см)=25 см от собирающей линзы.
Ответ: на расстоянии 25 см от собирающей линзы.
Тонкие линзы. Построение изображений.
-
Собирающая линза: действительное изображение точки.
-
Собирающая линза: действительное изображение предмета.
-
Собирающая линза: мнимое изображение точки.
-
Собирающая линза: мнимое изображение предмета.
-
Собирающая линза: предмет в фокальной плоскости.
-
Рассеивающая линза: мнимое изображение точки.
-
Рассеивающая линза: мнимое изображение предмета.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.
Правила хода лучей в тонких линзах, сформулированные в предыдущей теме, приводят нас к важнейшему утверждению.
Теорема об изображении. Если перед линзой находится светящаяся точка , то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке .
Напомним ещё раз, что это касается не вообще всех лучей, а только параксиальных, то есть образующих малые углы с главной оптической осью. В предыдущей теме мы договорились, что рассматриваем только параксиальные лучи. Лишь для них работают наши правила хода лучей сквозь тонкие линзы. |
Точка называется изображением точки .
Если в точке пересекаются сами преломлённые лучи, то изображение называется действительным. Оно может быть получено на экране, так как в точке концентрируется энергия световых лучей.
Если же в точке пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга — достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.
Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.
к оглавлению ▴
Собирающая линза: действительное изображение точки.
Сперва рассмотрим собирающую линзу. Пусть — расстояние от точки до линзы, — фокусное расстояние линзы. Имеются два принципиально разных случая: и (а также промежуточный случай ). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.
Первый случай: . Точечный источник света расположен дальше от линзы, чем левая фокальная плоскость (рис. 1).
Рис. 1. Случай a>f: действительное изображение точки S |
Луч , идущий через оптический центр, не преломляется. Мы возьмём произвольный луч , построим точку , в которой преломлённый луч пересекается с лучом , а затем покажем, что положение точки не зависит от выбора луча (иными словами, точка является одной и той же для всевозможных лучей ). Тем самым окажется, что все лучи, исходящие из точки , после преломления в линзе пересекаются в точке и теорема об изображении будет доказана для рассматриваемого случая .
Точку мы найдём, построив дальнейший ход луча . Делать это мы умеем: параллельно лучу проводим побочную оптическую ось до пересечения с фокальной плоскостью в побочном фокусе , после чего проводим преломлённый луч до пересечения с лучом в точке .
Теперь будем искать расстояние от точки до линзы. Мы покажем, что это расстояние выражается только через и , т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча .
Опустим перпендикуляры и на главную оптическую ось. Проведём также параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:
, (1)
, (2)
. (3)
В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).
(4)
Но , так что соотношение (4) переписывается в виде:
. (5)
Отсюда находим искомое расстояние от точки до линзы:
. (6)
Как видим, оно и в самом деле не зависит от выбора луча . Следовательно, любой луч после преломления в линзе пройдёт через построенную нами точку , и эта точка будет действительным изображением источника
Теорема об изображении в данном случае доказана.
Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника пересекаются после линзы в одной точке — его изображении — то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?
Если источник не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:
— луч, идущий через оптический центр линзы — он не преломляется;
— луч, параллельный главной оптической оси — после преломления он идёт через фокус.
Построение изображения с помощью этих лучей показано на рис. 2.
Рис. 2. Построение изображения точки S, не лежащей на главной оптической оси |
Если же точка лежит на главной оптической оси, то удобный луч остаётся лишь один — идущий вдоль главной оптической оси. В качестве второго луча приходится брать «неудобный» (рис. 3).
Рис. 3. Построение изображения точки S, лежащей на главной оптической оси |
Посмотрим ещё раз на выражение ( 5). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:
Теперь разделим обе части этого равенства на a:
(7)
Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для . В дальнейшем мы выведем модификации этой формулы для остальных случаев.
Теперь вернёмся к соотношению (6). Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что не зависит от расстояния (рис. 1, 2) между источником и главной оптической осью!
Это означает, что какую бы точку отрезка мы ни взяли, её изображение будет находиться на одном и том же расстоянии от линзы. Оно будет лежать на отрезке — а именно, на пересечении отрезка с лучом , который пойдёт сквозь линзу без преломления. В частности, изображением точки будет точка .
Тем самым мы установили важный факт: изображением отрезка лужит отрезок . Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить — прямым или перевёрнутым получается изображение.
к оглавлению ▴
Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая . Здесь можно выделить три характерных ситуации.
1. . Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4; двойной фокус обозначен ). Из формулы линзы следует, что в этом случае будет (почему?).
Такая ситуация реализуется, например, в диапроекторах и киноаппаратах — эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым — чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.
Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г — (это заглавная греческая «гамма»):
.
Из подобия треугольников и получим:
. (8)
Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.
2. . В этом случае из формулы (6) находим, что и . Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5).
Рис. 5.a=2f: размер изображения равен размеру предмета |
3. . В этом случае из формулы линзы следует, что (почему?). Линейное увеличение линзы будет меньше единицы — изображение действительное, перевёрнутое, уменьшенное (рис. 6).
Рис. 6.a>2f: изображение действительное, перевёрнутое, уменьшенное |
Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов — словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.
Рассмотрение первого случая нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.
к оглавлению ▴
Собирающая линза: мнимое изображение точки.
Второй случай: . Точечный источник света расположен между линзой и фокальной плоскостью (рис. 7).
Рис. 7. Случай a < f: мнимое изображение точки |
Наряду с лучом , идущим без преломления, мы снова рассматриваем произвольный луч . Однако теперь на выходе из линзы получаются два расходящихся луча и . Наш глаз продолжит эти лучи до пересечения в точке .
Теорема об изображении утверждает, что точка будет одной и той же для всех лучей , исходящих из точки . Мы опять докажем это с помощью трёх пар подобных треугольников:
Снова обозначая через расстояние от до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):
. (9)
Отсюда
. (10)
Величина не зависит от луча , что и доказывает теорему об изображении для нашего случая . Итак, — мнимое изображение источника . Если точка не лежит на главной оптической оси, то для построения изображения удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8).
Рис. 8. Построение изображения точки S, не лежащей на главной оптической оси |
Ну а если точка лежит на главной оптической оси, то деваться некуда — придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9).
Рис. 9. Построение изображения точки S, лежащей на главной оптической оси |
Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая . Сначала переписываем это соотношение в виде:
,
а затем делим обе части полученного равенства на a:
. (11)
Сравнивая (7) и (11), мы видим небольшую разницу: перед слагаемым стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.
Величина , вычисляемая по формуле (10), не зависит также от расстояния между точкой и главной оптической осью. Как и выше (вспомните рассуждение с точкой ), это означает, что изображением отрезка на рис. 9 будет отрезок .
к оглавлению ▴
Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10). Оно получается мнимым, прямым и увеличенным.
Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло — лупу. Случай полностью разобран. Как видите, он качественно отличается от нашего первого случая . Это не удивительно — ведь между ними лежит промежуточный «катастрофический» случай .
к оглавлению ▴
Собирающая линза: предмет в фокальной плоскости.
Промежуточный случай:. Источник света расположен в фокальной плоскости линзы (рис. 11).
Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости — а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника , расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.
Рис. 11. a=f: изображение отсутствует |
Где же изображение точки ? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае — изображение находится на бесконечности.
Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).
Итак, мы полностью рассмотрели построение изображений в собирающей линзе.
к оглавлению ▴
Рассеивающая линза: мнимое изображение точки.
К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.
Снова берём луч и произвольный луч (рис. 12). На выходе из линзы имеем два расходящихся луча и , которые наш глаз достраивает до пересечения в точке .
Рис. 12. Мнимое изображение точки S в рассеивающей линзе |
Нам снова предстоит доказать теорему об изображении — о том, что точка будет одной и той же для всех лучей . Действуем с помощью всё тех же трёх пар подобных треугольников:
.
Имеем:
(12)
Отсюда
. (13)
Величина b не зависит от луча span
, поэтому продолжения всех преломлённых лучей span
пересекутся в точке — мнимом изображении точки . Теорема об изображении тем самым полностью доказана.
Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10). В случае их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации и .
А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника — случай тут, как мы и сказали выше, имеется только один.
Если точка не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой — параллельно главной оптической оси (рис. 13).
Рис. 13. Построение изображения точки S, не лежащей на главной оптической оси |
Если же точка лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14).
Рис. 14. Построение изображения точки S, лежащей на главной оптической оси |
Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:
,
а потом разделим обе части полученного равенства на a:
(14)
Так выглядит формула линзы для рассеивающей линзы.
Три формулы линзы (7), (11) и (14) можно записать единообразно:
если соблюдать следующую договорённость о знаках:
— для мнимого изображения величина считается отрицательной;
— для рассеивающей линзы величина считается отрицательной.
Это очень удобно и охватывает все рассмотренные случаи.
к оглавлению ▴
Величина , вычисляемая по формуле (13), опять-таки не зависит от расстояния между точкой и главной оптической осью. Это снова даёт нам возможность построить изображение предмета , которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15).
Рис. 15. Изображение мнимое, прямое, уменьшенное |
Разберем задачи ЕГЭ по теме: Тонкие линзы. Построение изображений.
1. Тонкая собирающая линза с фокусным расстоянием F находится между двумя точечными источниками света на расстоянии d=15 см от одного из них. Источники расположены на главной оптической оси на расстоянии L=22,5 см друг от друга. Найдите фокусное расстояние линзы, если их изображения получились в одной точке. Ответ выразите в сантиметрах.
Дано:
= 15 см = 0,15 м
= 22,5 см=0,225 м
Найти:
Фокусное расстояние F — ?
Решение:
Тонкая собирающая линза дает различные виды изображений: увеличенные (уменьшенные), прямые (обратные), действительные (мнимые). Характеристика изображения зависит от расстояния от предмета до линзы, т.е. от соотношения d и F.
Так как в задаче говорится о получении изображений в одной точке, то один из точечных источников должен находиться за фокусом линзы – он дает действительное изображение. Второй точечный источник должен находиться перед фокусом – он дает мнимое изображение.
На рис. 1 представлено получение изображения для точечного источника света , находящегося на расстоянии больше фокусного, — изображение точечного источника света .
На рис. 2 представлено получение изображения для точечного источника света , находящегося на расстоянии меньше фокусного, — изображение точечного источника света .
После создания модели, поясняющей условие этой задачи, можно переходить к её решению. Для этого надо применить формулу тонкой линзы для двух случаев. С учетом правила знаков , так как изображение в первом случае действительное, во втором – мнимое.
Сложим эти два уравнения и учтем, что Так как изображения в двух случаях получались в одной точке, то
Определим, что (м).
(м) (см).
Ответ: 10
2. Какая из точек (1, 2, 3 или 4) является изображением точки S, созданным тонкой собирающей линзой с фокусным расстоянием F (см. рисунок)?
Решение:
Для получения изображения точечного источника S необходимо осуществить построение двух любых лучей, исходящих от этого источника. Самым «удобным» лучом является луч, проходящий через оптический центр линзы. Такие лучи, после прохождения через линзу, не меняют своего направления. На рисунке таким лучом является луч 1-1ʹ.
Второй и третий лучи от точечного источника S попадают на линзу произвольно. Дальнейший ход таких лучей определяется следующим алгоритмом:
- необходимо построить побочные оптические оси, параллельные падающим лучам (на рисунке они проведены пунктирной линией);
- провести фокальную плоскость и найти точки пересечения этой плоскости с побочными оптическими осями;
- продолжить ход световых лучей после прохождения через линзу (на рисунке это лучи 2ʹ и 3ʹ).
Поэтому изображением точечного источника S (точки S) будет являться точка 2.
При решении этой задачи мы рассмотрели ход трех лучей сквозь линзу, для получения ответа достаточно взять любую комбинацию лучей (1-1ʹ и 2 — 2ʹ) или (1-1ʹ и 3 — 3ʹ ).
Ответ: 2
3. Спираль лампочки расположена вблизи главной оптической оси тонкой рассеивающей линзы на расстоянии а от неё перпендикулярно этой оси, причем , где F – модуль фокусного расстояния линзы. Затем рассеивающую линзу заменили на собирающую с фокусным расстоянием F. Установите соответствие между видом линзы, использованной в опыте, и свойствами даваемого ею изображения.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Виды линз | Свойства изображения |
А) линза рассеивающая | 1) мнимое, прямое, уменьшенное |
Б) линза собирающая | 2) мнимое, перевёрнутое, увеличенное |
3) действительное, перевёрнутое, увеличенное | |
4) действительное, прямое, увеличенное |
Решение
Решение подобных задач опирается на умение строить изображения протяженных (имеющих размеры) предметов при прохождении лучей через линзу.
Рис.1
На рис.1 выполнено построение изображения предмета АВ в тонкой собирающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный за линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
увеличенное (размер изображения превышает размер предмета),
перевернутое (направления стрелок АВ и АʹВʹ противоположны),
действительное (предмет и его изображения находятся по разные стороны от линзы).
Рис.2
На рис.2 выполнено построение изображения предмета АВ в тонкой рассеивающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный перед линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
уменьшенное (размер изображения меньше размера предмета),
прямое (направления стрелок АВ и АʹВʹ совпадают),
мнимое (предмет и его изображения находятся с одной стороны от линзы).
Полученные изображения и их характеристики приводят к следующему ответу:
4. На рисунке показан ход лучей от точечного источника света S через тонкую линзу. Какова оптическая сила этой линзы? (Ответ дать в диоптриях.)
Решение:
На рисунке представлен ход световых лучей от точечного источника света S. Луч, проходящий через оптический центр, не меняет своего направления. Второй луч, идущий параллельно главной оптической оси, после преломления идет через фокус. Это позволяет определить фокусное расстояние линзы. Согласно рисунку, оно равно двум клеткам. С учётом указанного масштаба, длина одной клетки равна 4 см. Таким образом, фокусное расстояние этой линзы F=8 см = 0,08 м.
Так как оптическая сила линзы (дптр).
Ответ: 12,5
Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Тонкие линзы. Построение изображений.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
07.05.2023
Одним из простейших оптических приборов является тонкая линза (рис. 144), которая широко используется как для исправления дефектов зрения, так и для получения оптических изображений. Какие изображения дает тонкая линза? Как связаны между собой расстояние от предмета до тонкой линзы и расстояние от линзы до изображения? |
Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся (рис. 145, а). Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 145, б).
Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой: .
Единица оптической силы — диоптрия (1 дптр). 1 дптр соответствует оптической силе линзы с фокусным расстоянием ; 1дптр = 1м-1
Линзы можно представить в виде совокупности трехгранных призм. На рисунке 145 изображена модель двояковыпуклой линзы, собранной из призм, повернутых основаниями к центру линзы (см. рис. 145, а). Соответственно, модель двояковогнутой линзы будет представлена призмами, повернутыми основаниями от центра линзы (см. рис. 145, б). Преломляющие углы этих призм можно подобрать таким образом, чтобы падающие на нее параллельные лучи после преломления в призмах собрались в одной точке F (см. рис. 145, 146).
Линза считается тонкой, если ее толщина в центре намного меньше радиусов ограничивающих ее поверхностей. Тонкая линза дает неискаженное изображение только в том случае, если свет монохроматический и предмет достаточно мал, следовательно, лучи распространяются вблизи главной оптической оси.
Отметим условия, при одновременном выполнении которых линза является собирающей (рис. 147, а):
— толщина в центре больше толщины у краев;
— ее показатель преломления больше показателя преломления окружающей среды.
При невыполнении (или выполнении) только одного из этих условий линза является рассеивающей (рис. 147, б):
Рассмотрим основные характеристики линзы (рис. 148 а, б).
Прямая линия, на которой лежат центры обеих сферических поверхностей линзы, называется главной оптической осью.
Точка линзы, проходя через которую луч не преломляется, называется оптическим центром.
Прямая линия, проходящая через оптический центр линзы, не совпадающая с главной оптической осью, называется побочной оптической осью. Каждая линза имеет только одну главную оптическую ось и бесконечно много побочных осей.
Плоскость, проходящая через оптический центр тонкой линзы перпендикулярно главной оптической оси, называют главной плоскостью линзы.
Точка, в которую собирается узкий пучок света после преломления в линзе, распространяющийся параллельно главной оптической оси, называется главным фокусом F линзы. Расстояние OF от оптического центра линзы до ее главного фокуса, называется фокусным расстоянием линзы.
Плоскость, проходящая через главный фокус перпендикулярно главной оптической оси, называется фокальной плоскостью. Фокальная плоскость собирающей линзы является геометрическим местом точек, в которых пересекаются параллельные лучи, падающие на линзу под любым углом к главной оптической оси. Поэтому, пучок света, направленный на собирающую линзу параллельно побочной оптической оси, собирается в побочном фокусе.
Построение изображений
Обычно для построений в линзах используют три характерных (стандартных) луча (рис. 149 а, б):
— луч (1), идущий через оптический центр линзы, не испытывает преломления;
— луч (2), параллельный главной оптической оси, после преломления проходит через главный фокус;
— луч (3), проходящий через главный фокус, после преломления идет параллельно главной оптической оси.
Для построения изображения в линзе достаточно построить ход двух лучей от каждой точки предмета (см. рис. 149). Изображение находится в месте пересечения лучей после преломления на поверхностях линзы (действительное изображение) или в месте пересечения продолжений лучей (мнимое изображение).
Отметим, что если предмет AB расположен перпендикулярно главной оптической оси, то и его изображение будет перпендикулярно этой оси. Поэтому достаточно построить только изображение точки предмета A, а изображение точки B находим, опуская перпендикуляр из точки на главную оптическую ось (см. рис. 149).
Для построения изображения точки, находящейся на главной оптической оси, кроме луча, проходящего через центр линзы, используют луч, падающий на нее параллельно какой либо побочной оптической оси (рис. 150). Этот луч после преломления в линзе пройдет через побочный фокус , лежащий на побочной оси. Такие построения приведены для собирающей и рассеивающей линз на рис. 150. На рисунке 151 приведен пример построения области видения предмета S в тонкой линзе.
Характеристики изображений
В зависимости от типа линзы и расстояния до нее можно получать изображения: увеличенные и уменьшенные, прямые и обратные (перевернутые), действительные и мнимые (рис. 152).
Между фокусным расстоянием тонкой линзы, расстоянием от предмета до линзы и от линзы до изображения существует определенная количественная зависимость, называемая формулой тонкой линзы.
Выведем формулу тонкой линзы из геометрических соображений, рассматривая ход характерных лучей. Луч, идущий через оптический центр O линзы, луч, параллельный главной оптической оси линзы, и луч, проходящий через главный фокус линзы.
Построим изображение предмета AB в тонкой собирающей линзе (рис. 153). Пусть расстояние от предмета до линзы d, расстояние от линзы до изображения f , фокусное расстояние линзы F , расстояние от предмета до переднего главного фокуса α , расстояние от заднего главного фокуса до изображения α‘ , высота предмета h, высота его изображения h’ .
Из рисунка 153 видно, что ΔABC ~ ΔCLO, ΔA’B’C» ~ ΔKOC» , ΔABO ~ ΔA’B’O. Из подобия треугольников следует
Используя соотношения (1) и (2), получим:
С учетом того, что d = α + F, f = α′ + F (см. рис. 153), находим α = d — F и α′ = f — F и подставляем в формулу (4):
(d — F)(f — F) = df — Ff — dF+ F2 = F2 |
Откуда получаем df = Ff + dF.
Разделив обе части последнего выражения на dfF, получаем формулу тонкой линзы:
(5) |
Для практического использования формулы линзы следует твердо запомнить правило знаков:
Для собирающей линзы, действительного источника и действительного изображения величины F, d, f считают положительными. Для рассеивающей линзы, мнимого источника и мнимого изображения — F, d, f считают отрицательными.
Заметим, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей.
Таким образом, линза с F > 0 является собирающей (положительной), а с F < 0 — рассеивающей (отрицательной).
Линейным (поперечным) увеличением Г называется отношение линейного размера изображения h’ к линейному размеру предмета h. Из соотношения (3) находим линейное увеличение тонкой линзы
(6) |
В современных оптических приборах для улучшения качества изображений используются системы линз. Оптическая сила D системы тонких линз, сложенных вместе, равна сумме их оптических сил Di
D = D1 + D2 + … + Dn | (7) |
Пример решения задачи
1. На каком расстоянии d от рассеивающей линзы с оптической силой D = — 4 дптр. надо поместить предмет, чтобы его мнимое изображение получилось в k = 5 раз меньше (Г = ) самого предмета? Постройте изображение предмета.
Дано:
D = — 4 дптр
Г =
d — ?
Решение:
Из формулы для линейного увеличения:
находим:
По формуле тонкой линзы (рис. 154) в соответствии с правилом знаков:
с учетом выражения для f получаем:
,
|
Ответ: d = 1м.
2. С помощью собирающей линзы можно получить два изображения одного и того же предмета с одинаковым увеличением. Расстояния от предмета до линзы при получении таких изображений и . Определите фокусное расстояние F линзы и увеличение Г предмета.
Дано:
F — ?
Решение:
Запишем формулу линзы для обоих случаев расположения предмета:
(1)
(2)
По условию задачи: ,
Откуда:
(3)
Приравниваем правые части (1) и (2) и, подставляя (3), находим:
. |
Откуда:
Тогда увеличение:
Фокусное расстояние линзы находим, подставляя найденное f1 в формулу линзы:
Ответ: F = 30 см, Г = 2,0.
Упражнение 17
1. Постройте изображение предмета AB в тонких собирающей и рассеивающей линзах (рис. 155, 156). Какое это изображение?
2. Определите построением положение фокусов тонкой линзы, если задана главная оптическая ось и ход произвольного луча ABC (рис. 157).
3. Заполните таблицу классификации изображений, даваемых тонкой линзой в различных случаях.
d |
f |
Г |
Вид изображения |
Формула линзы |
Собирающая линза |
||||
d > 2F |
||||
d = 2F |
||||
F < d < 2F |
||||
d = F |
||||
d < F |
||||
Рассеивающая линза |
||||
4. Изображение предмета, находящегося на расстоянии d = 32,0 см перед тонкой линзой, расположено на расстоянии f = 43,0 за линзой. Какая эта линза и чему равно ее фокусное расстояние F?
5. Фокусное расстояние тонкой собирающей линзы F = 15 см. Где расположен точечный источник света, если его действительное изображение получается на экране на расстоянии f = 40 см от линзы и удалено на H = 3,0 см от ее главной оптической оси?
6. Тонкая линза с фокусным расстоянием F = 12 см дает действительное изображение на расстоянии f = 20 см от линзы. Определите расстояние d, на котором расположен предмет, и найдите увеличение линзы.
7. Оптическая сила тонкой линзы . Где надо поместить предмет, чтобы получить мнимое изображение на расстоянии f = 25 см от линзы?
8. Предмет находится на расстоянии l = 60 см от экрана. Используя тонкую линзу, на экране получают сначала уменьшенное изображение предмета, а затем, перемещая линзу, получают изображение в 2 раза больше, чем первое. Определите фокусное расстояние F линзы.