Как найти распределение относительных частот выборки

Пусть из генеральной совокупности извлечена выборка объ­ема П, в которой значение X1 некоторого исследуемого призна­ка Х наблюдалось П1 раз, значение X2 — п2 раз, …, значение XKNk раз. Значения Xi называются Вариантами, а их после­довательность, записанная в возрастающем порядке,— Вариационным рядом. Числа Ni называются Частотами, а их отно­шения к объему выборки

Относительными частотами. При этом Ni = П. Модой Мo называется варианта, имеющая наибольшую частоту. Ме­дианой те называется варианта, которая делит вариационный ряд на две части с одинаковым числом вариант в каждой. Если число вариант нечетно, т. е. K = 2L + 1, то Me = Xl+1; если же число вариант четно (k = 2L), То те = (Xl + Xl+1)/2. Разма­хом варьирования называется разность между максимальной и минимальной вариантами или длина интервала, которому принадлежат все варианты выборки:

Перечень вариант и соответствующих им частот называ­ется Статистическим распределением выборки. Здесь имеет­ся аналогия с законом распределения случайной величины: в теории вероятностей — это соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — это соответствие между наблюда­емыми вариантами и их частотами (относительными частота­ми). Нетрудно видеть, что сумма относительных частот равна единице: Wi = 1.

Пример 2. Выборка задана в виде распределения частот:

Найти распределение относительных частот и основные харак­теристики вариационного ряда.

Решение. Найдем объем выборки: П = 2 + 4 + 5 + 6 + 3 = 20. Относительные частоты соответственно равны W1 = 2/20 = 0,1; W2 = 4/20 = 0,2; W3 = 5/20 = 0,25; W4 = 6/20 = 0,3; W5 = 3/20 = 0,15. Контроль: 0,1 + 0,2 + 0,25 + 0,3 + 0,15 = 1. Искомое распределение относительных частот имеет вид

Мода этого вариационного ряда равна 12. Число вариант в дан­ном случае нечетно: K = 2 ∙ 2 + 1, поэтому медиана Me = X3 = 8. Размах варьирования, согласно формуле (18.48), R = 17 – 4 = 13.

< Предыдущая   Следующая >

Написать распределение относительных частот.

Решение. Найдем
относительные частоты, для чего разделим
частоты на объем выборки:

,

,

.

Напишем
распределение относительных частот:

хi

2

6

12

Wi

0,15

0,5

0,35.

Контроль:
0,15 + 0,5 + 0,35 = 1.

Эмпирической
функцией распределения

(
функцией
распределения выборки
)
называют функцию
,
определяющую для каждого значения
х
относительную частоту события
X
<
х

,
(5.28)

где
– число вариант, меньших
х,

объем выборки.

Таким образом,
для того чтобы найти, например,
,
надо число вариант, меньших
,
разделить на объем выборки

.
(5.29)

В отличие от
эмпирической функции распределения
выборки интегральную функцию

распределения генеральной совокупности
называют
теоретической
функцией распределения
.
Различие между эмпирической и теоретической
функциями состоит в том, что теоретическая
функция

определяет вероятность события
X
<
х,
а эмпирическая

– определяет относительную частоту
этого же события. Согласно теореме
Бернулли, относительная частота события
Х <
х,
т.е.

стремится по вероятности к вероятности

этого события. Другими словами, числа

и

мало отличаются друг от друга. Отсюда
следует целесообразность использования
эмпирической функции распределения
выборки для приближенного представления
теоретической (интегральной) функции
распределения генеральной совокупности.

Из определения
функции

вытекают следующие ее свойства:

  • значения
    эмпирической функции принадлежат
    отрезку [0,1];

  • неубывающая
    функция;

  • если x1
    – наименьшая варианта, то

    = 0 при
    х

    x1;

  • если xk
    – наибольшая варианта, то

    = 1 при
    х
    >
    хk.

Итак, эмпирическая
функция распределения выборки служит
для оценки теоретической функции
распределения генеральной совокупности.

Пример. Построить
эмпирическую функцию по данному
распределению выборки:

Варианты хi 2 6 10 частоты ni 12 18 30.

Решение. Найдем
объем выборки: 12 + 18 + 30 = 60. Наименьшая
варианта равна 2, следовательно,

= 0
при
х <
2.

Значение Х
< 6, а
именно:
x1
= 2
наблюдалось 12 раз, следовательно,

при
2 < x

6.

Значения Х
< 10, а
именно:
x1
= 2 и
x2
= 6
наблюдались 12 + 18 = 30 раз, следовательно,

при 6 <
x

10.

Так как х
= 10
– наибольшая варианта, то

= 1
при
х
> 10.

Искомая эмпирическая
функция

График этой
функции изображен на рис. 5.5.

Рис. 5.5.

5.4.4 Полигон и гистограмма

В целях наглядности
строят различные графики статистического
распределения и, в частности, полигон
и гистограмму.

Полигоном
частот

называют ломаную, отрезки которой
соединяют точки
(x1,
n1),
(x2,
n2),
…,
(xk,
nk).
Для построения полигона частот на оси
абсцисс откладывают варианты
хi,
а на оси ординат – соответствующие им
частоты
ni.
Точки
(xi,
ni)
соединяют отрезками прямых и получают
полигон частот.

Полигоном
относительных частот

называют ломаную, отрезки которой
соединяют точки
(x1,
W1),
(
x2,
W2),…,
(
xk,
Wk).
Для построения полигона относительных
частот на оси абсцисс откладывают
варианты
xi,
a на оси ординат соответствующие им
относительные частоты
Wi.

Точки (xi,
Wi)
соединяют отрезками прямых и получают
полигон относительных частот (рис. 5.6
).

Рис. 5.6.

В ряде случаев,
в частности, в случае непрерывного
признака, целесообразно строить
гистограмму, для чего интервал, в котором
заключены все наблюдаемые значения
признака, разбивают на несколько
частичных интервалов длиною
h
и находят для каждого частичного
интервала
ni,
т.е.
сумму частот вариант, попавших в
i
интервал.

Гистограммой
частот

называют ступенчатую фигуру, состоящую
из прямоугольников, основаниями которых
служат частичные интервалы длиною
h,
а высоты равны отношению
(плотность частоты).

Для
построения гистограммы частот на оси
абсцисс откладывают частичные интервалы,
а над ними проводят отрезки, параллельные
оси абсцисс на расстоянии
.

Площадь
i-гo
частичного прямоугольника равна

сумме частот вариант
i-го
интервала; следовательно, площадь
гистограммы частот равна сумме всех
частот, т.е. объему выборки.

Гистограммой
относительных частот

называют ступенчатую фигуру, состоящую
из прямоугольников, основаниями которых
служат частичные интервалы длиною
h,
а высоты равны отношению
(плотность относительной частоты).

Для
построения гистограммы относительных
частот на оси абсцисс откладывают
частичные интервалы, а над ними проводят
отрезки, параллельные оси абсцисс на
расстоянии
(рис. 5.7). Площадь
i-го
частичного прямоугольника равна
– относительной частоте вариант,
попавших в
i
интервал. Следовательно, площадь
гистограммы относительных частот равна
сумме всех относительных частот, т.е.
единице
.

Рис. 5.7.

Поможем решить контрольную, написать реферат, курсовую и диплом от 800р
Узнать стоимость

Статистическое распределение выборки

Содержание:

  • Примеры использования формул и таблиц для решения практических задач
  • Статистический интервальный ряд распределения

Предположим случай, когда из генеральной совокупности извлекается некоторая выборка, при этом каждому значению соответствует некоторый параметр, означающий количество раз, когда появлялось данное значение. Здесь $x_1$ было зафиксировано $n_1$ раз, $x_2$ было обнаружено $n_2$$x_k$ выявлено $n_k$. При этом

$sum_{i=1}^{k}n_i=n$

Где n — объём рассматриваемой выборки.

Определение 1

Используется следующая терминология: $x_k$ носят наименование вариантов, а последовательность таких вариантов, зафиксированный по возрастанию именуется вариационным рядом. Количество наблюдений каждого из вариантов носят название частот. При этом частное частот и выборки называют относительными частотами.

Определение 2

Статистическое распределение —это название всего набора вариантов и частот, которые с ними соотносятся. Чаще всего задаётся с помощью специальной таблицы, где представлены частоты, а также интервалы им соответствующие.

$x_1$ $x_2$ $x_k$
$n_1$ $n_2$ $n_k$
$frac{n_1}{n}$ $frac{n_2}{n}$ $frac{n_k}{n}$

Здесь в первой строке представлены варианты, во второй частоты, в третьеq взяты относительные частоты.

Для определения размера интервала используется следующее выражение:

$d=frac{x_{max}- x_{min}}{1+3,332cdot lg n}$

Здесь $x_{max}$, $x_{min}$ наибольшее и наименьшее значения ряда вариантов, а n характеризуем объём выборки.

Примеры использования формул и таблиц для решения практических задач

Пример 1

В ходе проведения измерений в однородных группах, были определены следующие значения выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72, 74. Необходимо использовать данные значения, что определить ряд распределения частот и ряд распределения относительных частот.

Решение.

1) Составим статистический ряд распределения частот:

xi 70 71 72 73 74
ni 2 4 8 2 4

2) Рассчитаем суммарный размер выборки: n=2+4+8+2+4=20. Определим относительные частоты, для этого используем формулы: ni/n=wi: wi=2/20=0.1; w2=4/20=0.2; w3=0.4; w4=4/20=0.1; w5=2/20=0.2. Теперь зафиксируем в таблице распределение относительных частот:

xi 70 71 72 73 74
wi 0.1 0.2 0.4 0.1 0.2

Контрольная сумма должна равняться единице: 0,1+0,2+0,4+0,1+0,2=1.

Полигон частот

Название «полигоном частот» применяют для обозначения ломаной линии, каждый отрезок, которой соединяют точки $(х_1,n_1),(х_2,n_2),…,(х_k,n_k)$. Для построения на графике полигона частот по оси абсцисс отмечают варианты $х_2$, при этом на оси ординат отсчитывают– соответствующие частоты $n_i$. Когда полученные точки $(х_i,n_i)$ соединяются с помощью отрезков, то автоматически получают полигон частот.

Статистический интервальный ряд распределения.

Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются, если число различающихся вариант в полученной выборке не слишком большое. Также применение возможно, когда дискретность имеет важное значение для экспериментатора. В тех случаях, когда важный для задачи признак генеральной совокупности Х распределяется непрерывным образом, либо его дискретность нет возможности учесть, то варианты предпочтительнее всего группировать, чтобы получить интервалы.

Статистическое распределение допустимо задавать в том числе в качестве последовательности интервалов и частот, соответствующих этим интервалам. При это за частоту какого-либо интервала принимается сумма всех частот, вошедших в данный интервал.

Особенно следует отметить ,что $h_i-h_{i-1}=h$ при всех i, т.е. группировка проводится с равным шагом h. Также в вопросе группировки можно ориентироваться на ряд полученных опытным путём рекомендацийу, касающихся таких параметров, как а, k и $h_i$:

1. $Rраз_{мах}=X_{max}-X_{min}$

2. $h=R/k$; k-число групп

3.$ kgeq 1+3.321lgn$ (формула Стерджеса)

4. $a=x_{min}, b=x_{max}$

5.$ h=a+h_i, i=0,1…k$

Определённую в ходе решения задачи группировку удобнее всего скомпоновать и перевести в вид специальной таблицы, которая также может именоваться — «статистический интервальный ряд распределения»:

Интервалы группировки [h0;h1) [h1;h2) [hk-2;hk-1) [hk-1;hk)
Частоты n1 n2 nk-1 nk

Таблицу подобного вида можно сделать, поменяв частоты $n_i$ на относительные частоты:

Интервалы группировки [h0;h1) [h1;h2) [hk-2;hk-1) [hk-1;hk)
Отн. частоты w1 w2 wk-1 wk

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример 2

На склад пришла крупная партия деталей. Из них методом случайного отбора взято 50 экземпляров. Рассматривая изделия по одному, особенно интересующему признаку — размеру, определённому с точностью до 1 см, получим следующий вариационный ряд: 22, 47, 26, 26, 30, 28, 28, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 40, 40, 40, 40, 40, 41, 41, 43, 44, 44, 45, 45, 47, 50. Требуется произвести расчёт и определить статистический интервальный ряд распределения.

Решение

Найдём параметры выборки используя сведения из условия задачи.

$k geq1+3,321cdot lg50=1+3.32lg(5cdot10)=1+3.32(lg5+lg10)=6.6$

Получили a=22, k=7, h=(50-22)/7=4, hi=22+4i, i=0,1,…,7.

Интервалы группировки 22-26 26-30 30-34 34-38 38-42 42-46 46-50
Частоты 1 4 10 18 9 5 3
Отн. частоты 0.02 0.08 0.2 0.36 0.18 0.1 0.06

Десятичные логарифмы от 1 до 10

n 1 2 3 4 5 6 7 8 9 10
lnn≈ 0 0.3 0.48 0.6 0.7 0.78 0.85 0.9 0.95 1

Не получается написать работу самому?

Доверь это кандидату наук!

Что такое относительное частотное распределение?

  • Редакция Кодкампа

17 авг. 2022 г.
читать 2 мин


Распределение частоты описывает, как часто разные значения встречаются в наборе данных.

Например, предположим, что мы собираем простую случайную выборку из 400 домохозяйств в городе и записываем количество домашних животных в каждом домохозяйстве. В следующей таблице показаны результаты:

В этой таблице представлено частотное распределение.

Связанное распределение известно как распределение относительной частоты , которое показывает относительную частоту каждого значения в наборе данных в процентах от всех частот.

Например, в предыдущей таблице мы видели, что всего было 400 домохозяйств. Чтобы найти относительную частоту каждого значения в распределении, мы просто делим каждую отдельную частоту на 400:

Относительное частотное распределение

Обратите внимание, что распределения относительной частоты обладают следующими свойствами:

  • Каждая отдельная относительная частота находится в диапазоне от 0% до 100%.
  • Сумма всех отдельных относительных частот составляет 100%.

Если эти условия не выполняются, то относительное частотное распределение недействительно.

Почему относительные частотные распределения полезны

Распределения относительной частоты полезны, потому что они позволяют нам понять, насколько распространено значение в наборе данных по отношению ко всем другим значениям.

В предыдущем примере мы видели, что у 150 домохозяйств было только одно домашнее животное. Но это число само по себе не особенно полезно.

Напротив, полезнее знать, что 37,5% всех домохозяйств в выборке имели только одно домашнее животное. Это помогает нам понять, что чуть более чем в 1 из 3 домохозяйств было только одно домашнее животное, что дает нам некоторое представление о том, насколько «обычно» иметь только одного домашнего животного.

Визуализация относительного частотного распределения

Самый распространенный способ визуализировать распределение относительной частоты — создать гистограмму относительной частоты , которая отображает отдельные значения данных по оси x графика и использует столбцы для представления относительной частоты каждого класса по оси y.

Например, вот как будет выглядеть гистограмма относительной частоты для данных из нашего предыдущего примера:

По оси X отображается количество домашних животных в домашнем хозяйстве, а по оси Y — относительная частота домашних хозяйств, в которых есть такое количество домашних животных.

Эта гистограмма помогает нам визуализировать распределение относительных частот.

Дополнительные ресурсы

Калькулятор относительной частоты
Как рассчитать относительную частоту в Excel
Как рассчитать относительную частоту в Python
Как создать гистограмму относительной частоты в R

При систематизации данных выборочных обследований используются статистические дискретные и интервальные ряды распределения.

1. Статистическое дискретное распределение. Полигон.
Пусть из генеральной совокупности извлечена выборка, причем х1 наблюдалось n1 раз, х2 – n2 раз, хk – nk раз и ∑ni=n — объем выборки. Наблюдаемые значения х1 называют вариантами, а последовательность вариант, записанных в возрастающем порядке – вариационным рядом. Число наблюдений варианты называют частотой, а ее отношение к объему выборки — относительной частотой ni/n=wi

ОПРЕДЕЛЕНИЕ. Статистическим (эмпирическим) законом распределения выборки, или просто статистическим распределением выборки называют последовательность вариант хi и соответствующих им частот ni или относительных частот wi.

Статистическое распределение выборки удобно представлять в форме таблицы распределения частот, называемой статистическим дискретным рядом распределения:

x1 x2 xm
n1 n2 nm

(сумма всех частот равна объему выборки ∑ni=n)
или в виде таблицы распределения относительных частот:

x1 x2 xm
w1 w2 wm

(сумма всех относительных частот равна единице ∑wi=1)

Пример 1. При измерениях в однородных группах обследуемых получены следующие выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72, 74 (частота пульса). Составить по этим результатам статистический ряд распределения частот и относительных частот.

Решение. 1) Статистический ряд распределения частот:

xi 70 71 72 73 74
ni 2 4 8 2 4

2) Объем выборки: n=2+4+8+2+4=20. Найдем относительные частоты, для чего разделим частоты на объем выборки ni/n=wi: wi=2/20=0.1; w2=4/20=0.2; w3=0.4; w4=4/20=0.1; w5=2/20=0.2. Напишем распределение относительных частот:

xi 70 71 72 73 74
wi 0.1 0.2 0.4 0.1 0.2

Контроль: 0,1+0,2+0,4+0,1+0,2=1.

Полигоном частот называют ломаную, отрезки, которой соединяют точки (х1,n1),(х2,n2),…,(хk,nk). Для построения полигона частот на оси абсцисс откладывают варианты х2, а на оси ординат – соответствующие им частоты ni. Точки (хi,ni) соединяют отрезками и получают полигон частот.

Полигоном относительных частот называют ломаную, отрезки, которой соединяют точки (х1,w1),(х2,w2),…,(хk,wk). Для построения полигона относительных частот на оси абсцисс откладывают варианты хi, а на оси ординат соответствующие им частоты wi. Точки (хi,wi) соединяют отрезками и получают полигон относительных частот.

Пример 2. Постройте полигон частот и относительных частот по данным примера 1.
Решение: Используя дискретный статистический ряд распределения, составленный в примере 1 построим полигон частот и полигон относительных частот:

2. Статистический интервальный ряд распределения. Гистограмма. Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются в том случае, когда отличных друг от друга вариант в выборке не слишком много, или тогда, когда дискретность по тем или иным причинам существенна для исследователя. Если же интересующий нас признак генеральной совокупности Х распределен непрерывно или его дискретность нецелесообразно ( или невозможно) учитывать, то варианты группируются в интервалы.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал).

Замечание. Часто hi-hi-1=h при всех i, т.е. группировку осуществляют с равным шагом h. В этой ситуации можно руководствоваться следующими эмперическими рекомендациями по выборке а, k и hi:

1. Rразмах=Xmax-Xmin
2. h=R/k; k-число групп
3. k≥1+3.321lgn (формула Стерджеса)
4. a=xmin, b=xmax
5. h=a+ih, i=0,1…k

Полученную группировку удобно представить в форме частотной таблицы, которая носит название статистический интервальный ряд распределения:

Интервалы группировки [h0;h1) [h1;h2) [hk-2;hk-1) [hk-1;hk)
Частоты n1 n2 nk-1 nk

Аналогическую таблицу можно образовать, заменяя частоты ni относительными частотами:

Интервалы группировки [h0;h1) [h1;h2) [hk-2;hk-1) [hk-1;hk)
Отн. частоты w1 w2 wk-1 wk

Пример 3. Из очень большой партии деталей извлечена случайная выборка объема 50 интересующий нас признак Х-размеры деталей, измеренные с точностью до 1см, представлен следующим вариоционным рядом: 22, 47, 26, 26, 30, 28, 28, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 40, 40, 40, 40, 40, 41, 41, 43, 44, 44, 45, 45, 47, 50. Найти статистический интервальный ряд распределения.

Решение. Определим характеристики группировки с помощью замечания.
k≥1+3.321lg50=1+3.32lg(5•10)=1+3.32(lg5+lg10)=6.6
Имеем, a=22, k=7, h=(50-22)/7=4, hi=22+4i, i=0,1,…,7.

Интервалы группировки 22-26 26-30 30-34 34-38 38-42 42-46 46-50
Частоты ni 1 4 10 18 9 5 3
Отн.частоты wi 0.02 0.08 0.2 0.36 0.18 0.1 0.06

Десятичные логарифмы от 1 до 10

n 1 2 3 4 5 6 7 8 9 10
lnn 0 0.3 0.48 0.6 0.7 0.78 0.85 0.9 0.95 1

Наиболее информативной графической формой частот является специальный график, называемы гистограммой частот.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению ni/h (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии ni/h. Площадь i-го частичного прямоугольника равна h•ni/h=ni — сумме частот вариант i-го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению wi/h (плотность относительной частоты).

Для построения гистограммы относительных частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии wi/h. Площадь i-го частичного прямоугольника равна h•wi/h=wi — относительной частоте вариант, попавших в i-й интервал. Следовательно, площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

Пример 4. Постройте гистограмму частот и относительных частот по данным примера 3.

Выборочная медиана – это середина вариационного ряда, значение, расположенное на одинаковом расстоянии от левой и правой границы выборки.

Выборочная мода – это наиболее вероятное, т.е. чаще всего встречающееся, значение в выборке.

Добавлять комментарии могут только зарегистрированные пользователи.

Регистрация Вход

Понравилась статья? Поделить с друзьями:
  • Как найти реакции вконтакте
  • Соединение не защищено как исправить яндекс браузер как отключить
  • Как найти процент лекарства
  • Как найти другую планету в космосе
  • Как быстро найти нод двух чисел