Как найти расстояние до точки пересечения биссектрис

Как найти точку пересечения биссектрис треугольника по координатам его вершин?

Как найти радиус вписанной в треугольник окружности по координатам его вершин?

Точка пересечения биссектрис треугольника является центром вписанной в этот треугольник окружности.

Эта точка равноудалена от сторон треугольника. Расстояние от точки пересечения биссектрис до сторон треугольника равно радиусу вписанной окружности.

Следовательно, все три задачи сводятся к нахождению точки пересечения биссектрис треугольника.

Для этого надо сначала составить уравнения биссектрис треугольника и найти точку их пересечения.

Пример.

Дан треугольник ABC с вершинами в точках A(0;-3), B(12;-12) и C(3,36;-0,48).

1) Найти точку пересечения биссектрис треугольника ABC.

2) Найти радиус вписанной в треугольник ABC окружности.

3) Составить уравнение вписанной в треугольник ABC окружности.

Решение:

1) Составим уравнения прямых, содержащих стороны треугольника.

Уравнение прямой, проходящей через две точки можно искать, например, в виде

    [ frac{{y - y_1 }}{{y_2 - y_1 }} = frac{{x - x_1 }}{{x_2 - x_1 }} ]

Для прямой AB

    [frac{{y - ( - 3)}}{{ - 12 - ( - 3)}} = frac{{x - 0}}{{12 - 0}}, ]

    [12(y + 3) = - 9x,]

    [ 3x + 4y + 12 = 0. ]

Уравнение прямой AC:

    [frac{{y - ( - 3)}}{{ - 0,48 - ( - 3)}} = frac{{x - 0}}{{3,36 - 0}},]

    [3,36(y + 3) = 2,52x,]

    [2,52x - 3,36y - 10,08 = 0,]

    [3x - 4y - 12 = 0.]

Уравнение прямой BC:

    [ frac{{y - ( - 12)}}{{ - 0,48 - ( - 12)}} = frac{{x - 12}}{{3,36 - 12}},]

    [ - 8,64(y + 12) = 11,52(x - 12),]

    [- 3(y + 12) = 4(x - 12),]

    [4x + 3y - 12 = 0.]

Составим уравнение биссектрисы треугольника ABC, исходящей из угла B. Она образована прямыми AB и BC:

    [ frac{{3x + 4y + 12}}{{sqrt {3^2 + 4^2 } }} = pm frac{{4x + 3y - 12}}{{sqrt {4^2 + 3^2 } }}, ]

откуда уравнения биссектрис угла B: x-y-24=0 или x+y=0. Чтобы понять, которое из двух уравнений является биссектрисой внутреннего угла треугольника, следует подставить в уравнения координаты точек A и C. Поскольку они лежат по разные стороны от биссектрисы внутреннего угла B, то подстановка их координат в уравнение биссектрисы даёт числа разных знаков.

A(0;-3) и C(3,36;-0,48) в x-y-24=0: 0-(-3)-24<0; 3,36-(-0,48)-24<0. Получили числа одного знака, значит это уравнение не является биссектрисой внутреннего угла треугольника.

A(0;-3) и C(3,36;-0,48) в x+y=0: 0+(-3)<0, 3,36+(-0,48)>0. Получили числа разных знаков, x+y=0 — биссектриса угла B треугольника ABC.

Составим уравнение биссектрисы угла C. Угол C образован прямыми AC и BC, откуда

    [frac{{3x - 4y - 12}}{{sqrt {3^2 + ( - 4)^2 } }} = frac{{4x + 3y - 12}}{{sqrt {4^2 + 3^2 } }},]

уравнения биссектрис угла C: 7x-y-24=0 и x+7y=0.

A(0;-3), B(12;-12) в 7x-y-24=0: 7·0-(-3)-24<0, 7·12-(-12)-24>0. Получили числа разных знаков, значит 7x-y-24=0 — уравнение биссектрисы внутреннего угла C.

Поскольку все три биссектрисы треугольника пересекаются в одной точке, третью биссектрису находить не требуется.

Точку пересечения биссектрис углов B и C найдём из системы уравнений

    [left{ begin{array}{l} x + y = 0, \ 7x - y - 24 = 0, \ end{array} right.]

O(3;-3) — точка пересечения биссектрис треугольника ABC. Эта точка является центром вписанной в треугольник окружности.

2) Радиус вписанной в треугольник ABC окружности можно найти как расстояние от точки O до прямой AB, BC или AC. Найдем, например, расстояние от O до AB:

    [ r = left| {OF} right| = frac{{left| {3 cdot 3 + 4 cdot ( - 3) + 12} right|}}{{sqrt {4^2 + 3^2 } }} = frac{9}{5}. ]

3) Чтобы найти уравнение вписанной в треугольник ABC окружности, в уравнение окружности подставляем координаты центра O(3;-3) и r=9/5:

    [(x - 3)^2 + (y - ( - 3))^2 = (frac{9}{5})^2 ,]

    [(x - 3)^2 + (y + 3)^2 = frac{{81}}{{25}}.]

tochka-peresecheniya-bissektris-treugolnika

Как найти расстояние от точки пересечения биссектрисы и высоты остроугольного треугольника до вершины?

Расстояние от точки пересечения биссектрисы и высоты остроугольного треугольника до вершины может быть определено с помощью формулы угла между биссектрисой и стороной треугольника.

Определение остроугольного треугольника

Остроугольный треугольник — это треугольник, у которого каждый угол меньше 90 градусов. Угол между биссектрисой и стороной остроугольного треугольника также острый, поэтому расстояние от точки пересечения биссектрисы и высоты до вершины будет определяться по следующей формуле:

Формула определения расстояния

h = (2 * p * q * sin(angle)) / (p + q)

где:

  • h — расстояние от точки пересечения биссектрисы и высоты до вершины
  • p и q — отрезки стороны треугольника, граничащие с углом между биссектрисой и стороной треугольника
  • angle — угол между биссектрисой и стороной треугольника

Пример

Допустим у нас есть остроугольный треугольник ABC, у которого стороны AB, AC и BC составляют 3, 4 и 5 соответственно.

Тогда, чтобы найти расстояние от точки пересечения биссектрисы и высоты до вершины, необходимо выполнить следующие шаги:

  1. Найти угол между биссектрисой и стороной треугольника, используя теорему косинусов:

cos(angle) = (b^2 + c^2 — a^2) / 2bc

где:

  • a, b и c — длины сторон треугольника
  • angle — угол между биссектрисой и стороной треугольника

Для нашего треугольника:

cos(angle) = (3^2 + 5^2 — 4^2) / 2 * 3 * 5 = 7 / 15

angle = arccos(7 / 15) ≈ 1.14 радиан

  1. Найти отрезки p и q, граничащие с углом между биссектрисой и стороной треугольника. Для этого можно использовать формулы:

p = 2bc * cos(angle/2) / (b + c)

q = 2bc * sin(angle/2) / (b + c)

где:

  • p и q — отрезки стороны треугольника, граничащие с углом между биссектрисой и стороной треугольника
  • a, b и c — длины сторон треугольника
  • angle — угол между биссектрисой и стороной треугольника

Для нашего треугольника:

p = 2 * 3 * 5 * cos(1.14/2) / (3 + 5) ≈ 1.91

q = 2 * 3 * 5 * sin(1.14/2) / (3 + 5) ≈ 0.91

  1. Подставить найденные значения в формулу:

h = (2 * p * q * sin(angle)) / (p + q)

Для нашего треугольника:

h = (2 * 1.91 * 0.91 * sin(1.14)) / (1.91 + 0.91) ≈ 1.31

Таким образом, расстояние от точки пересечения биссектрисы и высоты остроугольного треугольника до вершины равно примерно 1,31.

Точка пересечения биссектрис — свойства, теорема и соотношения

Общие сведения

Треугольник — геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и отрезков, соединяющих их. Точки имеют другое название — вершины. Обозначается треугольник символом Δ, после которого идут 3 латинских буквы. Например, ΔMNO. Допускается использовать и русские литеры, но злоупотреблять этим не стоит.

В высших учебных заведениях преподаватели требуют от студентов международное обозначение. Кроме того, большинство программных продуктов и онлайн-сервисов воспринимают только латинские символы.

Существует определенная классификация Δ, на основании которой доказываются теоремы, выводятся формулы, свойства и решаются задачи. В последнем случае следует правильно производить идентификацию, чтобы избежать ошибок при расчетах.

Классификация треугольников

Необходимо отметить, что Δ различаются между собой по некоторым критериям.

Они бывают нескольких типов:

  1. Произвольные.
  2. Прямоугольные.
  3. Равнобедренные.
  4. Равносторонние.
  5. Тупоугольные.
  6. Остроугольные.

В первом случае стороны фигуры не равны между собой. Чтобы идентифицировать прямоугольный треугольник, необходимо рассмотреть его углы. Если один из них является прямым (равен 90 градусам), такая фигура называется прямоугольной. В третьем виде основным критерием считается наличие двух, равных между собой сторон.

В равностороннем треугольнике все стороны равны между собой. Математики его называют «правильным». Он обладает важным свойством — вокруг него можно описать окружность. Пятый тип определяет наличие тупого угла, градусная мера которого больше 90. Если фигура является остроугольной, это значит, что все 3 его угла меньше 90, т. е. являются острыми.

Один треугольник может относиться к нескольким типам. Например, прямоугольный Δ может быть равнобедренным на основании свойства геометрии: если Δ является равнобедренным, то углы (∠), образованные боковыми сторонами с основанием, равны между собой. В этом случае их градусные меры эквивалентны 45, поскольку сумма ∠ любого Δ составляет 180. Следовательно, 180 — 90 = 2k, где неизвестная величина «к» соответствует углу при основании.

Решая уравнение, можно получить искомое значение угла: k = 45. Исходя из вычислений, треугольник является прямоугольным и равнобедренным.

Дополнительные элементы

У любого Δ существуют определенные дополнительные элементы, необходимые при построении чертежей или схематических рисунков, доказательства теорем и решения задач по геометрии.

К ним относятся:

Биссектриса — отрезок (прямая), проходящий через вершину Δ и делящий угол на 2 равные части. Медиана — единственный отрезок для каждой вершины, соединяющий ее с серединой стороны, на которую он опущен.

Высотой является перпендикуляр, опущенный из вершины на противоположную сторону.

В равнобедренном и равностороннем треугольниках биссектриса является медианой и высотой. В последнем случае их можно провести всего 3.

Однако в произвольном Δ — по 3, т. е. 3 высоты, 3 медианы и 3 биссектрисы.

Теорема о биссектрисах

Теорема о биссектрисах треугольника звучит таким образом: в любом Δ биссектрисы пересекаются только в одной точке — инцентре фигуры. Для доказательства нужно построить произвольный ΔКLМ, а затем следовать по такому алгоритму:

  1. Провести биссектрисы LN (к стороне КМ) и КU (к LM).
  2. На рисунке видно, что LN и KU пересекаются в одной точке (W).
  3. Доказывать теорему следует от противного — пусть биссектрисы не пересекаются.
  4. Если прямые не пересекаются, значит, они параллельны, т. е. LN || KU. Следовательно, KL — секущая.
  5. Сумма градусных мер односторонних углов эквивалентна 180, т. е. (∠К/2) + (∠L/2) = 180 (свойство параллельных прямых и секущей).
  6. Из соотношения в 5 пункте следует, что сумма ∠К + ∠L = 360.
  7. Сумма углов Δ эквивалентна 180. Однако при сложении значений двух ∠ величина их суммы больше 180. Следовательно, биссектрисы треугольника пересекаются в одной точке.

Необходимо доказать, что третья биссектриса (МV), проведенная из вершины М, проходит через точку W. Это делается таким образом:

  1. Из W следует опустить перпендикуляры на стороны Δ: WG, WF и WE.
  2. Нужно рассмотреть 2 ΔGBW и ΔBFW, которые являются прямоугольными, поскольку WG и WF — перпендикуляры, а BW — общая сторона. Углы ∠GBW и ∠WВF равны, т. к. их образует биссектриса LN (общий угол будет делиться на 2 равные части). Следовательно, ΔGBW и ΔBFW равны.
  3. Из равенства ΔGBW и ΔBFW получается отношение WG и WF.
  4. Аналогично доказывается равенство сторон WG и WЕ.

Далее следует рассмотреть ∠М. Следовательно, что координата точки W равноудалена от вершины М. На основании признака биссектрисы, W лежит на МV, поскольку W — точка пересечения биссектрис треугольника КLМ. Утверждение доказано.

Свойства и соотношения

На основании теоремы о биссектрисах Δ были получены некоторые важные свойства, которые рекомендуется применять при решении задач и доказательства других утверждений:

  1. Центр вписанной окружности соответствует точке их пересечения.
  2. Точка при пересечении делит биссектрису по такому соотношению: отношение суммарного значения прилежащих к противолежащей стороне.
  3. Угол между биссектрисами двух смежных углов является прямым.
  4. В равнобедренном Δ равны только 2 биссектрисы, а в равностороннем — 3. Кроме того, она является медианой и высотой.

При решении задач нужно находить их длину (L).

Для удобства необходимо обозначить стороны таким образом: КМ = d, КL = e и LМ = f, чтобы воспользоваться следующими формулами через известные параметры треугольника:

  1. Все стороны: Lm = [2 * (d * e * p * (p — f))^(½)] / (d + e), Lк = [2 * (d * f * p * (p — e))^(½)] / (d + f) и Ll = [2 * (d * f * p * (p — e))^(½)] / (d + f). Параметр «р» — полупериметр, т. е. р = (d + e + f) / 2.
  2. Стороны и угол: Lm = (2 * d * e * cos (∠M)) / (d + e), Lk = (2 * d * f * cos (∠K)) / (d + f) и Ll = (2 * f * e * cos (∠L)) / (f + e).

Соотношения позволяют найти не только длины Lk, Lm и Ll, но и другие параметры треугольников. Следует отметить, что углы во второй группе формул соответствуют биссектрисам, исходящим из них.

Таким образом, для решения задач на нахождение длины биссектрис необходимо знать теорию, доказательство теоремы, свойства, а также основные соотношения.

Точка пересечения биссектрис

Как найти точку пересечения биссектрис треугольника по координатам его вершин?

Как найти радиус вписанной в треугольник окружности по координатам его вершин?

Точка пересечения биссектрис треугольника является центром вписанной в этот треугольник окружности.

Эта точка равноудалена от сторон треугольника. Расстояние от точки пересечения биссектрис до сторон треугольника равно радиусу вписанной окружности.

Следовательно, все три задачи сводятся к нахождению точки пересечения биссектрис треугольника.

Для этого надо сначала составить уравнения биссектрис треугольника и найти точку их пересечения.

Дан треугольник ABC с вершинами в точках A(0;-3), B(12;-12) и C(3,36;-0,48).

1) Найти точку пересечения биссектрис треугольника ABC.

2) Найти радиус вписанной в треугольник ABC окружности.

3) Составить уравнение вписанной в треугольник ABC окружности.

1) Составим уравнения прямых, содержащих стороны треугольника.

Уравнение прямой AC:

Уравнение прямой BC:

Составим уравнение биссектрисы треугольника ABC, исходящей из угла B. Она образована прямыми AB и BC:

откуда уравнения биссектрис угла B: x-y-24=0 или x+y=0. Чтобы понять, которое из двух уравнений является биссектрисой внутреннего угла треугольника, следует подставить в уравнения координаты точек A и C. Поскольку они лежат по разные стороны от биссектрисы внутреннего угла B, то подстановка их координат в уравнение биссектрисы даёт числа разных знаков.

A(0;-3) и C(3,36;-0,48) в x-y-24=0: 0-(-3)-24 0. Получили числа разных знаков, x+y=0 — биссектриса угла B треугольника ABC.

Составим уравнение биссектрисы угла C. Угол C образован прямыми AC и BC, откуда

уравнения биссектрис угла C: 7x-y-24=0 и x+7y=0.

A(0;-3), B(12;-12) в 7x-y-24=0: 7·0-(-3)-24 0. Получили числа разных знаков, значит 7x-y-24=0 — уравнение биссектрисы внутреннего угла C.

Поскольку все три биссектрисы треугольника пересекаются в одной точке, третью биссектрису находить не требуется.

Точку пересечения биссектрис углов B и C найдём из системы уравнений

O(3;-3) — точка пересечения биссектрис треугольника ABC. Эта точка является центром вписанной в треугольник окружности.

2) Радиус вписанной в треугольник ABC окружности можно найти как расстояние от точки O до прямой AB, BC или AC. Найдем, например, расстояние от O до AB:

3) Чтобы найти уравнение вписанной в треугольник ABC окружности, в уравнение окружности подставляем координаты центра O(3;-3) и r=9/5:

Определение и свойства биссектрисы угла треугольника

В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.

Определение биссектрисы угла треугольника

Биссектриса угла – это луч, который берет начала в вершине угла и делит данный угол пополам.

Биссектриса треугольника – это отрезок, соединяющий вершину угла треугольника с противоположной стороной и делящий этот угол на две равные части. Такая биссектриса, также, называется внутренней.

Основание биссектрисы – точка на стороне треугольника, которую пересекает биссектриса. Т.е. в нашем случае – это точка D.

Внешней называется биссектриса угла, смежного с внутренним углом треугольника.

Свойства биссектрисы треугольника

Свойство 1 (теорема о биссектрисе)

Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон. Т.е. для нашего треугольника (см. самый верхний рисунок):

Свойство 2

Точка пересечения трех внутренних биссектрис любого треугольника (называется инцентром) является центром вписанной в фигуру окружности.

Свойство 3

Все биссектрисы треугольника в точке пересечения делятся в отношении, равном сумме прилежащих к углу сторон, деленной на противолежащую сторону (считая от вершины).

Свойство 4

Если известны длины отрезков, образованных на стороне, которую пересекает биссектриса, а также две другие стороны треугольника, найти длину биссектрисы можно по формуле ниже (следует из теоремы Стюарта):

BD 2 = AB ⋅ BC – AD ⋅ DC

Свойство 5

Внешняя и внутренняя биссектрисы одного и того же угла треугольника перпендикулярны друг к другу.

  • CD – внутренняя биссектриса ∠ACB;
  • CE – биссектриса угла, смежного с ∠ACB;
  • DCE равен 90°, т.е. биссектрисы CD и CE перпендикулярны.

Пример задачи

Дан прямоугольный треугольник с катетами 6 см и 8 см. Найдите длину биссектрисы, проведенной к гипотенузе.

Решение
Нарисуем чертеж согласно условиям задачи.

Применив теорему Пифагора мы можем найти длину гипотенузы (ее квадрат равен сумме квадратов двух катетов).
BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
Следовательно, BC = 10 см.

Далее составляем пропорцию согласно Свойству 1, условно приняв отрезок BD на гипотенузе за “a” (тогда DC = “10-a”):

Избавляемся от дробей и решаем получившееся уравнение:
8a = 60 – 6a
14a = 60
a ≈ 4,29

Таким образом, BD ≈ 4,29 см, CD ≈ 10 – 4,29 ≈ 5,71 см.

Теперь мы можем вычислить длину биссектрисы, использую формулу, приведенную в Свойстве 4:
AD 2 = AB ⋅ AC – BD ⋅ DC = 6 ⋅ 8 – 4,29 ⋅ 5,71 ≈ 23,5.

����:    [

���������, � ������� ����������� ����� �������

]
[

�������� ������. ����� ������� ������������.

]
���������: 3
������: 8,9

� �������

�������� �����������

�������

� �������������� ������������ ������� ������� ����� 20,
��������� ����� 24. ������� ���������� ����� ������
����������� ������ � ������ ����������� ����������
����� ������������.

�������

����� M – �������� ��������� BC ���������������
������������ ABC . ����� AM – ������ � �����������
����� ������������, ������, ����� P ����������� ������
� ����� Q ����������� ���������� ������������ �����
�� ������� AM , ���ޣ� AP = AM , � �.�.
BQ – ����������� ������������ ABM , ��

=
= = ,

������� AQ = AM . �������������,

PQ = AP-AQ = AM-AM = AM=

= = =
= .

�����

.

��������� � ���������� �������������

web-����
�������� ������� ����� �� ��������� �.�.�������
URL http://zadachi.mccme.ru
������
����� 4599

См. также биссектриса угла.

БИССЕКТРИСА УГЛА ТРЕУГОЛЬНИКА

Биссектриса треугольника – отрезок биссектрисы угла, соединяющий вершину этого угла с точкой на противолежащей стороне.

У биссектрис угла треугольника есть масса свойств, которые описываются через свойства треугольника. Это поможет в решении задач.

Свойства биссектрис треугольника

  • Биссектриса треугольника, проведенная из данной вершины, тождественна биссектрисе соответствующего угла. Биссектриса угла треугольника, выходящая из его вершины, делит этот угол треугольника пополам 

  • Все три биссектрисы треугольника пересекаются в одной точке, которая расположена всегда в плоскости треугольника и является центром вписанной окружности. Примечание. Имеются ввиду биссектрисы внутренних углов треугольника.
    Все три биссектрисы треугольника пересекаются в одной точке, которая расположена всегда в плоскости треугольника и является центром вписанной окружности

Свойства биссектрис равнобедренного треугольника

  • У равнобедренного треугольника медиана, биссектриса и высота, проведенные к основанию треугольника, совпадают

  • Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса), и третья биссектриса одновременно является медианой и высотой того угла, из которого она выходит.

  • В равнобедренном треугольнике две биссектрисы равны, а третья биссектриса является его медианой и высотой
    В равнобедренном треугольнике две биссектрисы равны, а третья биссектриса является его медианой и высотой. У равнобедренного треугольника медиана, биссектриса и высота, проведенные к основанию треугольника, совпадают

  • Одна и только одна биссектриса внешнего угла неравностороннего треугольника может быть параллельна противоположной стороне — основанию, если треугольник равнобедренный

Свойства биссектрис равностороннего треугольника

  • У равностороннего треугольника все три биссектрисы внешних углов параллельны противоположным сторонам

  • У равностороннего треугольника все три внутренние биссектрисы равны
  • У равностороннего треугольника все три «замечательные» линии (высота, биссектриса и медиана) совпадают и три «замечательных» точки (точки ортоцентра, центра тяжести и центра вписанной и описанной окружностей) находятся в одной точке пересечения «замечательных» линий, т.е. тоже совпадают.

Формулы нахождения биссектрисы угла

Рисунок для пояснения формул нахождения длины биссектрисы в треугольнике

Формулы нахождения длины биссектрисы угла через длины сторон треугольника и угол между сторонами

a, b, c — стороны треугольника, при этом биссектриса проведена из угла, находящегося между сторонами a, b
α,β,γ — углы треугольника, противолежащие сторонам a,b,c соответственно
p — полупериметр треугольника (половина суммы всех его сторон)
ca, cb — отрезки, на которые биссектрисой, проведенной из угла c разбита сторона c

lc — длина биссектрисы, проведенной к стороне c из угла γ.

Длина биссектрис треугольника может быть выражена через равенство с квадратом суммы всех его сторон.

квадрат суммы сторон треугольника может быть выражен через длину биссектрис и сторон этого треугольника

Формулы нахождения расстояния от угла до точки пересечения биссектрис

Рисунок, поясняющий формулу определения расстояний от угла до дочки пересечения биссектрис, радиусов вписанной и описанной окружностей треугольника

Формулы, описывающие взаимоотношения длины отрезка биссектрисы до центра пересечения биссектрис треугольника, радиусов вписанной и описанной окружностей и длин сторон этого треугольника

где

lco — длина отрезка, лежащего на биссектрисе от вершины угла до центра пересечения биссектрис
r — радиус окружности, вписанной в треугольник
R — радиус описанной окружности
a, b, c — стороны треугольника, при этом биссектриса проведена из угла, находящегося между сторонами a, b
γ — угол треугольника, противолежащий стороне c 
p — полупериметр треугольника (половина суммы всех его сторон) 

Примеры решения задач

Примечание. В данном уроке изложены задачи по геометрии о биссектрисе. Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме. Почти наверняка курс будет дополнен.

Задача.

Луч AD является биссектрисой угла A. На сторонах угла A отмечены точки B,C так что угол ADC равен углу ADB. Доказать, что AB=AC.

Биссектриса угла

Решение.
Рассмотрим треугольники ADB и ADC. Сторона AD у них общая, углы DAC и DAB равны, так как биссектриса AD делит угол А пополам, а углы ADC и ADB равны по условию задачи. Таким образом, треугольники ADB и ADC равны по стороне и двум углам.

Следовательно AB = AC.


0
 

 Биссектриса угла |

Описание курса

| Биссектриса внешнего угла 

Понравилась статья? Поделить с друзьями:
  • Ваша страна запрещена на этом сервере minecraft как исправить
  • Как найти ссылки на свой блог
  • Как найти глубину кодирования звука в битах
  • Каким образом вы хотите открыть этот веб сайт как исправить
  • Как найти где ты голосуешь