Пусть из генеральной совокупности извлечена выборка объема П, в которой значение X1 некоторого исследуемого признака Х наблюдалось П1 раз, значение X2 — п2 раз, …, значение XK — Nk раз. Значения Xi называются Вариантами, а их последовательность, записанная в возрастающем порядке,— Вариационным рядом. Числа Ni называются Частотами, а их отношения к объему выборки
— Относительными частотами. При этом Ni = П. Модой Мo называется варианта, имеющая наибольшую частоту. Медианой те называется варианта, которая делит вариационный ряд на две части с одинаковым числом вариант в каждой. Если число вариант нечетно, т. е. K = 2L + 1, то Me = Xl+1; если же число вариант четно (k = 2L), То те = (Xl + Xl+1)/2. Размахом варьирования называется разность между максимальной и минимальной вариантами или длина интервала, которому принадлежат все варианты выборки:
Перечень вариант и соответствующих им частот называется Статистическим распределением выборки. Здесь имеется аналогия с законом распределения случайной величины: в теории вероятностей — это соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — это соответствие между наблюдаемыми вариантами и их частотами (относительными частотами). Нетрудно видеть, что сумма относительных частот равна единице: Wi = 1.
Пример 2. Выборка задана в виде распределения частот:
Найти распределение относительных частот и основные характеристики вариационного ряда.
Решение. Найдем объем выборки: П = 2 + 4 + 5 + 6 + 3 = 20. Относительные частоты соответственно равны W1 = 2/20 = 0,1; W2 = 4/20 = 0,2; W3 = 5/20 = 0,25; W4 = 6/20 = 0,3; W5 = 3/20 = 0,15. Контроль: 0,1 + 0,2 + 0,25 + 0,3 + 0,15 = 1. Искомое распределение относительных частот имеет вид
Мода этого вариационного ряда равна 12. Число вариант в данном случае нечетно: K = 2 ∙ 2 + 1, поэтому медиана Me = X3 = 8. Размах варьирования, согласно формуле (18.48), R = 17 – 4 = 13.
< Предыдущая | Следующая > |
---|
Написать распределение относительных частот.
Решение. Найдем
относительные частоты, для чего разделим
частоты на объем выборки:
,
,
.
Напишем
распределение относительных частот:
хi |
2 |
6 |
12 |
Wi |
0,15 |
0,5 |
0,35. |
Контроль:
0,15 + 0,5 + 0,35 = 1.
Эмпирической
функцией распределения
(функцией
распределения выборки)
называют функцию,
определяющую для каждого значения х
относительную частоту события X
< х
,
(5.28)
где
– число вариант, меньших х,
–объем выборки.
Таким образом,
для того чтобы найти, например,,
надо число вариант, меньших ,
разделить на объем выборки
.
(5.29)
В отличие от
эмпирической функции распределения
выборки интегральную функцию
распределения генеральной совокупности
называют теоретической
функцией распределения.
Различие между эмпирической и теоретической
функциями состоит в том, что теоретическая
функция
определяет вероятность события X
< х,
а эмпирическая
– определяет относительную частоту
этого же события. Согласно теореме
Бернулли, относительная частота события
Х <
х,
т.е.
стремится по вероятности к вероятности
этого события. Другими словами, числа
и
мало отличаются друг от друга. Отсюда
следует целесообразность использования
эмпирической функции распределения
выборки для приближенного представления
теоретической (интегральной) функции
распределения генеральной совокупности.
Из определения
функции
вытекают следующие ее свойства:
-
значения
эмпирической функции принадлежат
отрезку [0,1]; -
–неубывающая
функция; -
если x1
– наименьшая варианта, то
= 0 при х
x1; -
если xk
– наибольшая варианта, то
= 1 при х
> хk.
Итак, эмпирическая
функция распределения выборки служит
для оценки теоретической функции
распределения генеральной совокупности.
Пример. Построить
эмпирическую функцию по данному
распределению выборки:
Варианты хi 2 6 10 частоты ni 12 18 30.
Решение. Найдем
объем выборки: 12 + 18 + 30 = 60. Наименьшая
варианта равна 2, следовательно,
= 0
при
х <
2.
Значение Х
< 6, а
именно: x1
= 2
наблюдалось 12 раз, следовательно,
при
2 < x
6.
Значения Х
< 10, а
именно: x1
= 2 и
x2
= 6
наблюдались 12 + 18 = 30 раз, следовательно,
при 6 <
x
10.
Так как х
= 10
– наибольшая варианта, то
= 1
при
х > 10.
Искомая эмпирическая
функция
График этой
функции изображен на рис. 5.5.
Рис. 5.5.
5.4.4 Полигон и гистограмма
В целях наглядности
строят различные графики статистического
распределения и, в частности, полигон
и гистограмму.
Полигоном
частот
называют ломаную, отрезки которой
соединяют точки (x1,
n1),
(x2,
n2),
…, (xk,
nk).
Для построения полигона частот на оси
абсцисс откладывают варианты хi,
а на оси ординат – соответствующие им
частоты ni.
Точки (xi,
ni)
соединяют отрезками прямых и получают
полигон частот.
Полигоном
относительных частот
называют ломаную, отрезки которой
соединяют точки (x1,
W1),
(x2,
W2),…,
(xk,
Wk).
Для построения полигона относительных
частот на оси абсцисс откладывают
варианты xi,
a на оси ординат соответствующие им
относительные частоты Wi.
Точки (xi,
Wi)
соединяют отрезками прямых и получают
полигон относительных частот (рис. 5.6).
Рис. 5.6.
В ряде случаев,
в частности, в случае непрерывного
признака, целесообразно строить
гистограмму, для чего интервал, в котором
заключены все наблюдаемые значения
признака, разбивают на несколько
частичных интервалов длиною h
и находят для каждого частичного
интервала ni,
т.е.
сумму частот вариант, попавших в i-й
интервал.
Гистограммой
частот
называют ступенчатую фигуру, состоящую
из прямоугольников, основаниями которых
служат частичные интервалы длиною h,
а высоты равны отношению
(плотность частоты).
Для
построения гистограммы частот на оси
абсцисс откладывают частичные интервалы,
а над ними проводят отрезки, параллельные
оси абсцисс на расстоянии
.
Площадь
i-гo
частичного прямоугольника равна
сумме частот вариант i-го
интервала; следовательно, площадь
гистограммы частот равна сумме всех
частот, т.е. объему выборки.
Гистограммой
относительных частот
называют ступенчатую фигуру, состоящую
из прямоугольников, основаниями которых
служат частичные интервалы длиною h,
а высоты равны отношению
(плотность относительной частоты).
Для
построения гистограммы относительных
частот на оси абсцисс откладывают
частичные интервалы, а над ними проводят
отрезки, параллельные оси абсцисс на
расстоянии
(рис. 5.7). Площадьi-го
частичного прямоугольника равна
– относительной частоте вариант,
попавших вi-й
интервал. Следовательно, площадь
гистограммы относительных частот равна
сумме всех относительных частот, т.е.
единице.
Рис. 5.7.
Поможем решить контрольную, написать реферат, курсовую и диплом от 800р
Узнать стоимость
Статистическое распределение выборки
Содержание:
- Примеры использования формул и таблиц для решения практических задач
- Статистический интервальный ряд распределения
Предположим случай, когда из генеральной совокупности извлекается некоторая выборка, при этом каждому значению соответствует некоторый параметр, означающий количество раз, когда появлялось данное значение. Здесь $x_1$ было зафиксировано $n_1$ раз, $x_2$ было обнаружено $n_2$$x_k$ выявлено $n_k$. При этом
$sum_{i=1}^{k}n_i=n$
Где n — объём рассматриваемой выборки.
Определение 1
Используется следующая терминология: $x_k$ носят наименование вариантов, а последовательность таких вариантов, зафиксированный по возрастанию именуется вариационным рядом. Количество наблюдений каждого из вариантов носят название частот. При этом частное частот и выборки называют относительными частотами.
Определение 2
Статистическое распределение —это название всего набора вариантов и частот, которые с ними соотносятся. Чаще всего задаётся с помощью специальной таблицы, где представлены частоты, а также интервалы им соответствующие.
$x_1$ | $x_2$ | … | $x_k$ |
$n_1$ | $n_2$ | … | $n_k$ |
$frac{n_1}{n}$ | $frac{n_2}{n}$ | $frac{n_k}{n}$ |
Здесь в первой строке представлены варианты, во второй частоты, в третьеq взяты относительные частоты.
Для определения размера интервала используется следующее выражение:
$d=frac{x_{max}- x_{min}}{1+3,332cdot lg n}$
Здесь $x_{max}$, $x_{min}$ наибольшее и наименьшее значения ряда вариантов, а n характеризуем объём выборки.
Примеры использования формул и таблиц для решения практических задач
Пример 1
В ходе проведения измерений в однородных группах, были определены следующие значения выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72, 74. Необходимо использовать данные значения, что определить ряд распределения частот и ряд распределения относительных частот.
Решение.
1) Составим статистический ряд распределения частот:
xi | 70 | 71 | 72 | 73 | 74 |
ni | 2 | 4 | 8 | 2 | 4 |
2) Рассчитаем суммарный размер выборки: n=2+4+8+2+4=20. Определим относительные частоты, для этого используем формулы: ni/n=wi: wi=2/20=0.1; w2=4/20=0.2; w3=0.4; w4=4/20=0.1; w5=2/20=0.2. Теперь зафиксируем в таблице распределение относительных частот:
xi | 70 | 71 | 72 | 73 | 74 |
wi | 0.1 | 0.2 | 0.4 | 0.1 | 0.2 |
Контрольная сумма должна равняться единице: 0,1+0,2+0,4+0,1+0,2=1.
Полигон частот
Название «полигоном частот» применяют для обозначения ломаной линии, каждый отрезок, которой соединяют точки $(х_1,n_1),(х_2,n_2),…,(х_k,n_k)$. Для построения на графике полигона частот по оси абсцисс отмечают варианты $х_2$, при этом на оси ординат отсчитывают– соответствующие частоты $n_i$. Когда полученные точки $(х_i,n_i)$ соединяются с помощью отрезков, то автоматически получают полигон частот.
Статистический интервальный ряд распределения.
Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются, если число различающихся вариант в полученной выборке не слишком большое. Также применение возможно, когда дискретность имеет важное значение для экспериментатора. В тех случаях, когда важный для задачи признак генеральной совокупности Х распределяется непрерывным образом, либо его дискретность нет возможности учесть, то варианты предпочтительнее всего группировать, чтобы получить интервалы.
Статистическое распределение допустимо задавать в том числе в качестве последовательности интервалов и частот, соответствующих этим интервалам. При это за частоту какого-либо интервала принимается сумма всех частот, вошедших в данный интервал.
Особенно следует отметить ,что $h_i-h_{i-1}=h$ при всех i, т.е. группировка проводится с равным шагом h. Также в вопросе группировки можно ориентироваться на ряд полученных опытным путём рекомендацийу, касающихся таких параметров, как а, k и $h_i$:
1. $Rраз_{мах}=X_{max}-X_{min}$
2. $h=R/k$; k-число групп
3.$ kgeq 1+3.321lgn$ (формула Стерджеса)
4. $a=x_{min}, b=x_{max}$
5.$ h=a+h_i, i=0,1…k$
Определённую в ходе решения задачи группировку удобнее всего скомпоновать и перевести в вид специальной таблицы, которая также может именоваться — «статистический интервальный ряд распределения»:
Интервалы группировки | [h0;h1) | [h1;h2) | … | [hk-2;hk-1) | [hk-1;hk) |
Частоты | n1 | n2 | … | nk-1 | nk |
Таблицу подобного вида можно сделать, поменяв частоты $n_i$ на относительные частоты:
Интервалы группировки | [h0;h1) | [h1;h2) | … | [hk-2;hk-1) | [hk-1;hk) |
Отн. частоты | w1 | w2 | … | wk-1 | wk |
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример 2
На склад пришла крупная партия деталей. Из них методом случайного отбора взято 50 экземпляров. Рассматривая изделия по одному, особенно интересующему признаку — размеру, определённому с точностью до 1 см, получим следующий вариационный ряд: 22, 47, 26, 26, 30, 28, 28, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 40, 40, 40, 40, 40, 41, 41, 43, 44, 44, 45, 45, 47, 50. Требуется произвести расчёт и определить статистический интервальный ряд распределения.
Решение
Найдём параметры выборки используя сведения из условия задачи.
$k geq1+3,321cdot lg50=1+3.32lg(5cdot10)=1+3.32(lg5+lg10)=6.6$
Получили a=22, k=7, h=(50-22)/7=4, hi=22+4i, i=0,1,…,7.
Интервалы группировки | 22-26 | 26-30 | 30-34 | 34-38 | 38-42 | 42-46 | 46-50 |
Частоты | 1 | 4 | 10 | 18 | 9 | 5 | 3 |
Отн. частоты | 0.02 | 0.08 | 0.2 | 0.36 | 0.18 | 0.1 | 0.06 |
Десятичные логарифмы от 1 до 10
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
lnn≈ | 0 | 0.3 | 0.48 | 0.6 | 0.7 | 0.78 | 0.85 | 0.9 | 0.95 | 1 |
Не получается написать работу самому?
Доверь это кандидату наук!
Что такое относительное частотное распределение?
17 авг. 2022 г.
читать 2 мин
Распределение частоты описывает, как часто разные значения встречаются в наборе данных.
Например, предположим, что мы собираем простую случайную выборку из 400 домохозяйств в городе и записываем количество домашних животных в каждом домохозяйстве. В следующей таблице показаны результаты:
В этой таблице представлено частотное распределение.
Связанное распределение известно как распределение относительной частоты , которое показывает относительную частоту каждого значения в наборе данных в процентах от всех частот.
Например, в предыдущей таблице мы видели, что всего было 400 домохозяйств. Чтобы найти относительную частоту каждого значения в распределении, мы просто делим каждую отдельную частоту на 400:
Обратите внимание, что распределения относительной частоты обладают следующими свойствами:
- Каждая отдельная относительная частота находится в диапазоне от 0% до 100%.
- Сумма всех отдельных относительных частот составляет 100%.
Если эти условия не выполняются, то относительное частотное распределение недействительно.
Почему относительные частотные распределения полезны
Распределения относительной частоты полезны, потому что они позволяют нам понять, насколько распространено значение в наборе данных по отношению ко всем другим значениям.
В предыдущем примере мы видели, что у 150 домохозяйств было только одно домашнее животное. Но это число само по себе не особенно полезно.
Напротив, полезнее знать, что 37,5% всех домохозяйств в выборке имели только одно домашнее животное. Это помогает нам понять, что чуть более чем в 1 из 3 домохозяйств было только одно домашнее животное, что дает нам некоторое представление о том, насколько «обычно» иметь только одного домашнего животного.
Визуализация относительного частотного распределения
Самый распространенный способ визуализировать распределение относительной частоты — создать гистограмму относительной частоты , которая отображает отдельные значения данных по оси x графика и использует столбцы для представления относительной частоты каждого класса по оси y.
Например, вот как будет выглядеть гистограмма относительной частоты для данных из нашего предыдущего примера:
По оси X отображается количество домашних животных в домашнем хозяйстве, а по оси Y — относительная частота домашних хозяйств, в которых есть такое количество домашних животных.
Эта гистограмма помогает нам визуализировать распределение относительных частот.
Дополнительные ресурсы
Калькулятор относительной частоты
Как рассчитать относительную частоту в Excel
Как рассчитать относительную частоту в Python
Как создать гистограмму относительной частоты в R
При систематизации данных выборочных обследований используются статистические дискретные и интервальные ряды распределения.
1. Статистическое дискретное распределение. Полигон.
Пусть из генеральной совокупности извлечена выборка, причем х1 наблюдалось n1 раз, х2 – n2 раз, хk – nk раз и ∑ni=n — объем выборки. Наблюдаемые значения х1 называют вариантами, а последовательность вариант, записанных в возрастающем порядке – вариационным рядом. Число наблюдений варианты называют частотой, а ее отношение к объему выборки — относительной частотой ni/n=wi
ОПРЕДЕЛЕНИЕ. Статистическим (эмпирическим) законом распределения выборки, или просто статистическим распределением выборки называют последовательность вариант хi и соответствующих им частот ni или относительных частот wi.
Статистическое распределение выборки удобно представлять в форме таблицы распределения частот, называемой статистическим дискретным рядом распределения:
x1 | x2 | … | xm |
n1 | n2 | … | nm |
(сумма всех частот равна объему выборки ∑ni=n)
или в виде таблицы распределения относительных частот:
x1 | x2 | … | xm |
w1 | w2 | … | wm |
(сумма всех относительных частот равна единице ∑wi=1)
Пример 1. При измерениях в однородных группах обследуемых получены следующие выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72, 74 (частота пульса). Составить по этим результатам статистический ряд распределения частот и относительных частот.
Решение. 1) Статистический ряд распределения частот:
xi | 70 | 71 | 72 | 73 | 74 |
ni | 2 | 4 | 8 | 2 | 4 |
2) Объем выборки: n=2+4+8+2+4=20. Найдем относительные частоты, для чего разделим частоты на объем выборки ni/n=wi: wi=2/20=0.1; w2=4/20=0.2; w3=0.4; w4=4/20=0.1; w5=2/20=0.2. Напишем распределение относительных частот:
xi | 70 | 71 | 72 | 73 | 74 |
wi | 0.1 | 0.2 | 0.4 | 0.1 | 0.2 |
Контроль: 0,1+0,2+0,4+0,1+0,2=1.
Полигоном частот называют ломаную, отрезки, которой соединяют точки (х1,n1),(х2,n2),…,(хk,nk). Для построения полигона частот на оси абсцисс откладывают варианты х2, а на оси ординат – соответствующие им частоты ni. Точки (хi,ni) соединяют отрезками и получают полигон частот.
Полигоном относительных частот называют ломаную, отрезки, которой соединяют точки (х1,w1),(х2,w2),…,(хk,wk). Для построения полигона относительных частот на оси абсцисс откладывают варианты хi, а на оси ординат соответствующие им частоты wi. Точки (хi,wi) соединяют отрезками и получают полигон относительных частот.
Пример 2. Постройте полигон частот и относительных частот по данным примера 1.
Решение: Используя дискретный статистический ряд распределения, составленный в примере 1 построим полигон частот и полигон относительных частот:
2. Статистический интервальный ряд распределения. Гистограмма. Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются в том случае, когда отличных друг от друга вариант в выборке не слишком много, или тогда, когда дискретность по тем или иным причинам существенна для исследователя. Если же интересующий нас признак генеральной совокупности Х распределен непрерывно или его дискретность нецелесообразно ( или невозможно) учитывать, то варианты группируются в интервалы.
Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал).
Замечание. Часто hi-hi-1=h при всех i, т.е. группировку осуществляют с равным шагом h. В этой ситуации можно руководствоваться следующими эмперическими рекомендациями по выборке а, k и hi:
1. Rразмах=Xmax-Xmin
2. h=R/k; k-число групп
3. k≥1+3.321lgn (формула Стерджеса)
4. a=xmin, b=xmax
5. h=a+ih, i=0,1…k
Полученную группировку удобно представить в форме частотной таблицы, которая носит название статистический интервальный ряд распределения:
Интервалы группировки | [h0;h1) | [h1;h2) | … | [hk-2;hk-1) | [hk-1;hk) |
Частоты | n1 | n2 | … | nk-1 | nk |
Аналогическую таблицу можно образовать, заменяя частоты ni относительными частотами:
Интервалы группировки | [h0;h1) | [h1;h2) | … | [hk-2;hk-1) | [hk-1;hk) |
Отн. частоты | w1 | w2 | … | wk-1 | wk |
Пример 3. Из очень большой партии деталей извлечена случайная выборка объема 50 интересующий нас признак Х-размеры деталей, измеренные с точностью до 1см, представлен следующим вариоционным рядом: 22, 47, 26, 26, 30, 28, 28, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 40, 40, 40, 40, 40, 41, 41, 43, 44, 44, 45, 45, 47, 50. Найти статистический интервальный ряд распределения.
Решение. Определим характеристики группировки с помощью замечания.
k≥1+3.321lg50=1+3.32lg(5•10)=1+3.32(lg5+lg10)=6.6
Имеем, a=22, k=7, h=(50-22)/7=4, hi=22+4i, i=0,1,…,7.
Интервалы группировки | 22-26 | 26-30 | 30-34 | 34-38 | 38-42 | 42-46 | 46-50 |
Частоты ni | 1 | 4 | 10 | 18 | 9 | 5 | 3 |
Отн.частоты wi | 0.02 | 0.08 | 0.2 | 0.36 | 0.18 | 0.1 | 0.06 |
Десятичные логарифмы от 1 до 10
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
lnn≈ | 0 | 0.3 | 0.48 | 0.6 | 0.7 | 0.78 | 0.85 | 0.9 | 0.95 | 1 |
Наиболее информативной графической формой частот является специальный график, называемы гистограммой частот.
Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению ni/h (плотность частоты).
Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии ni/h. Площадь i-го частичного прямоугольника равна h•ni/h=ni — сумме частот вариант i-го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.
Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению wi/h (плотность относительной частоты).
Для построения гистограммы относительных частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии wi/h. Площадь i-го частичного прямоугольника равна h•wi/h=wi — относительной частоте вариант, попавших в i-й интервал. Следовательно, площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.
Пример 4. Постройте гистограмму частот и относительных частот по данным примера 3.
Выборочная медиана – это середина вариационного ряда, значение, расположенное на одинаковом расстоянии от левой и правой границы выборки.
Выборочная мода – это наиболее вероятное, т.е. чаще всего встречающееся, значение в выборке.
Добавлять комментарии могут только зарегистрированные пользователи.
Регистрация Вход