Как найти расстояние между двумя предметами


Загрузить PDF


Загрузить PDF

Расстояние (обозначим как d) – это длина прямой между двумя точками. Расстояние можно найти между двумя неподвижными точками, а можно найти расстояние, пройденное движущимся телом. В большинстве случаев расстояние может быть вычислено по следующим формулам: d = s × t, где d — расстояние, s – скорость, t – время; d = √((x2 — x1)2 + (y2 — y1)2, где (x1, y1) и (x2, y2) – координаты двух точек.

  1. Изображение с названием Calculate Distance Step 1

    1

    Чтобы вычислить расстояние, пройденное движущимся телом, вам необходимо знать скорость тела и время в пути, чтобы подставить их в формулу d = s × t.

    • Пример. Автомобиль едет со скоростью 120 км/ч в течение 30 минут. Необходимо вычислить пройденное расстояние.
  2. Изображение с названием Calculate Distance Step 2

    2

    Перемножьте скорость и время и вы найдете пройденное расстояние.

    • Обратите внимание на единицы измерения величин. Если они различны, вам необходимо конвертировать одну из них так, чтобы она соответствовала другой единице. В нашем примере скорость измеряется в километрах в час, а время – в минутах. Поэтому необходимо конвертировать минуты в часы; для этого значение времени в минутах необходимо разделить на 60 и вы получите значение времени в часах: 30/60 = 0,5 часов.
    • В нашем примере: 120 км/ч х 0,5 ч = 60 км. Обратите внимание, что единица измерения «час» сокращается и остается единица измерения «км» (то есть расстояние).
  3. Изображение с названием Calculate Distance Step 3

    3

    Описанную формулу можно использовать для вычисления входящих в нее величин. Для этого обособьте нужную величину на одной стороне формулы и подставьте в нее значения двух других величин. Например, для вычисления скорости используйте формулу s = d/t, а для вычисления времени – t = d/s.

    • Пример. Автомобиль проехал 60 км за 50 минут. В этом случае его скорость равна s = d/t = 60/50 = 1,2 км/мин.
    • Обратите внимание, что результат измеряется в км/мин. Чтобы конвертировать эту единицу измерения в км/ч, умножьте результат на 60 и получите 72 км/ч.
  4. Изображение с названием Calculate Distance Step 4

    4

    Данная формула вычисляет среднюю скорость, то есть предполагается, что в течение всего времени в пути тело имеет постоянную (неизменную) скорость. Это годится в случае абстрактных задач и моделирования движения тел. В реальной жизни скорость тела может меняться, то есть тело может ускоряться, замедляться, останавливаться или двигаться в обратном направлении.

    • В предыдущем примере мы нашли, что автомобиль, проехавший 60 км за 50 минут, ехал со скоростью 72 км/ч. Это справедливо только при условии, что с течением времени скорость автомобиля не менялась. Например, если в течение 25 минут (0,42 часов) автомобиль ехал со скорость 80 км/ч, а в течение еще 25 минут (0,42 часов) – со скоростью 64 км/час, он тоже проедет 60 км за 50 минут (80 х 0,42 + 64 х 0,42 = 60).
    • Для решения задач, включающих меняющуюся скорость тела, лучше использовать производные, а не формулу для вычисления скорости по расстоянию и времени.

    Реклама

  1. Изображение с названием Calculate Distance Step 5

    1

    Найдите две точки пространственных координат. Если вам даны две неподвижные точки, то, чтобы вычислить расстояние между этими точками, необходимо знать их координаты; в одномерном пространстве (на числовой прямой) вам понадобятся координаты x1 и x2, в двумерном пространстве – координаты (x1,y1) и (x2,y2), в трехмерном пространстве – координаты (x1,y1,z1) и (x2,y2,z2).

  2. Изображение с названием Calculate Distance Step 6

    2

    Вычислите расстояние в одномерном пространстве (точки лежат на одной горизонтальной прямой) по формуле: d = |x2 — x1|, то есть вы вычитаете «х» координаты, а затем находите модуль полученного значения.

    • Обратите внимание, что в формулу включены скобки модуля (абсолютного значения). Модуль числа – это неотрицательное значение этого числа (то есть модуль отрицательного числа равен этому числу со знаком плюс).
    • Пример. Машина находится между двумя городами. До города, который находится перед ней, 5 км, а до города за ней – 1 км. Вычислите расстояние между городами. Если взять машину за точку отсчета (за 0), то координата первого города x1 = 5, а второго x2 = -1. Расстояние между городами:
      • d = |x2 — x1|
      • = |-1 — 5|
      • = |-6| = 6 км.
  3. Изображение с названием Calculate Distance Step 7

    3

    Вычислите расстояние в двумерном пространстве по формуле: d = √((x2 — x1)2 + (y2 — y1)2). То есть вы вычитаете «х» координаты, вычитаете «у» координаты, возводите полученные значения в квадрат, складываете квадраты, а затем из полученного значения извлекаете квадратный корень.

    • Формула для вычисления расстояния в двумерном пространстве основана на теореме Пифагора, которая гласит, что гипотенуза прямоугольного треугольника равна квадратному корню из суммы квадратов обоих катетов.
    • Пример. Найдите расстояние между двумя точками с координатами (3, -10) и (11, 7) (центр окружности и точка на окружности, соответственно).
    • d = √((x2 — x1)2 + (y2 — y1)2)
    • d = √((11 — 3)2 + (7 — -10)2)
    • d = √(64 + 289)
    • d = √(353) = 18,79
  4. Изображение с названием Calculate Distance Step 8

    4

    Вычислите расстояние в трехмерном пространстве по формуле: d = √((x2 — x1)2 + (y2 — y1)2 + (z2 — z1)2). Эта формула является видоизмененной формулой для вычисления расстояния в двумерном пространстве с добавлением третьей координаты «z».

    • Пример. Космонавт находится в открытом космосе недалеко от двух астероидов. Первый из них расположен в 8 километрах перед космонавтом, в 2 км справа от него и в 5 км ниже него; второй астероид находится в 3 км позади космонавта, в 3 км слева от него, и в 4 км выше него. Таким образом, координаты астероидов (8,2,-5) и (-3,-3,4). Расстояние между астероидами вычисляется следующим образом:
    • d = √((-3 — 8) 2 + (-3 — 2)2 + (4 — -5)2)
    • d = √((-11)2 + (-5)2 + (9)2)
    • d = √(121 + 25 + 81)
    • d = √(227) = 15,07 км

    Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 61 245 раз.

Была ли эта статья полезной?

Things You Should Know

  • Jot down the coordinates that you’re measuring the distance between.
  • Plug these coordinates into the distance formula: {sqrt  (}(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}).
  • Solve the formula by squaring the differences of the x and y values, adding these differences together, and finding the square root of the remaining sum.

Steps

  1. Image titled Find the Distance Between Two Points Step 2

    1

    Take the coordinates of two points you want to find the distance between. Call one point Point 1 (x1,y1) and make the other Point 2 (x2,y2). It does not terribly matter which point is which, as long as you keep the labels (1 and 2) consistent throughout the problem.[1]

    • x1 is the horizontal coordinate (along the x axis) of Point 1, and x2 is the horizontal coordinate of Point 2. y1 is the vertical coordinate (along the y axis) of Point 1, and y2 is the vertical coordinate of Point 2.
    • For an example, take the points (3,2) and (7,8). If (3,2) is (x1,y1), then (7,8) is (x2,y2).
  2. Image titled Find the Distance Between Two Points Step 1

    2

    Know the distance formula. This formula finds the length of a line that stretches between two points: Point 1 and Point 2. The linear distance is the square root of the square of the horizontal distance plus the square of the vertical distance between two points.[2]
    More simply put, it is the square root of: (x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}

    Advertisement

  3. Image titled Find the Distance Between Two Points Step 3

    3

    Find the horizontal and vertical distance between the points. First, subtract y2 — y1 to find the vertical distance. Then, subtract x2 — x1 to find the horizontal distance. Don’t worry if the subtraction yields negative numbers. The next step is to square these values, and squaring always results in a positive number.[3]

    • Find the distance along the y-axis. For the example points (3,2) and (7,8), in which (3,2) is Point 1 and (7,8) is Point 2: (y2 — y1) = 8 — 2 = 6. This means that there are six units of distance on the y-axis between these two points.
    • Find the distance along the x-axis. For the same example points (3,2) and (7,8): (x2 — x1) = 7 — 3 = 4. This means that there are four units of distance separating the two points on the x-axis.
  4. Image titled Find the Distance Between Two Points Step 4

    4

    Square both values. This means that you will square the x-axis distance (x2 — x1), and that you will separately square the y-axis distance (y2 — y1).

  5. Image titled Find the Distance Between Two Points Step 5

    5

    Add the squared values together. This will give you the square of the diagonal, linear distance between your two points. In the example of the points (3,2) and (7,8), the square of (8 — 2) is 36, and the square of (7 — 3) is 16. 36 + 16 = 52.

  6. Image titled Find the Distance Between Two Points Step 6

    6

    Take the square root of the equation. This is the final step in the equation. The linear distance between the two points is the square root of the sum of the squared values of the x-axis distance and the y-axis distance.[4]

    • To carry on the example: the distance between (3,2) and (7,8) is sqrt (52), or approximately 7.21 units.
  7. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    How do I find the horizontal distance between (3, 4) and (8, 4)?

    Community Answer

    Subtract 3 from 8 since both are at 4 on the y axis. So distance is: 8-3=5.

  • Question

    What is the distance from the x-axis to (7,-2)?

    Community Answer

    This is an ambiguous question. I will assume you mean the shortest distance. Then, your second point will be (7,0) because the line that goes through (7,0) and (7,-2) is perpendicular to the x-axis. So your answer is 2.

  • Question

    What is the distance between (2, 3) and (-8,12)?

    Community Answer

    Using the distance formula shown in the above article, find the horizontal distance between the two points by subtracting (-8) from 2, which is 10. Then find the vertical distance between the points by subtracting 12 from 3, which is -9. We then add together the squares of those two distances: 3² + (-9)² = 9 + 81 = 90. Find the square root of that sum: √90 = 9.49. That’s the distance (in «units») between the two points.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • It doesn’t matter if you get a negative number after subtracting y2 — y1 or x2 — x1. Because the difference is then squared, you will always get a positive distance in your answer.[5]

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

To find the distance between two points on a line, take the coordinates of the two points. Label one as Point 1, with the coordinates x1 and y1, and label the other Point 2, with the coordinates x2 and y2. Plug these values into the distance formula, which is the square of X2 minus X1 plus the square of Y2 minus Y1, then the square root of that result. To see the distance formula written out, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 865,916 times.

Did this article help you?

А что делать, если нужно найти среднее значение? В принципе, вычисления, показанные выше, и дают в итоге результат среднего значение искомого нами параметра. Однако можно вывести и более точное значение, если известно, что на некоторых участках по сравнению с другими скорость объекта была непостоянной. Тогда пользуются таким видом формулы:

vср=(v1+v2+v3+…+vn)/n

где v1, v2, v3, vn – значения скоростей объекта на отдельных участках пути S,

n – количество этих участков,

vср – средняя скорость объекта на всем протяжении всего пути.

Эту же формулу можно записать иначе, используя путь и время, за которое объект прошел этот путь:

vср=(S1+S2+…+Sn)/t,

где vср – средняя скорость объекта на всем протяжении пути,

S1, S2, Sn – отдельные неравномерные участки всего пути,

t – общее время, за которое объект прошел все участки.

Можно записать использовать и такой вид вычислений:

vср=S/(t1+t2+…+tn),

где S – общее пройденное расстояние,

t1, t2, tn – время прохождения отдельных участков расстояния S.

Но можно записать эту же формулу и в более точном варианте:

vср=S1/t1+S2/t2+…+Sn/tn,

где S1/t1, S2/t2, Sn/tn – формулы вычисления скорости на каждом отдельном участке всего пути S.

Таким образом, очень легко найти искомый параметр, используя данные выше формулы. Они очень просты, и как уже было указано, используются в начальных классах. Более сложные формулы базируются на этих же формулах и на тех же принципах построения и вычисления, но имеют другой, более сложный вид, больше переменных и разных коэффициентов. Это нужно для получения наиболее точного значения показателей.

Как вычислить расстояние

Расстояние является общей характеристикой длины, которая показывает степень удаленности двух объектов друг от друга. Расстояние измеряется в различных единицах длины, чаще всего это сантиметры, метры, километры. Для ее расчета можно воспользоваться одной формулой.

Как вычислить расстояние

Вам понадобится

  • Скорость тела, движущегося от одного объекта к другому;
  • Время, за которое тело сможет добраться от одного объекта к другому при заданной скорости.

Инструкция

Допустим, из какого-то пункта А вышел объект, который движется со скоростью V, и через время t он таки достигает пункта B. Для того, чтобы найти расстояние между этими пунктами, достаточно умножить скорость объекта на то время, которое ему потребовалось дойти из п.А в п.Б.:S = V*t.
Пример: из лагеря «Цветочек» в лагерь «Ягодка» на велосипеде выехал мальчик. Едет он со скоростью 12 км/ч. Через 1,5 часа он добрался до второго лагеря. Исходя из вышеуказанной формулы, рассчитаем расстояние между лагерями:
S = 12*1,5 = 18 км.
Ответ: Расстояние между лагерями «Цветочек» и «Ягодка» составляет 18 км.

Видео по теме

Источники:

  • Как легко измерить расстояние или рассчитать площадь на карте

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как составить карту текущего состояния
  • Как найти нок двух чисел математика
  • Как исправить внешнюю печатную форму в 1с
  • Идентификатор публикации как найти
  • Как найти мужу если есть уже ребенок