Как найти распределенную нагрузку на площадь

Распределенная нагрузка

Распределенной нагрузкой называют внешние или внутренние усилия, которые приложены не в одной точке твердого тела (т.е. не сосредоточены в одной точке), а равномерно, случайным образом или по заданному закону распределены по его определенной длине, площади (поверхности) или объему.
Плоская распределенная нагрузка
Рассмотрим виды распределенных нагрузок q: линейную, равномерную, треугольную (возрастающую или убывающую), трапециевидную, нелинейную, наклонную (направленную под углом) и замену их результирующей сосредоточенной силой — равнодействующей Q (Rq)

Воздействие на детали, конструкции, элементы механизмов может быть задано распределенными нагрузками: в плоской системе задается интенсивность действия по длине конструкции, в пространственной системе – по площади.

Нагрузка распределенная по площади
Это может быть собственный вес элемента конструкции, давление газа или воды, распределенный вес сыпучих материалов, ветровая нагрузка и тому подобное.

Обозначение распределенной нагрузки — q

Размерность:

  • линейной нагрузки — Н/м,
  • нагрузки распределенной по площади — Н/м2,
  • объемной (например при учете собственного веса элементов конструкции) — Н/м3.

или кратные им, например кН/м.

Равнодействующая распределенной нагрузки

При решении некоторых задач технической и теоретической механики, распределенную нагрузку удобно заменять её равнодействующей, обозначаемой Q или Rq, которая для линейного случая распределения, определяется произведением интенсивности нагрузки q на её длину AB.

Равнодействующая распределенной нагрузки действует в точке, расположенной в центре тяжести фигуры, ограниченной профилем её распределения.

Рассмотрим способы замены распределенных нагрузок их равнодействующей.

Равномерно распределенная нагрузка

Равномерно распределенная по длине AB нагрузка интенсивностью q, измеряемая в Н/м
Равномерно распределенная нагрузка
может быть заменена сосредоточенной силой Q (Rq)
Равнодействующая равномерно распределенной нагрузки

приложенной в центре (на пересечении диагоналей) прямоугольника, середине отрезка AB.

Линейно изменяющаяся (треугольная) нагрузка

Треугольная, линейно изменяющаяся убывающая (возрастающая) нагрузка
Треугольная распределенная нагрузка
может быть заменена равнодействующей силой, приложенной в точке C
Равнодействующая треугольной распределенной нагрузки
Отметим, что центр тяжести треугольника находится на пересечении его медиан, на расстоянии 1/3 высоты от основания или 2/3 высоты от его вершин.

Трапециевидная распределенная нагрузка

Трапециевидная, равномерно убывающая или возрастающая нагрузка характеризуется длиной и двумя значениями интенсивности распределения нагрузки: минимальной qmin и максимальной qmax
Трапециевидная распределенная нагрузка
Профиль такой нагрузки представляет собой трапецию.
Величина и положение равнодействующей Q в данном случае определяется по выражениям
Равнодействующая трапециевидной распределенной нагрузки

Нелинейная распределенная нагрузка

В произвольном общем случае, интенсивность распределения нагрузки по её длине может описываться одной или несколькими функциями.

Нелинейная распределенная нагрузка
Зная функцию q(x), сосредоточенная эквивалентная (равнодействующая) сила рассчитывается по формуле
Равнодействующая нелинейной распределенной нагрузки

Эта сила также приложена в центре тяжести площади, ограниченной сверху от балки AB линией q(x).

Для расчета точки приложения равнодействующей нагрузки необходимо вычислить координату положения центра тяжести фигуры, образуемой нагрузкой.

Наклонная распределенная нагрузка

В случаях, когда распределенная нагрузка приложена под определенным углом, величина равнодействующей определяется аналогично ранее описанным способам.
Наклонная распределенная нагрузка

При этом угол наклона самой силы будет равен углу наклона нагрузки q.

Например, линия действия равнодействующей наклонной равномерно распределенной нагрузки будет пересекать ось балки ровно посередине между крайними точками её приложения.

Величина равнодействующей будет равна площади параллелограмма, образованного профилем нагрузки.

Как рассчитывается момент распределенной нагрузки

Распределенная нагрузка от давления

Примером распределенной нагрузки от давления может служить расчет усилий, разрывающих стенки баллона со сжатым газом.

Определим результирующую силу давления в секторе трубы при интенсивности q [Н/м];
Распределенная нагрузка от давления
где:
R – радиус трубы,
2α – центральный угол,
ось Ox – ось симметрии.

Выделим элемент сектора с углом ∆φ и определим силу ∆Q, действующую на плоский элемент дуги:

Проекция этой силы на ось Ox будет

В силу симметрии элемента трубы (с дугой AB) относительно оси Ox проекция результирующей силы на ось Oy:

Qy = 0, т.е. Q = Qx,

Тогда

где АВ – хорда, стягивающая концы дуги.

Для цилиндрической емкости высотой h и внутренним давлением P на стенки действует равномерно распределенная нагрузка интенсивностью q = p [Н/м2].

Распределенная нагрузка как напряжения
Если цилиндр рассечен по диаметру, то равнодействующая этих сил равна

F = q ∙ d ∙ h

где, d – внутренний диаметр, или

F = p ∙ 2R ∙ h.

Тогда, разрывающие баллон по диаметру усилия:

S1 = S2 = S;
2S = F;
S = p∙h∙R.

Если принять что a – толщина стенки, то (пренебрегая усилиями в крышке и дне цилиндра) растягивающее напряжение в стенке равно

Растягивающее напряжение в стенке трубы

Примеры решения задач >
Уравнения равновесия системы сил >

Как собрать нагрузку от перегородок

Видео-курсы от Ирины Михалевской

Содержание:

1. Пример 1.

2. Как собрать нагрузку от перегородок для расчета монолитной плиты.

3. Как собрать нагрузку от перегородок для расчета колонн и фундаментов

4. Пример 2. Собрать нормативную (характеристическую) нагрузку от перегородок на колонну и на стену.

5. Как собрать нагрузку от перегородок для расчета (или проверки) сборной плиты

6. Пример 3. Перегородка проходит поперек сборной плиты.

7. Пример 4. Перегородка проходит вдоль сборной плиты.

8. Пример 5. Перегородки находятся над частью сборной плиты.

В ДБН В.1.2-2:2006 «Нагрузки и воздействия» о сборе нагрузок от перегородок сказано скупо:

ДБН Нагрузки и воздействия п. 6.6

Давайте разберемся, как рациональней собирать нагрузку от перегородок для различных ситуаций.

Что такое характеристическая нагрузка? Это нормативная нагрузка еще безо всяких коэффициентов, т.е. фактический вес перегородок. Этот фактический  вес, по сути, распределен по очень узкой площади (т.к. толщина перегородки обычно не превышает 150 мм), и наиболее правдоподобным будет принимать нагрузку от перегородки как линейную. Что это значит?

Пример 1. Есть кирпичная перегородка высотой 2,5 м, толщиной 0,12 м, длиной 3 м, ее объемный вес равен 1,8 т/м3. Нужно собрать нагрузку от перегородки на плиту.

Она оштукатурена с двух сторон, каждый слой штукатурки имеет толщину 0,02 м, объемный вес штукатурки 1,6 т/м3. Нужно найти нормативную (характеристическую) нагрузку от перегородки для расчета плиты перекрытия.

Найдем вес 1 м 2 перегородки:

(1,8∙0,12 + 1,6∙2∙0,02)∙1 = 0,28 т/м2 (здесь 1 – это площадь перегородки).

Зная высоту перегородки, определим, сколько будет весить погонный метр перегородки:

0,28∙2,5 = 0,7 т/м.

Линейная нагрузка от перегородки

Таким образом, мы получили погонную линейную нагрузку 0,7 т/м, которая будет действовать на плиту перекрытия под всей перегородкой (каждый метр перегородки весит 0,7 т/м). Суммарный же вес перегородки будет равен 0,7∙3 = 2,1 т, но такое значение для расчета нужно далеко не всегда.

Теперь рассмотрим, в каких ситуациях нагрузку от перегородок следует оставлять в виде линейной нагрузки, а когда – переводить в равномерно распределенные по площади нагрузки, как это рекомендуется в п. 6.6 ДБН «Нагрузки и воздействия».

Сразу оговорюсь, если вы считаете перекрытие в программном комплексе, позволяющем с легкостью задавать перегородки или линейную нагрузку от них, следует воспользоваться этой возможностью и делать наиболее приближенный к жизни расчет – такой, где все нагрузки от перегородок в виде линейно-распределенных расположены каждая на своем месте.

Если же вы считаете вручную или же по каким-то причинам хотите упростить программный счет (вдруг, компьютер не тянет такое обилие перегородок), следует проанализировать, как это делать и делать ли.

Как собрать нагрузку от перегородок для расчета монолитной плиты

Рассмотрим варианты с монолитным перекрытием. Допустим, есть у нас фрагмент монолитного перекрытия, на который необходимо собрать нагрузку от перегородок, превратив ее в равномерно распределенную.

Нагрузка от перегородки

Что для этого нужно? Во-первых, как в примере 1, нужно определить нагрузку от 1 погонного метра перегородки, а также суммарную длину перегородок.

Допустим, погонная нагрузка у нас 0,3 т/м (перегородки газобетонные), а суммарная длина всех перегородок 76 м. Площадь участка перекрытия 143 м2.

Первое, что мы можем сделать, это размазать нагрузку от всех перегородок по имеющейся площади перекрытия (найдя вес всех перегородок и разделив его на площадь плиты):

0,3∙76/143 = 0,16 т/м2.

Казалось бы, можно так и оставить, и приложить нагрузку на все перекрытие и сделать расчет. Но давайте присмотримся, у нас есть разные по интенсивности загруженности участки перекрытия. Где-то перегородок вообще нет, а где-то (в районе вентканалов) их особенно много. Справедливо ли по всему перекрытию оставлять одинаковую нагрузку? Нет. Давайте разобьем плиту на участки с примерно одинаковой загруженностью перегородками.

Нагрузка от перегородок по участкам

На желтом участке перегородок нет вообще, справедливо будет, если нагрузка на этой площади будет равна 0 т/м2.

На зеленом участке общая длина перегородок составляет 15,3 м. Площадь участка 12 м2 (заметьте, площадь лучше брать не строго по перегородкам, а отступая от них где-то на толщину перекрытия, т.к. нагрузка на плиту передается не строго вертикально, а расширяется под углом 45 градусов). Тогда нагрузка на этом участке будет равна:

0,3∙15,3/12 = 0,38 т/м2.

На розовом участке общая длина перегородок составляет 38,5 м, а площадь участка равна 58 м2. Нагрузка на этом участке равна:

0,3∙38,5/58 = 0,2 т/м2.

На каждом синем участке общая длина перегородок составляет 11,1 м, а площадь каждого синего участка равна 5 м2. Нагрузка на синих участках равна:

0,3∙11,1/5 = 0,67 т/м2.

В итоге, мы имеем следующую картину по нагрузке (смотрим на рисунок ниже):

Распределенная нагрузка от перегородок

Видите, как значительно различаются нагрузки на этих участках? Естественно, если сделать расчет при первом (одинаковом для всей плиты) и втором (уточненном) варианте загружения, то армирование будет разным.

Делаем вывод: всегда нужно тщательно анализировать, какую часть плиты загружать равномерной нагрузкой от перегородок, чтобы результат расчета был правдоподобным.

Если вы собираете нагрузку от перегородок на перекрытие, опирающееся на стены по четырем сторонам, то следует руководствоваться следующим принципом:

 Зоны сбора нагрузок для стен

Как собрать нагрузку от перегородок для расчета колонн и фундаментов

Теперь рассмотрим на том же примере, как следует собирать нагрузку от перегородок для расчета колонн и стен или фундаментов под ними. Конечно, если вы делаете расчет перекрытия, то в результате такого расчета вы получите реакции на опорах, которые и будут нагрузками на колонны и стены. Но если перекрытие по каким-то причинам не считаете, а требуется просто собрать нагрузку от перегородок, то как быть?

Здесь начинать нужно не с анализа загруженности частей плиты. Первый шаг в таком случае – это разделить плиту на грузовые площади для каждой колонны и стены.

Зоны сбора нагрузок для стен и колонн

На рисунке показано, как это сделать. Расстояние между колоннами делится пополам и проводятся горизонтальные линии. Точно так же ровно посередине между колоннами и между колоннами и нижней стеной проводятся горизонтали. В итоге в районе колонн плита поделена на квадраты. Все перегородки, попадающие в квадрат конкретной колонны, нагружают именно эту колонну. А на стену приходится нагрузка с полосы, ширина которой равна половине пролета. Остается только на каждом участке, где есть перегородки, посчитать суммарную длину этих перегородок и весь их вес передать на колонну.

Пример 2. Собрать нормативную (характеристическую) нагрузку от перегородок на розовую колонну и на стену с рисунка выше.

Вес одного погонного метра перегородки 0,35 кг. Суммарная длина перегородок в квадрате розовой колонны 5,4 м (из этих 5,4 м, одна перегородка длиной 1,4 м находится ровно на границе между двумя колоннами, а 4 м – в квадрате сбора нагрузки). Суммарная длина перегородок на полосе сбора нагрузки для стены – 18 м, длина стены 15,4 м.

Соберем нагрузку на колонну:

0,35∙4 + 0,35∙1,4/2 = 1,65 т.

Здесь мы взяли всю нагрузку от четырех метров стен и половину нагрузки от стены длиной 1,4 м (вторая половина пойдет на другую колонну).

На колонну также придется изгибающий момент от веса перегородок (если перекрытие опирается жестко), но без расчета плиты момент определить сложно.

Соберем нагрузку на стену. Нагрузка собирается на 1 погонный метр стены. Так как перегородки расположены довольно равномерно, находится общий вес всех перегородок и делится на длину стены:

0,35∙18/15,4 = 0,41 т/м.

Как собрать нагрузку от перегородок для расчета (или проверки) сборной плиты

Так как сборные плиты имеют четкую конфигурацию и схему опирания (обычно по двум сторонам), то подход для сбора нагрузок от перегородок должен быть особенным. Рассмотрим варианты сбора нагрузок на примерах.

Пример 3. Перегородка проходит поперек плиты.

Сосредоточенная нагрузка от перегородки на плиту

Толщина перегородки 0,12 м, высота 3 м, объемный вес 1,8 т/м3; два слоя штукатурки по 0,02 м толщиной каждый, объемным весом 1,6 т/м3. Ширина плиты 1,2 м.

Так как плита считается как балка на двух опорах, то нагрузку от перегородки следует брать сосредоточенную – в виде вертикальной силы, приложенной к «балке» в месте опирания перегородки. Величина сосредоточенной силы равна весу всей перегородки:

0,12∙3∙1,2∙1,8 + 2∙0,02∙3∙1,2∙1,6 = 1,0 т.

Пример 4. Перегородка проходит вдоль сборной плиты.

Распределенная нагрузка от перегородки на плиту

В таком случае, не зависимо от того, где находится перегородка – посередине или на краю плиты, нагрузка от нее берется равномерно распределенной вдоль плиты. Эта нагрузка собирается на 1 погонный метр плиты.

Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м3.

Определим равномерно распределенную нагрузку 1 п.м плиты:

0,1∙2,5∙1∙0,25 = 0,06 т/м.

Пример 5. Перегородки находятся над частью плиты.

Нагрузка от перегородок на части плиты

Когда плиту пересекает несколько перегородок, у нас есть два варианта:

1) выделить нагрузку от продольных перегородок в равномерно распределенную, а нагрузку от поперечных перегородок – в сосредоточенную;

2) всю нагрузку  сделать равномерно распределенной, «размазав» ее по участку плиты с перегородками.

Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м3. Ширина плиты 1,5 м, длина продольной перегородки 3 м, длина двух самых коротких перегородок 0,7 м.

Определим нагрузку на плиту по варианту 1.

Равномерно распределенная нагрузка равна:

0,1∙2,5∙1∙0,25 = 0,06 т/м.

Сосредоточенная нагрузка от крайней правой перегородки равна:

0,1∙2,5∙1,5∙0,25 = 0,1 т.

Сосредоточенная нагрузка от каждой из двух коротких перегородок равна:

0,1∙2,5∙0,7∙0,25 = 0,044 т.

Определим нагрузку на плиту по варианту 2.

Найдем общий вес всех перегородок:

0,1∙2,5∙0,25∙(3 + 1,5 + 0,7∙2) = 0,37 т.

Найдем длину перегородки, на которой действует нагрузка:

3 + 0,1 = 3,1 м.

Найдем величину равномерно распределенной нагрузки на участке 3,1 м:

0,37/3,1 = 0,12  т/м.

Взаимодействия с деталями, отдельными элементами и конструкциями механизма задается с помощью нагрузок. В плоскости задается интенсивность взаимодействия конструкции по длине, а в пространстве – по её площади.

Распределённая нагрузка на балку задается площадью, обозначается буквой q и измеряется в [H/м3] для объемной конструкции, в [H/м2] — для площади, для линейной – в [H/м].

Продемонстрируем это на рисунке:

Распределенная нагрузка на балку

Нагрузку также можно заменить тягой, рассредоточенной по всей поверхности. Значение определяется по формуле:

Q = q ∗ AB⌈H⌉

здесь AB является тяжестью, q – интенсивностью, которая измеряется в [H/м].

Примечательно, что сила приложена к середине данного отрезка AB.

251

На данном рисунке представлен расчёт возрастающей нагрузки, которую можно заменить равнодействующей единицей, рассчитываемое по формуле:

Q = qmax ∗ AB/2

где qmax – максимальная интенсивность [Н/м]. 

Q приложена к точке C, где AC равно: AC = 2/3 AB 

Рассматривая функцию q(x), представленную на рисунке:

252

можно высчитать значение эквивалентной силы по формуле:

253

Равномерно и неравномерно распределенная нагрузка на балку

Распределение сил, которые лежат в одной плоскости, задается равномерно распределенной тяжестью. Основным обозначением является интенсивность q — предельная тяга, несущая равнодействующую на единицу длины нагруженного участка АВ длиной а. 

Единицы измерения распределённой нагрузки [Н/м].

255

Её также можно заменить на величину Q, которая приложена в середину AB. 

Составим формулу: Q = q∗a

256

Неравномерно распределённую нагрузку чаще всего упрощают, приводя её к эквивалентной равномерно распределенной, чтобы упростить расчеты.

При построении также следует учитывать максимальный прогиб балки, её прочность, расчетную опорную реакцию и моментальную опору.

Пример решения задач с распределенной нагрузкой

Рассмотрим пример распределенной нагрузки на балку. Им может послужить тяга, благодаря которой происходит разрыв стальной стенки баллона с некоторым газом.

Для начала определяем результирующую давления в металлической трубе. Интенсивность равна q, радиус этого сектора трубы – R, ось симметрии Оx, а 2α – это центральный угол. Представим это на рисунке:

254

Выделим элемент сектора трубы ∆ϕ.

Затем определим единицу силы ∆Q. Она действует на плоскость дуги. Составим формулу:

258

Проекция результирующей тяги на ось Оx является:

259

Исходя из вышесказанного, можно найти проекцию этой же силы на ось Оy:

260

AB является хордой, которая стягивает дугу.

В нашей задаче сосуд – это ёмкость цилиндрической формы с высотой H, внутренним давлением P, действующим на стенки, и нагрузкой q = p [Н/м2]. 

Разделим цилиндр вдоль его диаметра. 

Исходя из этого, равнодействующая результирующих сил определяется по формуле:

261

где d – это внутренний диаметр цилиндра, h — его высота. 

Формулу также можно записать следующим образом:

262

Итак, почему баллон имеет способность разрываться? На его стенки действуют значения S1, S2, S3 (площади), а также F, p (плотность), h (высота цилиндра) и R (его радиус). Рассчитаем их по формулам:

263

 

Изобразим баллон в момент разрыва:

264

Учтём a – толщину ёмкости. Таким образом напряжение, которое растягивает баллон, (усилия распространяются в том числе на крышку и дно цилиндра) равно:

265

Важную роль при решении практических задач также играет эпюра распределенной нагрузки – плоская фигура, которая ограничена графиком. Величина, действующая на балку, называется интенсивностью – силой, которая распространяется на единицы площади, объема или длины.

foto51498-2Плиты перекрытий – это несущие конструкции зданий, воспринимающие постоянные и временные нагрузки в пределах одного этажа.

Плиты укладываются в пролёте между вертикальными опорами – стенами, пилонами или колоннами.

Преимущественно работают на изгиб и выполняют роль жёсткого диска, объединяющего отдельные элементы каркаса сооружения в единую геометрически неизменяемую систему.

При расчёте плит перекрытий определяются такие важные параметры, как их толщина, армирование, прогиб и необходимость устройства дополнительных подпирающих элементов (балок или капителей).

Как провести расчет нагрузок на перекрытие, расскажем далее.

Содержание

  • 1 Что это такое?
  • 2 Виды нагрузок на плиты перекрытий по СНиП и СП
  • 3 Расчёт пролетных конструкций
  • 4 Как рассчитать значения?
    • 4.1 Предельные
    • 4.2 Точечные
    • 4.3 Пересчёт на м2
      • 4.3.1 Пример
    • 4.4 Изгибающий момент
    • 4.5 Как посчитать несущую способность?
    • 4.6 Прочность ЖБ элемента
  • 5 Возможные сложности и ошибки
  • 6 Заключение

Что это такое?

Нагрузки, прикладываемые к перекрытию, представляют собой сочетание внешних сил, действующих на конструктивный элемент, вызывая в нём внутренние усилия. Несущая способность элемента определяется из условия равновесия, достигаемого при приложении нагрузок.

Виды нагрузок на плиты перекрытий по СНиП и СП

Нагрузки на пролётные конструкции определяются, исходя из требований нормативных документов – СНиП 2.01.07-85 и его обновлённой версии – СП 20.13330.2011 «Нагрузки и воздействия».

В соответствии с пунктами этих нормативов, нагрузки классифицируются на следующие виды:

  1. foto51498-3Полезные – нагрузки, необходимые для обеспечения комфортной эксплуатации помещения, в соответствии с его функциональным назначением.

    Например, в жилых квартирах или частных домах – это нагрузки от мебели, бытовых приборов и самих жильцов.

    В магазинах – от посетителей, персонала, прилавков, стеллажей и оборудования, необходимого для функционирования помещения.

  2. Допустимые – сочетание внешних сил, приложенных к перекрытию, при котором оно продолжает удовлетворять всем предъявляемым к нему эксплуатационным требованиям без наступления необратимых последствий.
  3. Постоянные – нагрузки, которые действуют на протяжении всего периода эксплуатации помещения. К таким видам загружения относятся собственный вес плит, масса пирога пола и штамповые нагрузки от конструктивных элементов, без которых эксплуатация помещения не представляется возможной.
  4. Временные – нагрузки от веса оборудования, мебели, людей и другие виды сил, которые прикладываются к несущему элементу на определённый промежуток времени.
  5. Предельные – максимальная величина нагрузки, при приложении которой в конструктивном элементе начинают происходить необратимые процессы – пластические деформации, бесконтрольное раскрытие трещин, а также обрушение перекрытия.

В зависимости от функционального назначения помещений, величины полезных нагрузок различаются.

В жилом помещении равномерно распределённые по площади временные нагрузки составляют 150 – 200 кгс/м2, а в общественных зданиях, в зависимости от особенностей технологического процесса они составляют уже 250 – 500 кгс/м2.

Расчёт пролетных конструкций

Расчёт пролётных конструкций ведётся по двум группам предельных состояний:

  • 1 группа – подбирается такие параметры жёсткости конструктивного элемента, при которых оно не потеряет прочность под действие сочетания постоянных, временных и особых нагрузок;
  • 2 группа – расчёт по деформациям, при котором определяется фактический прогиб перекрытия, после чего это значение сравнивается с предельно допустимыми значениями из СНиП.

На несущую способность плит перекрытий влияет величины постоянных и полезных нагрузок, толщина элемента, длина пролёта и условия эксплуатации помещения.

Как рассчитать значения?

Расчёт нагрузок на плиту перекрытия производится методом суммирования всех приложенных к конструктивному элементу внешних сил, с учётом различных коэффициентов запаса, принимаемых по указанному выше СНиП. Если рассмотреть теоретические выкладки, то расчёт нагрузок делится на следующие категории:

Предельные

foto51498-4Расчёт сводится к вычислению максимально допустимого значения приложенных на конструкцию внешних сил, при которых конструкция достигает предельного равновесия.

Например, на основании представленного ниже расчёта – при приложении суммарной расчётной нагрузки 900 кг/м2 на плиту перекрытия толщиной 200 мм, армированную прутками d10 A500s с шагом 200 мм, достигается фактический изгибающий момент М = 2812,5 кН*см при пролёте 5 м.

А сечение с такими параметрами остаётся в равновесии при достижении момента Мпред = 2988.5 кН*см, что всего на 5,8% выше предельного значения.

Учитывая, что момент в изгибаемом сечении под действием равномерно распределённой нагрузки равняется M = q х l2 / 8, то qпред = 8M/l2, или qпред = 8 х 2998.5 / 25 = 956.32 кг/м2 – при такой внешней силе сечение установленных параметров перестанет удовлетворять предельному равновесию, и данная нагрузка является предельной.

Точечные

Как правило, такие силы не прикладываются к перекрытию отдельно – всегда существуют постоянные нагрузки, и единичное точечное загружение суммируется с ними.

Приложенная точечная нагрузка влияет на значение опорных реакций и величину изгибающего момента в расчётном сечении. Усилия от точечного загружения определяется как произведение силы на плечо (расстояние от ближайшей точки опоры).

Например, если в комнате с пролётом 5 метров стоит декоративная колонна массой 500 кг на расстоянии от стены 2 м, то расчётная нагрузка с учётом коэффициента запаса (gn для постоянных сил = 1,05) составит 525 кг. Момент в данной точке составит 525 кг х 2 м = 1050 кг * м, или 1050 кН * см.

Соответственно, при добавлении равномерно распределённого загружения, описанного выше, стандартное сечение плиты с армированием d10 A500s с шагом 200 мм не будет удовлетворять расчёту прочности, и данное место следует усилить дополнительными стержнями, например, d10 A500s ш. 200 + d12 A500s ш. 200.

Пересчёт на м2

foto51498-5Учитывая, что жб плита перекрытия работает по упруго-пластической схеме, все внутренние усилия в ней перераспределяются по площади и объёму.

СНиП допускает не производить расчёт временных нагрузок на плиту от конкретных предметов, а учитывать приведённую равномерно-распределённую по площади поверхности силу.

Например, вдоль стены комнаты, на протяжении 3 м стоит гарнитур общей массой 400 кг, напротив – диван массой 200 кг и другие предметы мебели с разными весами. По данному помещению каждый день передвигаются 4 человека с массами тела от 50 до 120 кг.

По факту, точно посчитать нагрузку не представляется возможным, но СП 20.13330.2011 допускает учитывать в статическом расчёте приведённую равномерно распределённую нагрузку для жилых помещений 150 кг/м2.

Пример

Ниже представлен пример сбора нагрузок на перекрытие в частном жилом доме. По условию задачи, габариты комнаты составляют 7 х 4 м, плита перекрытия 200 мм, поверх которой уложена ц/п стяжка толщиной 50 мм по подложке из экструдированного пенополистирола 30 мм, а в качестве чистового пола применяется керамогранитная плитка толщиной 12 мм с клеевым составом 3 мм.

Требуется собрать расчётные нагрузки на данную конструкцию для последующего расчёта. Задача решается с выполнением следующих этапов:

Собственный вес плиты – M1 = S x h x rбет, где:

  • S – площадь поверхности перекрытия, равный 5 м х 4 м, или 2 м2,
  • h – толщина плиты, которая составляет 200 мм, или 0,2 м,
  • rбет – средняя плотность армированного бетона, которая равна 2500 кг/м2.
  • M1 = 20 м2 х 0,2 м х 2500 кг/м2 = 10 000 кг.

Масса полов – M2 = mподл + mстяж + mплит, где:

  • mподл = S x hподл х rпенопол = 20 м2 х 0,03 м х 40 кг/м2 = 24 кг,
  • mстяж = S x hстяж х rц/п р-ра = 20 м2 х 0,05 м х 1800 кг/м2 = 1800 кг,
  • mплит = S x hплит х rкерамогр = 20 м2 х 0,015 м х 2400 кг/м2 = 720 кг (значение принимается с учётом слоя плиточного клея).

M2 = 24 кг + 1800 кг + 720 кг = 2544 кг. В жилом помещении рекомендуемая по СНиП временная нагрузка составляет q = 150 кгс/м2.

Таким образом, суммарная полезная нагрузка на плиту составляет F = q x S = 150 х 20 = 3000 кг:

  1. Общая вертикальная нагрузка, приложенная к плите, равняется Fобщ = M1 + M2 + F = 10000 кг + 2544 кг + 3000 кг = 15544 кг, или 1554,4 кН.
  2. Как правило, нормативные нагрузки необходимо привести к расчётным величинам, учитывая коэффициенты надёжности. Данный показатель записывается как gn, и для постоянных загружений он составляет 1,1, а для полезной нагрузки – 1,4.

Таким образом, Fобщ расч = (M1 + M2) x gnс пост + F x gn врем = (10000 кг + 2544 кг) х 1,1 + 3000 кг х 1,4 = 13798,4 кг + 4200 кг = 17998.4 кг ~ 18000 кг, или 1800 кН.

Чтобы привести суммарное значение данной величины в равномерно распределённую нагрузку, достаточно разделить его на общую площадь комнаты. То есть Qобщ расч = Fобщ расч / S = 1800 кН / 20 м2 = 90 кН/м2, или 900 кг/м2.

При наличии точечной или штамповой нагрузки от веса какого-либо оборудования, она участвует в расчёте отдельно, формируя линейную, а не квадратичную зависимость изгибающего момента.

В отдельных случаях допускается разложить точечную нагрузку на равномерно распределённую по площади, с учётом повышающего коэффициента, так как железобетон не является упругим материалом, и все усилия в нём перераспределяются в большей части его объёма.

Изгибающий момент

Безбалочная плита перекрытия должна удовлетворять расчёту по прочности, или первой группе предельных состояний. Чтобы определить несущую способность перекрытия, необходимо выполнить следующий алгоритм:

  1. foto51498-6Если соотношения габаритов перекрытия а/b или b/a > 2, то такая плита работает по короткой стороне.

    Если данные показатель меньше 2, то плита считается опёртой по контуру, и расчёт ведётся относительно того пролёта, в котором возникает наибольший изгибающий момент.

    Значение момента прямо пропорционально величине пролёта, поэтому в рассматриваемом примере расчёт ведётся относительно стороны a = 5 м.

  2. Из плиты выделяется расчётная полоса шириной 1 м, которая будет рассматриваться как изгибаемый линейный элемент, или балка с приложенной к ней равномерно распределённой по длине нагрузкой.

В рассматриваемом примере балка имеет сечение b x h = 1 м х 0,2 м, и к ней приложена нагрузка qрасч = 900 кг/м, или 90 кН/м.

Величина изгибаемого момента для подобной конструкции составляет M = qрасч х l2 / 8, где l – величина пролёта, или 5 м. M = 90 кН/м х 5 х 5 / 8 = 281.25 кН*м, или 2812,5 кН*см.

Величина изгибающего момента может быть отображена на эпюре данного вида усилия, возникающего в конструкции.

Как посчитать несущую способность?

При известной величине изгибающего момента и габаритов (жёсткости сечения) можно определить несущую способность данного пролётного элемента по следующим формулам:

Высота сечения плиты складывается из двух величин h = h0 + a, где h0 – рабочая высота от нижней арматуры, находящейся в зоне растяжения до верхней грани бетона. а – величина защитного слоя бетона. Как правило, этот показатель в тонких плитах варьируется в пределах от 15 до 25 мм. h0 = h – a = 200 мм – 20 мм = 180 мм.

В строительной механике, согласно по СП 63.13330.2018 «Бетонные и железобетонные конструкции», существуют два условия, при которых конструкция достигает предельного равновесия под действием внешних сил.

Rs As = Rbbx, где:

  • M = Rbbx (h0 – x/2),
  • Rs – предел прочности арматурной стали заданного класса на растяжение,
  • Rb – тот же показатель, но для бетона, на сжатие, зависящий от марки материала.

Если в плите принимается наиболее распространённая арматура класса A500s, то Rs = 43,5 кН/см2. Если бетон в рассматриваемом примере имеет класс B30, то Rb = 1,7 кН/см2.

В условии равновесия х – абсолютная величина сжатой зона бетона, которая равняется х = Rs Аs / gb1 Rbb (по СП 63.13330.2018 «Бетонные и железобетонные конструкции»):

  • As – площадь всех стержней рабочей арматуры в растянутой зоне сечения плиты,
  • gb1 – коэффициент запаса, зависящий от условий работы бетона в конструкции, для стандартных вариантов эксплуатации перекрытия принимается равным 0,9.

Требуемая площадь рабочей арматуры зависит от расчётных параметров сечения и величины внутренних усилий (в плите перекрытия – изгибающего момента).

Аs = gb1Rbbeh0/Rs (по СП 63.13330.2018):

  • foto51498-7e – безразмерная величина, характеризующая относительную высоту сжатой части бетонного сечения, которая определяется из соотношения e = (1 – (1 – 2am)1/2),
  • am – это показатель, описывающий отношение изгибающего момента к прочностным характеристикам жб сечения, определяемый по формуле СП,
  • am = M / (gb1 Rbbh02) = 2812,5 / (0,9 х 1,7 х 100 х 324) = 2812,5 кН*см / 49572 = 0,057.

Аs = 0,9 х 1,7 х 100 х 0,057 х 18 / 43,5 = 3,61 см2.

Для предотвращения образования трещин от усадки бетона, в плитах перекрытий шаг рабочей арматуры, чаще всего, назначается 200 мм. Таким образом, в расчётной полосе шириной 1 м располагается 5 рабочих стержней.

В данном примере допускается рассмотреть армирование из 5d10, и реальная площадь стержней составит 3,93 см2, что больше, чем требуемое значение, с учётом повышающих коэффициентов. При известных значениях площади армирования, можно определить величину х: х = Rs Аs / gb1 Rbb = 43,5 х 3,93 / (0,9 х 1,7 х 100) = 1,12 см.

На завершающем этапе из основного условия равновесия определяется предельно допустимый момент, который может возникнуть в сечении плиты перекрытия. M = gb1 Rbbx(h0 – x/2) = 0,9 х 1,7 х 100 х 1,12 х (18 – 1,12/2) = 2988.5 кН*см.

Далее остаётся сравнить предельно допустимый момент 2988.5 кН*см с фактическим усилием, возникающим после приложения нагрузок – 2812,5 кН*см, который оказался меньше, значит, условие прочности выполняется.

В случае, если условие предельного равновесия не достигается, толщина плиты, а также расчётное количество рабочей арматуры должны быть пересмотрены.

Прочность ЖБ элемента

В строительной механике понятия прочности и несущей способности практически не имеют различий. Однако, на практике это не совсем так. Прочность – это способность конструктивного элемента не разрушаться под действием внешних сил. Несущая способность – это способность конструктивного элемента удовлетворять предъявленным к нему эксплуатационным требованиям под действием сочетания нагрузок.

Таким образом, расчёт по предельным состояниям 1 группы, приведённый выше, показывает, что плита перекрытия остаётся в статическом положении не разрушается, (то есть, обеспечивается её прочность) и может эксплуатироваться в нормальных условиях (так как в расчёте были учтены все коэффициенты условий работы). Проведения дополнительных прочностных расчётов не требуется.

Возможные сложности и ошибки

При расчёте сечения плиты перекрытия на прочность, следует учитывать важные нюансы, чтобы не допустить серьёзных ошибок:

  1. foto51498-8Расчёты должны проводиться в строгом соответствии с требованиями нормативных документов.
  2. При вычислениях все единицы измерения должны быть приведены к единым значениям, а, в противном случае, результат будет далёким от истины.
  3. При определении изгибающего момента следует учесть характер опирания плиты перекрытия, так как формулы для жёсткой заделки или шарнирного сопряжения отличаются друг от друга.
  4. При сборе нагрузок не следует забывать коэффициенты надёжности, которые усугубляют теоретическую работу конструкции и приближают её к реальным условиям.

Последствия неверных расчётов могут привести к обрушению строительных конструкций, недопустимым прогибам и другим непоправимым проблемам во время эксплуатации сооружения.

Заключение

Перед назначением толщины и армирования плиты перекрытия необходимо провести расчёт прочности изгибаемого элемента. Вычисления выполняются после сбора постоянных и временных нагрузок и определения внутренних усилий в конструкции.

Если результаты расчёта не удовлетворяют условиям предельного равновесия, необходимо задать другую толщину плиты и провести вычисления заново.

Поверхностные и объёмные силы
представляют собой нагрузку, распределённую
по некоторой поверхности или объёму.
Такая нагрузка задаётся интенсивностью

,
которая представляет собой силу,
приходящуюся на единицу некоторого
объёма, или некоторой площади, или
некоторой длины.

Особое место при решении ряда
практически интересных задач занимает
случай плоской распределённой нагрузки,
приложенной по нормали к некоторой
балке. Если вдоль балки направить ось

,
то интенсивность будет функцией
координаты
и измеряется в Н/м. Интенсивность
представляет собой силу, приходящуюся
на единицу длины.

Плоская фигура, ограниченная балкой
и графиком интенсивности нагрузки,
называется эпюрой распределённой
нагрузки (Рис. 1.28). Если по характеру
решаемой задачи можно не учитывать
деформации, т.е. можно считать тело
абсолютно твёрдым, то распределённую
нагрузку можно (и нужно) заменить
равнодействующей.

Рис. 1.28

Рис. 1.29

Разобьём балку на
отрезков длиной
,
на каждом из которых будем считать
интенсивность постоянной и равной
,
где
–координата отрезка
.
При этом кривая интенсивности заменяется
ломаной линией, а нагрузка, приходящаяся
на отрезок
,
заменяется сосредоточенной силой
,
приложенной в точке
(Рис. 1.29). Полученная система параллельных
сил имеет равнодействующую, равную
сумме сил, действующих на каждый из
отрезков, приложенную в центре
параллельных сил.

Понятно, что такое представление
тем точнее описывает реальную ситуацию,
чем меньше отрезок
,
т.е. чем больше число отрезков
.
Точный результат получаем, переходя к
пределу при длине отрезка
,
стремящейся к нулю. Предел, получаемый
в результате описанной процедуры,
представляет собой интеграл. Таким
образом, для модуля равнодействующей
получаем:

Для определения координаты точки

приложения равнодействующей используем
теорему Вариньона:

если система сил имеет равнодействующую,
то момент равнодействующей относительно
любого центра (любой оси) равен сумме
моментов всех сил системы относительно
этого центра (этой оси)

Записывая эту теорему для системы сил
в проекциях на ось
и переходя к пределу при длине отрезков,
стремящейся к нулю, получаем:

Очевидно, модуль равнодействующей
численно равен площади эпюры распределённой
нагрузки, а точка её приложения совпадает
с центром тяжести однородной пластины,
имеющей форму эпюры распределённой
нагрузки.

Отметим два часто встречающихся случая.

Равномерно распределённая нагрузка,(Рис. 1.30). Модуль равнодействующей и
координата её точки приложения
определяются по формулам:

В инженерной практике такая нагрузка
встречается довольно часто. Равномерно
распределённой в большинстве случаев
можно считать весовую и ветровую
нагрузку.

Рис. 1.30

Рис. 1.31

Линейно
распределённая нагрузка
,(Рис. 1.31). В этом случае:

В
частности, давление воды на вертикальную
стенку прямо пропорционально глубине
.

Пример
1.5

Определить реакции опор
ибалки, находящейся под действием двух
сосредоточенных сил и равномерно
распределённой нагрузки. Дано:

Рис. 1.32

Найдём равнодействующую распределённой
нагрузки. Модуль равнодействующей равен

плечо силы
относительно точкиравноРассмотрим равновесие балки. Силовая
схема представлена на Рис. 1.33.

Рис. 1.33

Условия
равновесия в рассматриваемом случае
имеют вид:

Пример
1.6

Определить реакцию заделки консольной
балки, находящейся под действием
сосредоточенной силы, пары сил и
распределённой нагрузки (Рис. 1.34).

Дано:

Заменим распределённую нагрузку тремя
сосредоточенными силами. Для этого
разобъём эпюру распределённой нагрузки
на два треугольника и прямоугольник.
Находим

Силовая схема представлена на Рис. 1.35.

Рис. 1.34

Рис. 1.35

Вычислим
плечи равнодействующих относительно
оси

Условия
равновесия в рассматриваемом случае
имеют вид:

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ:

1. Что
называется интенсивностью распределённой
нагрузки?

2. Как
вычислить модуль равнодействующей
распределённой нагрузки?

3. Как
вычислить координату точки приложения
равнодействующей распределённой

нагрузки?

4. Чему
равен модуль и какова координата точки
приложения равномерно распределённой
нагрузки?

5. Чему
равен модуль и какова координата точки
приложения линейно распределённой
нагрузки?

ЗАДАЧИ, РЕКОМЕНДУЕМЫЕ ДЛЯ РАЗБОРА В
АУДИТОРИИ И ДЛЯ ЗАДАНИЯ НА ДОМ:

Из
сборника задач И.В.Мещерского: 4.28;
4.29; 4.30; 4.33; 4.34.

Из
учебника «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА —
теория и практика»: комплекты СР-2; СР-3.

ПРАКТИЧЕСКИЕ
ЗАНЯТИЯ № 4-5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    03.03.2015560.03 Кб15PSY — recommendation.pdf

  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как в презентации найти нужное слово
  • Как найти человека работающего в сбербанке
  • Как найти экономический эффект проекта
  • Как найти отсканированный текст
  • Как найти в продукте пальмовое масло