Как найти расстояние между прямыми аналитическая геометрия

Нахождение кратчайшего расстояния между прямыми в пространстве

Содержание:

  • Что такое расстояние между прямыми в пространстве
  • Метод координат для определения расстояния
  • Примеры задач с решением

    • Задача 1
    • Задача 2

Что такое расстояние между прямыми в пространстве

Для начала дадим определение этому понятию.

Определение

Расстояние между прямыми в пространстве — это отрезок, который соединяет две прямые линии по самому короткому пути. Иными словами, он перпендикулярен обеим этим прямым.

Расстояние между прямыми

Источник: resolventa.ru

Но не всегда две линии могут быть параллельны друг другу.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Определение

Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через вторую прямую параллельно первой.

Расстояние между скрещивающимися прямыми

Источник: shkolkovo.net

Таким образом, чтобы найти расстояние между этими скрещивающимися прямыми, нужно от одной из прямых провести перпендикуляр на плоскость, в которой лежит другая прямая.

Между параллельными прямыми расстояние одинаково на протяжении всей их длины: перпендикуляр, опущенный из любой точки одной из этих линий, всегда будет одной и той же величины.

Метод координат для определения расстояния

Разберем пошагово способ определения расстояния между двумя скрещивающимися прямыми с помощью метода координат.

  1. Определить координаты точек (М_1) и (М_2), лежащих соответственно на прямых a и b.
  2. Найти x, y и z направляющих векторов для прямых a и b.
  3. Найти вектор-нормаль для плоскости, в которой лежит прямая b с помощью векторного произведения (overrightarrow a) и (overrightarrow b).
  4. Записать общее уравнение плоскости: (A(x-x_0)+B(y-y_0)+C(z-z_0)=0) и потом записать к нормированному виду уравнения плоскости, которое выглядит так: (xtimescosleft(alpharight)+ytimescosleft(betaright)+ztimescosleft(gammaright)-p=0), где p — свободный член (число, которое равно расстоянию точки начала координат до плоскости), а (cosleft(alpharight),;cosleft(betaright)) и (cosleft(gammaright))координаты единичного нормального вектора плоскости.
  5. Далее, для определения расстояния от точки M до искомой плоскости, воспользуемся следующим уравнением: (M_1H_1=left|x_1timescosleft(alpharight)+y_1timescosleft(betaright)+z_1cosleft(gammaright)-pright|), где (x_1), (y_1) и (z_1) — координаты точки (M_1), лежащей на прямой a, а (H_1) — точка, лежащая на искомой плоскости.

Примеры задач с решением

Задача 1

Куб

Источник: shkolkovo.net

Дан куб (ABCDA_1B_1C_1D_1) с ребром равным (sqrt{32}) см. Найти расстояние между прямыми (DB_1) и (CC_1).

Решение

Расстояние между скрещивающимися прямыми будем искать в качестве расстояния между прямой (CC_1) и плоскостью, проходящей через (DB_1) параллельно (CC_1). Так как (DD_1parallel CC_1), плоскость ((B_1D_1D)) параллельна (СС_1).

Сначала нужно доказать, что (CO) — перпендикуляр, проведенный к этой плоскости. (COperp BD) (как диагонали квадрата) и (COperp DD_1) (так как ребро (DD_1) перпендикулярно всей плоскости ((ABC))). Получается, (CO) перпендикулярен двум пересекающимся прямым из плоскости. Значит, (COperp(B_1D_1D)).

(AC) — диагонально квадрата — равна (ABsqrt2), то есть (AC=sqrt{32}timessqrt2=sqrt{64}=8) см. Следовательно, (CO=frac12times AC=4) см.

Ответ: 4 см.

Задача 2

В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b. Прямую a определяют параметрические уравнения прямой в пространстве:

(left{begin{array}{l}x=-2\y=1+2timeslambda\z=4-3timeslambdaend{array}right.)

А прямую b канонические уравнения прямой в пространстве:

(frac x1=frac{y-1}{-2}=frac{z+4}6).

Вычислить расстояние между заданными прямыми.

Решение

Прямая a проходит через точку (M_1(-2, 1, 4)) и имеет направляющий вектор (overrightarrow a=(0, 2, -3)). Прямая b проходит через точку (M_2 (0, 1, -4)), а  ее направляющий вектором является вектор (overrightarrow b=(1, -2, 6)).

Найдем векторное произведение векторов( overrightarrow a=(0, 2, -3)) и (overrightarrow b=(1, -2, 6): left[overrightarrow atimesoverrightarrow bright]=begin{vmatrix}overrightarrow i&overrightarrow j&overrightarrow k\0&2&-3\1&-2&6end{vmatrix}=6timesoverrightarrow i-3timesoverrightarrow j-2timesoverrightarrow k).

Так, (overrightarrow n=left[overrightarrow atimesoverrightarrow bright]) плоскости X, проходящей через прямую b параллельно прямой a, имеет координаты (6, -3, -2).

Таким образом, уравнение плоскости X есть уравнение плоскости, проходящей через точку (M_2(0, 1, -4)) и имеющей нормальный вектор (overrightarrow n=(6, -3, -2)):

(6times(x-0)-3times(y-1)-2times(z-(-4))=0;leftrightarrow6x-3y-2z-5=0)

Нормирующий множитель для общего уравнения плоскости (6x-3y-2z-5=0) равен (frac1{sqrt{6^2+{(-3)}^2+{(-2)}^2}}=frac17). Значит, нормальное уравнение этой плоскости выглядит как (frac67x-frac37y-frac27z-frac57=0).

Воспользуемся формулой для вычисления расстояния от точки (M_1(-2, 1, 4)) до плоскости (frac67x-frac37y-frac27z-frac57=0: left|M_1H_1right|=left|frac67times(-2)-frac37times1-frac27times4-frac57right|=left|frac{-28}7right|=4) см.

Ответ: 4 см.

Расстояние между прямыми в пространстве онлайн

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых («канонический» или «параметрический» ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:

где M1(x1, y1, z1) и M2(x2, y2, z2) − точки, лежащие на прямых L1 и L2, а q1={m1, p1, l1} и q2={m2, p2, l2} − направляющие векторы прямых L1 и L2, соответственно.

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Метод 1. От точки M1 прямой L1 проводим плоскость α, перпендикулярно прямой L2. Находим точку M3(x3, y3, y3) пересечения плоскости α и прямой L3. По сути мы находим проекцию точки M1 на прямую L2. Как найти проекцию точки на прямую посмотрите здесь. Далее вычисляем расстояние между точками M1(x1, y1, z1) и M3(x3, y3, z3):

которое и является расстоянием между прямыми L1 и L2 (Рис.1).

Пример 1. Найти расстояние между прямыми L1 и L2:

Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(1, 2, 1) и имеет направляющий вектор

Прямая L2 проходит через точку M2(x2, y2, z2)=M2(8, 4, 1) и имеет направляющий вектор

Найдем проекцию точки M1 на прямую L2. Для этого построим плоскость α, проходящей через точку M1 и перпендикулярной прямойL2.

Для того, чтобы плоскость α было перепендикулярна прямой L2, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L2, т.е. в качестве нормального вектора плоскости α можно взять направляющий вектор прямой L2. Тогда уравнение искомой плоскости, проходящей через точку M1(x1, y1, z1) имеет следующий вид:

Подставляя значения m2, p2, l2, x1, y1, z1 в (5) получим :

После упрощения получим уравнение плоскости, проходящей через точку M1 и перпендикулярной прямой L2:

Найдем точку пересечения прямой L2 и плоскости α, для этого построим параметрическое уравнение прямой L2.

Выразив переменные x, y, z через параметр t, получим параметрическое уравнение прямой L2:

Чтобы найти точку пересечения прямой L2 и плоскости α, подставим значения переменных x, y, z из (7) в (6):

Решив уравнение получим:

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L2 и плоскости α:

Остается найти расстояние между точками M1 и M3:

Ответ: Расстояние между прямыми L1 и L2 равно d=7.2506.

Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L1 и L2. Если направляющие векторы прямых L1 и L2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q1=λq2, то прямые L1 и L2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d, разделив площадь на основание q1 параллелограмма.

Вычислим координаты вектора :

Вычислим векторное произведение векторов и q1:

Вычисляя определители второго порядка находим координаты вектора c:

Далее находим площадь параллелограмма:

Расстояние между прямыми L1 и L2 равно:

где

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

и

Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(1, 2, 1) и имеет направляющий вектор

Прямая L2 проходит через точку M2(x2, y2, z2)=M2(8, 4, 1) и имеет направляющий вектор

Векторы q1 и q2 коллинеарны. Следовательно прямые L1 и L2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор ={x2x1, y2y1, z2z1}={7, 2, 0}.

Вычислим векторное произведение векторов и q1. Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов и q1:

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов и q1:

Таким образом, результатом векторного произведения векторов и q1 будет вектор:

Поскольку векторное произведение векторов и q1 дает плошадь параллелограмма образованным этими векторами, то расстояние между прямыми L1 и L2 равно :

Ответ: Расстояние между прямыми L1 и L2 равно d=7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 (уравнения (1) и (2)).

Пусть прямые L1 и L2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L1 и L2 нужно построить параллельные плоскости α1 и α2 так, чтобы прямая L1 лежал на плоскости α1 а прямая L2 − на плоскости α2. Тогда расстояние между прямыми L1 и L2 равно расстоянию между плоскостями L1 и L2 (Рис. 3).

Поскольку плоскость α1, проходит через прямую L1, то он проходит также через M1(x1, y1, z1). Следовательно справедливо следующее равенство:

где n1={A1, B1, C1} − нормальный вектор плоскости α1. Для того, чтобы плоскость α1 проходила через прямую L1, нормальный вектор n1 должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A1, B1, C1, D1, и подставляя в уравнение

получим уравнение плоскости α1. (Как построить уравнение плоскости, проходящей через прямую, параллельно другой прямой подробно изложено здесь).

Аналогичным образом находим уравнение плоскости α2:

Плоскости α1 и α2 параллельны, следовательно полученные нормальные векторыn1={A1, B1, C1} и n2={A2, B2, C2} этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

Полученное расстояние между плоскостями α1 и α2 является также расстоянием между прямыми L1 и L2.

Пример 3. Найти расстояние между прямыми

и

Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(2, 1, 4) и имеет направляющий вектор q1={m1, p1, l1}={1, 3, −2}.

Прямая L2 проходит через точку M2(x2, y2, z2)=M2(6, −1, 2) и имеет направляющий вектор q2={m2, p2, l2}={2, −3, 7}.

Шаг 1.

Построим плоскость α1, проходящую через прямую L1, параллельно прямой L2.

Поскольку плоскость α1 проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(2, 1, 4) и нормальный вектор n1={m1, p1, l1} плоскости α1 перпендикулярна направляющему вектору q1 прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

а условие параллельности прямой L1 и искомой плоскости α1 представляется следующим условием:

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

Таким образом мы должны решить систему трех уравнений с четырьмя неизвестными (34)−(36). Подставим значения x1, y1, z1, m1, p1, l1, m2, p2, l2 в (27)−(29):

Представим эти уравнения в матричном виде:

Решим систему линейных уравнений (40) отностительно A1, B1, C1, D1:

Искомая плоскость может быть представлена формулой:

Подставляя значения A1, B1, C1, D1 в (42), получим:

Упростим уравнение, умножив на число 17.

Шаг 2.

Построим плоскость α2, проходящую через прямую L2, параллельно прямой L1.

Поскольку плоскость α2 проходит через прямую L2 , то она проходит также через точку M2(x2, y2, z2)=M2(6, −1, 2) и нормальный вектор n2={m2, p2, l2} плоскости α2 перпендикулярна направляющему вектору q2 прямой L2. Тогда уравнение плоскости должна удовлетворять условию:

а условие параллельности прямой L2 и искомой плоскости α2 представляется следующим условием:

Так как плоскость α2 должна быть параллельной прямой L1, то должна выполнятся условие:

Таким образом мы должны решить систему трех уравнений с четырьмя неизвестными (37)−(39). Подставим значения x2, y2, z2, m2, p2, l2, m1, p1, l1 в (37)−(39):

Представим эти уравнения в матричном виде:

Решим систему линейных уравнений (50) отностительно A2, B2, C2, D2:

Искомая плоскость может быть представлена формулой:

Подставляя значения A2, B2, C2, D2 в (52), получим:

Упростим уравнение, умножив на число −83.

Шаг 3.

Расстояние между построенными плоскостями (43) и (53) будет расстоянием между прямыми (1) и (2).

Запишем формулы уравнений плоскостей α1 и α2 :

где n1={A1, B1, C1}={15, −11, −9} и n2={A2, B2, C2}={15, −11, −9} − нормальные векторы плоскостей α1 и α2, соответственно, а свободные члены равны D1=17, D2=−83, соответственно.

Поскольку нормальные векторы плоскостей α1 и α2 совпадают, то можно найти расстояние между плоскостями α1 и α2, используя следующую формулу:

Подставим значения A1, B1, C1, D1, D2 в (54):

Упростим и решим:

Расстояние между прямыми равно: d=4.839339

Угол
между прямыми (наименьший из двух смежных
углов, полученных при пересечении
прямых)

φ

Прямые
заданы общим уравнением

Прямые
заданы уравнением с угловым коэффициентом

  1. А1х+В1у+С1=0

  2. А2х+В2у+С2=0

  1. у=к1x+b1

  2. y=k2x+b2

tg𝛗=

Условие
параллельности двух прямых.

Прямые
заданы общим уравнением

Прямые
заданы уравнением с угловым коэффициентом

  1. А1х+В1у+С1=0

  2. А2х+В2у+С2=0

  1. у=к1x+b1

  2. y=k2x+b2

(1)(2)

(1)(2)

Условие
перпендикулярности
двух
прямых
.

Прямые
заданы общим уравнением

Прямые
заданы уравнением с угловым коэффициентом

  1. А1х+В1у+С1=0

  2. А2х+В2у+С2=0

  1. у=к1x+b1

  2. y=k2x+b2

(1)(2)

(1)(2)

Нормальное
уравнение прямой.

x;+(2=1;
p>0
(параметр «р» определяет расстояние
прямой от точки начала координат)

Примечание:

Если
известно общее уравнение прямой, то
нормальное уравнение можно получить
по следующему правилу:

Ах+Ву+С=0;
находим нормирующий множитель
𝛍=-,
гдеозначает знак числа «С» в заданной
формуле, тогда

𝛍*B;
p=-
𝛍*C.

Пример.

Найти
нормальное уравнение прямой и расстояние
прямой до начала координат.

(L):
3x-4y+10=0.

𝛍=-=-=-

-0,6x+0.8y-2=0

расстояние
до начала координат

2.Расстояние
от точки М
000)
до прямой (
L)
Ax+By+C=0.

𝛒(M0;L)=

3.Расстояние
между параллельными прямыми.

Обозначим
расстояние между параллельными прямыми
d

y

d

ρ1

ρ2

x

L1

L2

d=𝛒1+𝛒2
если прямые лежат по разные стороны от
начала координат, то нужно сложить
расстояния для каждой прямой от точки
начала координат.

y

L2

ρ2

L1

ρ1

x

d

d=𝛒2𝛒1
если прямые лежат по одну сторону от
начала координат, то нужно найти модуль
разности расстояний этих прямых до
начала координат.

Для
нахождения расстояния между параллельными
прямыми можно придерживаться следующей
последовательности действий.

1.Так как прямые параллельны, приведите уравнения прямых к виду так, чтобы коэффициенты у переменных были равны:

(L1):
Ax+
Вy+C1=0;
(L
2):
Ax+By+C
2=0;
C
1C2

2.
Обратите внимание на знаки свободных
членов, а именно: если знаки разные
120),
то прямые лежат по разные стороны от
начала координат, а , если одного знака
12>0),
то по одну сторону от начала координат.

3.Для
нахождения расстояния между параллельными
прямыми можете использовать следующие
формулы:

.
d=;
120);
d=;
12>0),

Пример
1:

Найти
расстояние между прямыми (
L1):4х-10у+9=0;
(
L2):
2
x-5y-6=0.

Решение:

={4;-10};

={2;-5}
прямые
параллельны.

(L1):4х-10у+9=0
2х-5у+4.5=0
С1=4,5;С2=-6.
d=;120)d=

Пример
2.

Найти
расстояние между прямыми (
L1):3х-2у-5=0;
(
L2):
12
x-8y-6=0

Решение:

={3;-2};

={12;-8}
прямые
параллельны.

(L2):
12
x-8y-6=03х-2у-1,5=0

d=;
12>0)d=

§4.Взаимное
положение двух плоскостей.

Определение:

Углом
между плоскостями называют наименьший
из двух смежных двугранных углов.

Напомним,
что двугранный угол измеряется линейным
углом.

Нам
удобнее измерять двугранный угол углом
между нормалями данных плоскостей,
который равен соответствующему линейному
(углы с соответственно перпендикулярными
сторонами)

P2

n1

φ

φ

n2

P1

(P1):
A
1x+B1y+C1z+D1=0;

={A1;B1;C1}

(P2)
):
A
2x+y+C2z+D2=0;

={A2;B2;C2}

=

(угол должен быть острым, поэтому значение
косинуса берём по модулю)

Условия
параллельности двух плоскостей.

(P1)(P2)

Условия
перпендикулярности двух плоскостей.

(P1)(P2)
A1*A2+B1*B2+C1*C2=0

Нормальное
уравнение плоскости.

x;+(2+=1;p>0
(параметр «р» определяет расстояние
плоскости от точки начала координат)

Примечание:

Если
известно общее уравнение плоскости, то
нормальное уравнение можно получить
по следующему правилу:

Ах+Ву+Сz+D=0;
находим нормирующий множитель
𝛍=-,
гдеозначает
знак числа «
D»
в заданной формуле, тогда

𝛍*B;
=
𝛍*C;
p=-𝛍D

Пример.

Найти
нормальное уравнение плоскости и
расстояние плоскости до начала координат.

(L):
3x-4y+10z-8=0.

𝛍=-=-=

х-у+z0
p=

расстояние
до начала координат

2.Расстояние
от точки М
000;z0)
до плоскости (
P)
Ax+By+Cz+D=0.

𝛒(M0;P)=

3.Расстояние
между параллельными плоскостями.

Обозначим
расстояние между параллельными
плоскостями
d

По
аналогии с формулами, полученными для
расстояния между параллельными прямыми
, получим аналогичные формулы для
определения расстояния между параллельными
плоскостями.

1.Так
как плоскости параллельны, приведите
уравнения плоскостей к виду так, чтобы
коэффициенты у переменных были равны:

(L1):
Ax+Dy+Cz+D
1=0;
(L
2):
Ax+By+Cz+D
2=0;
D
1≠D2

2.
Обратите внимание на знаки свободных
членов, а именно: если знаки разные
(
D1*D20),
то плоскости лежат по разные стороны
от начала координат, а , если одного
знака (
D1*D2>0),
то по одну сторону от начала координат.

3.Для
нахождения расстояния между параллельными
плоскостями можете использовать
следующие формулы:

.
d=;
(D1*D20);
d=;
(D1*D2>0),

Пример
1.

Найти
расстояние между плоскостями:

(P1):
3
x-2y+5z-8=0;
(
P2):
-12
x+8y-20z+7=0

Решение:

(P1):
3
x-2y+5z-8=0
;
={3;-2;5};

(P2):
-12
x+8y-20z+7=0;
={-12;8;-20}

(P2):
-12x+8y-20z+7=0
3x-2y+5z-7/4=0

D1=-8;
D
2=-7/4
D
1*D2>0
d=
=

Пример
2.

Найти
расстояние между плоскостями:

(P1):
6
x-2y+10z+15=0;
(
P2):
3
xy+2z-4=0

Решение:

(P1):
6
x-2y+10z+15=0;
{6;-2;10};
(P2):
3
xy+5z-4=0;

={3;-1;5}

(P1):
6x-2y+10z+15=0
3x-y+5z+7,5=0D1=7,5;
D
2=-4

D1*D20);
d==

Пример
3.

Найти
расстояние от точки М
0(0;-1;2)
до плоскости (
P),
проходящей через три точки М
1(0;2;-4);
М
2(-1;5;2);
М
3(1;3;2).

Решение.

M0

M2

(Р)

M1

M3

Найдём
координаты направляющих векторов данной
плоскости (Р)

=={-1;3;6};

=={1;1;6}===12+12-4

={12;12;-4}
{3;3;-1}
уравнение
плоскости ищем в виде:

A(x-x1)+B(y-y1)+C(z-z1)=03(x-0)+3(y-2)-(z+4)=03x+3y-z-10=0
(P)

Расстояние
от точки М
0(0;-1;2)
до плоскости (Р) находим по формуле:

𝛒(M0;P)===

Лекция
2.

Прямая
в пространстве. Взаимное положение
прямой и плоскости в пространстве.

§1Различные
уравнения прямой в пространстве.

П01.
Общее уравнение прямой в пространстве.

Р2

Р1

L

Если
плоскости не параллельны , то прямую
можно задать пересечением двух плоскостей,
т. е. системой уравнений:
;

={A1;B1;C1}нормаль
плоскости (Р
1);={A2;B2;C2}нормаль
плоскости (Р
2)
(L)=(P1)(P2)

П02.
Каноническое уравнение прямой.

Задача.

Дано:
М
0(x0;y0;z0);

={l;m;k}

Найти
уравнение прямой (
L):
M0(L);

(
L)

Решение:

L

M0

M(x;y;z)

Возьмём
произвольную точку
M(x;y;z)(L)={xx0;yy0;zz0}

По
условию

(
L)

каноническое уравнение прямой (уравнение
прямой через точку с направляющем
вектором)

П03.
Параметрическое уравнение прямой.

tR

(параметрическое
уравнение прямой в пространстве)

П04Уравнение
прямой через две точки.

(L)

M2

M1

Используем
каноническое уравнение прямой:

=={x2x1;y2y1;z2z1}

уравнение прямой через две точки.

П05.Связь
между общим и каноническим уравнениями
прямой в пространстве.

Задача.

Пусть
прямая (
L)
задана общим уравнением:

Найти
каноническое уравнение прямой:

Решение

Т.к.
прямая получается при пересечении двух
плоскостей, то

(L)
; (L)
;

=={l;m;k}

Чтобы
найти точку, через которую проходит
прямая, достаточно найти частное решение
данной системы
M0(x0;y0;z0)

Пример

Дано
:прямая (
L)
задана общим уравнением:

(L)

Найти
каноническое уравнение прямой.

Решение:

={2;-3;4};

={5;1;-3}==5+26+17

={5;26;17}

Т.к.система
имеет бесконечное множество решений
(ранги матриц расширенной и системы
равны
r(A)=r()=2;
число неизвестных равно трём), то имеем
две базисных и одну свободную переменные.
Пусть свободной переменной будет
переменная
z.
Для нахождения частного решения зададим
числовое значение, например,
z=0

3

17x+16=0
x=-

M0(;;0)(L):

Примечание:
Очевидно, что это не единственное
уравнение прямой, т.к. частных решений
бесконечно много и коллинеарных
направляющих векторов тоже бесконечно
много.

Соседние файлы в папке Линейка

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Расстояние между прямыми на плоскости онлайн

С помощю этого онлайн калькулятора можно найти расстояние между прямыми на плоскости. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми, задайте вид уравнения прямых («канонический», «параметрический» или «общий»), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми на плоскости − теория, примеры и решения

  • Содержание
  • 1. Расстояние между прямыми в каноническом виде.
  • 2. Расстояние между прямыми в общем виде.

1. Расстояние между прямыми в каноническом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

. (1)
, (2)

Прямые (1) и (2) могут совпадать, быть паралленьными или пересекаться. Если прямые пересекаются, то понятие расстояния между ними не имеет смысла (не определено). Если прямые совпадают, то расстояние между ними равно нулю. Если же они параллельны, то расстояние между ними можно вычислить следующими методами:

Рассмотрим этот метод подробнее. Каноническое уравнение прямой L3, проходящей через точку M1(x1, y1) имеет следующий вид:

, (3)

Для того, чтобы прямая L3 была перпендикулярна прямой L2, направляющие векторы этих прямых должны быть ортогональны, т.е. скалярное произведение этих векторов должен быть равным нулю:

, (4)

Так как направляющий вектор прямой не может быть равным нулю, то предположим, что координата m2 вектора q2 отлична от нуля. Тогда в качестве вектора q3 можно взять вектор q3=<m3, p3>=<p2, −m2>. Следовательно, уравнение прямой L3 получит следующий вид:

, (5)

Для вычисления координат точки пересечения прямых L2 и L3, решим систему линейных уравнений (2) и (5). Преобразуем эти уравнения сделав перекрестное умножение:

Откроем скобки и перенесем налево переменную y:

Запишем (6) и (7) в матричном виде:

, (8)
, (11)

Для построения обратной матрицы воспользуемся методом алгебраических дополнений. Сначала вычислим определитель матрицы:

.

Тогда обратная матрица примет следующий вид:

. (12)

Подставляя значение обратной матрицы (12) в (11), получим:

.

. (13)

Расстояние между точками M1 и M3 равно:

. (14)

Полученное расстояние d также является расстоянием между прямыми L1 и L2.

Пример 1. Найти расстояние между прямыми L1 и L2:

(15)
(16)

Пользуясь формулой (5), построим уравнение прямой L3, проходящей через точку M1 и перпендикулярной прямой L2:

(17)

Для вычисления координат точки пересечения прямых L2 и L3, решим систему линейных уравнений (16) и (17). Преобразуем эти уравнения сделав перекрестное умножение:

Сделаем эквивалентные преобразования:

Запишем систему линейных уравнений (18)-(19) в матричном виде:

Вычислим вектор (x, y) T :

Получили точку M3(x3, y3)=(3, −2), которая является точкой пересечения прямых L2 и L3. Расстояние между прямыми L1 и L2 равно расстоянию между точками M1 и M3. Вычислим это расстояние:

Ответ: Расстояние между прямыми L1 и L2 равно d=4.47213595.

Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Уравнение прямой L3 в общем виде, проходящей через точку M1 и перпендикулярной прямой L2 имеет следующий вид:

A3(xx1)+B3(yy1)=0. (20)

Для того, чтобы прямая L3 была перпендикулярна прямой L2, нормальный вектор n3=<A3, B3> прямой L3 должен быть коллинеарным направляющему вектору q2 прямой L2. Поэтому в качестве нормального вектора прямой L3 можно взять вектор q2=<m2, p2>. Подставим координаты вектора q2 в (20):

(21)

Приведем уравнение прямой (2) к параметрическому виду:

(22)

Подставим (22) в (21) и решим относительно t:

(23)

Мы получили такое значение t, при котором соответствующая точка на прямой L2 удовлетворяет уравнению прямой L3, т.е. находится на этой прямой (является точкой пересечения прямых L2 и L3). Подставляя значение t в (22), получим координаты точки M3(x3, y3). Далее вычисляем расстояние между точками M1 и M3:

(24)

Пример 2. Найти расстояние между прямыми

(25)
(26)

Уравнение прямой L3, проходящей через точку M1 и имеющий нормальный вектор n3=<A3, B3> представляется формулой:

(27)

Для того, чтобы прямая L3 была перпендикулярна прямой L2, нормальный вектор n3=<A3, B3> прямой L3 должен быть коллинеарным направляющему вектору q2 прямой L2. Поэтому в качестве нормального вектора прямой L3 можно взять вектор q2=<m2, p2>=<6, 9>. Подставим координаты вектора q2 и координаты точкиM1 в (27):

После упрощения получим уравнение прямой L3, проходящей через точку M1 и перпендикулярной прямой L2:

(28)

Для нахождения точки пересечения прямых L2 и L3 проще всего пользоваться параметрическим уравнением прямой L2. Составим параметрическое уравнение прямой L2:

Выразим переменные x, y через параметр t :

(29)

Подставим значения x, y из выражения (29) в (28) и решим относительно t:

Подставляя значение t в выражения (29), получим координаты точки M3:

Вычислим расстояние между точками M1 и M3

Ответ. Расстояние между прямыми L1 и L2 равно:

2. Расстояние между прямыми в общем виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы параллельные прямые L1 и L2:

(30)
(31′)

где n1=<A1, B1> и n2=<A2, B2> − направляющие векторы прямых L1 и L2, соответственно. Так как прямые параллельны, то можно один из них умножить на какое-то число так, чтобы нормальные векторы этих прямых совпадали. Пусть A2≠0. Умножим (31′) на A1/A’2. Тогда уравнение (2′) примет следующий вид:

(31)

Покажем, что расстояние между прямыми L1 и L2 равно:

(32)

Метод 1. Пусть A1≠0. Тогда точка M1(x1, y1)=M1(−C1/A1, 0) принадлежит прямой L1. Это легко проверить, подставив координаты точки M1 в (30). Построим уравнение прямой, проходящей через точку M1 и перпендикулярной прямой L2:

Поскольку прямая L3 перпендикулярна прямой L2, то нормальные векторы этих прямых ортогональны. Тогда вместо нормального вектора n3=<A3, B3> прямой L3 можно взять вектор, ортогональный нормальному вектору n2, т.е. вектор n3=<B1, −A1> (так как скалярное произведение этих векторов равно нулю). Тогда имеем:

(34)

Найдем точку пересечения прямых L2 и L3. Для этого решим систему линейных уравнений (31),(34), представляя в матричном виде:

Наконец, расстояние между точками M1 и M3, и следовательно, расстояние между прямыми L1 и L2 равно:

(35)

Метод 2. Воспользуемся понятием отклонения точки от прямой. Пусть M1(x1, y1) точка, принадлежащая прямой (30), Тогда выполняется равенство

При С2 Пример 3. Найти расстояние между прямыми

Ответ. Расстояние между прямыми L1 и L2 равно:

Расстояние между двумя параллельными прямыми: определение и примеры нахождения

В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.

Расстояние между двумя параллельными прямыми: определение

Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.

Приведем иллюстрацию для наглядности:

На чертеже изображены две параллельные прямые a и b . Точка М 1 принадлежит прямой a , из нее опущен перпендикуляр на прямую b . Полученный отрезок М 1 Н 1 и есть расстояние между двумя параллельными прямыми a и b .

Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.

Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.

Пусть нам заданы две параллельные прямые a и b . Зададим на прямой а точки М 1 и М 2 , опустим из них перпендикуляры на прямую b , обозначив их основания соответственно как Н 1 и Н 2 . М 1 Н 1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что | М 1 Н 1 | = | М 2 Н 2 | .

Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Прямая М 2 Н 2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a . Получившиеся треугольники М 1 Н 1 Н 2 и М 2 М 1 Н 2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М 1 Н 2 – общая гипотенуза, ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: | М 1 Н 1 | = | М 2 Н 2 | . Теорема доказана.

Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.

Нахождение расстояния между параллельными прямыми

Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.

Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b . Необходимо определить расстояние между заданными прямыми.

Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:

— найти координаты некоторой точки М 1 , принадлежащей одной из заданных прямых;

— произвести вычисление расстояния от точки М 1 до заданной прямой, которой эта точка не принадлежит.

Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М 1 просто. При нахождении расстояния от точки М 1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.

Вернемся к примеру. Пусть прямая a описывается общим уравнением A x + B y + C 1 = 0 , а прямая b – уравнением A x + B y + C 2 = 0 . Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:

M 1 H 1 = C 2 — C 1 A 2 + B 2

Выведем эту формулу.

Используем некоторую точку М 1 ( x 1 , y 1 ) , принадлежащую прямой a . В таком случае координаты точки М 1 будут удовлетворять уравнению A x 1 + B y 1 + C 1 = 0 . Таким образом, справедливым является равенство: A x 1 + B y 1 + C 1 = 0 ; из него получим: A x 1 + B y 1 = — C 1 .

Когда С 2 0 , нормальное уравнение прямой b будет иметь вид:

A A 2 + B 2 x + B A 2 + B 2 y + C 2 A 2 + B 2 = 0

При С 2 ≥ 0 нормальное уравнение прямой b будет выглядеть так:

A A 2 + B 2 x + B A 2 + B 2 y — C 2 A 2 + B 2 = 0

И тогда для случаев, когда С 2 0 , применима формула: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2 .

А для С 2 ≥ 0 искомое расстояние определяется по формуле M 1 H 1 = — A A 2 + B 2 x 1 — B A 2 + B 2 y 1 — C 2 A 2 + B 2 = = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Таким образом, при любом значении числа С 2 длина отрезка | М 1 Н 1 | (от точки М 1 до прямой b ) вычисляется по формуле: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Выше мы получили: A x 1 + B y 1 = — C 1 , тогда можем преобразовать формулу: M 1 H 1 = — C 1 A 2 + B 2 + C 2 A 2 + B 2 = C 2 — C 1 A 2 + B 2 . Так мы, собственно, получили формулу, указанную в алгоритме метода координат.

Разберем теорию на примерах.

Заданы две параллельные прямые y = 2 3 x — 1 и x = 4 + 3 · λ y = — 5 + 2 · λ . Необходимо определить расстояние между ними.

Решение

Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М 1 ( 4 , — 5 ) . Требуемое расстояние – это расстояние между точкой М 1 ( 4 , — 5 ) до прямой y = 2 3 x — 1 , произведем его вычисление.

Заданное уравнение прямой с угловым коэффициентом y = 2 3 x — 1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:

y = 2 3 x — 1 ⇔ 2 3 x — y — 1 = 0 ⇔ 2 x — 3 y — 3 = 0

Вычислим нормирующий множитель: 1 2 2 + ( — 3 ) 2 = 1 13 . Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 1 13 · 2 x — 3 y — 3 = 1 13 · 0 ⇔ 2 13 x — 3 13 y — 3 13 = 0 .

При x = 4 , а y = — 5 вычислим искомое расстояние как модуль значения крайнего равенства:

2 13 · 4 — 3 13 · — 5 — 3 13 = 20 13

Ответ: 20 13 .

В фиксированной прямоугольной системе координат O x y заданы две параллельные прямые, определяемые уравнениями x — 3 = 0 и x + 5 0 = y — 1 1 . Необходимо найти расстояние между заданными параллельными прямыми.

Решение

Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x + 5 0 = y — 1 1 ⇔ x + 5 = 0 . При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:

M 1 H 1 = C 2 — C 1 A 2 + B 2 = 5 — ( — 3 ) 1 2 + 0 2 = 8

Ответ: 8 .

Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.

В прямоугольной системе координат O x y z заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x — 3 1 = y — 1 = z + 2 4 и x + 5 1 = y — 1 — 1 = z — 2 4 . Необходимо найти расстояние между этими прямыми.

Решение

Из уравнения x — 3 1 = y — 1 = z + 2 4 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М 1 ( 3 , 0 , — 2 ) . Произведем вычисление расстояния | М 1 Н 1 | от точки М 1 до прямой x + 5 1 = y — 1 — 1 = z — 2 4 .

Прямая x + 5 1 = y — 1 — 1 = z — 2 4 проходит через точку М 2 ( — 5 , 1 , 2 ) . Запишем направляющий вектор прямой x + 5 1 = y — 1 — 1 = z — 2 4 как b → с координатами ( 1 , — 1 , 4 ) . Определим координаты вектора M 2 M → :

M 2 M 1 → = 3 — ( — 5 , 0 — 1 , — 2 — 2 ) ⇔ M 2 M 1 → = 8 , — 1 , — 4

Вычислим векторное произведение векторов :

b → × M 2 M 1 → = i → j → k → 1 — 1 4 8 — 1 — 4 = 8 · i → + 36 · j → + 7 · k → ⇒ b → × M 2 M 1 → = ( 8 , 36 , 7 )

Применим формулу расчета расстояния от точки до прямой в пространстве:

M 1 H 1 = b → × M 2 M 1 → b → = 8 2 + 36 2 + 7 2 1 2 + ( — 1 ) 2 + 4 2 = 1409 3 2

2.5.6. Как найти расстояние между параллельными прямыми?

Ответим на этот вопрос конкретной задачей:

Задача 82

Найти расстояние между двумя параллельными прямыми, заданными в декартовой системе координат: .

Решение: расстояние между параллельными прямыми найдём как расстояние от точки до прямой. Для этого достаточно найти одну точку, принадлежащую любой прямой. Из уравнения легко усмотреть точку . Вычислим расстояние:

Примечание: последним действием домножили числитель и знаменатель на – чтобы избавиться от иррациональности в знаменателе.

Ответ:

Как видите, здесь бесконечно много способов решения.

источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/rasstojanie-mezhdu-dvumja-parallelnymi-prjamymi/

http://mathter.pro/angem/2_5_6_kak_nayti_rasstoyanie_mezhdu_parallelnymi_pryamymi_na_ploskosti.html

Взаимное расположение прямых в пространстве

Возможны четыре различных случая расположения двух прямых в пространстве:

– прямые скрещивающиеся, т.е. не лежат в одной плоскости;

– прямые пересекаются, т.е. лежат в одной плоскости и имеют одну общую точку;

– прямые параллельные, т.е. лежат в одной плоскости и не пересекаются;

– прямые совпадают.

Взаимное расположение прямых и их направляющие векторы

Получим признаки этих случаев взаимного расположения прямых, заданных каноническими уравнениями

l_{1}colon~frac{x-x_{1}}{a_{1}}=frac{y-y_{1}}{b_{1}}=frac{z-z_{1}}{c_{1}}, quad l_{2}colon~frac{x-x_{2}}{a_{2}}=frac{y-y_{2}}{b_{2}}=frac{z-z_{2}}{c_{2}},.

где M_{1}(x_{1},y_{1},z_{1}),,M_{2}(x_{2},y_{2},z_{2}) — точки, принадлежащие прямым l_{1} и l_{2} соответственно, a vec{p}_{1}=a_{1}vec{i}+b_{1}vec{j}+c_{1}vec{k}, vec{p}_{2}=a_{2}vec{i}+b_{2}vec{j}+c_{2}vec{k} — направляющие векторы (рис.4.34). Обозначим через vec{m}=overrightarrow{M_{1}M_{2}}=(x_{2}-x_{1})vec{i}+(y_{2}-y_{1})vec{j}+(z_{2}-z_{1})vec{k} вектор, соединяющий заданные точки.

Перечисленным выше случаям взаимного расположения прямых l_{1} и l_{2} соответствуют следующие признаки:

– прямые l_{1} и l_{2} скрещивающиеся Leftrightarrow векторы vec{m},,vec{p}_{1},,vec{p}_{2} не компланарны;

– прямые l_{1} и l_{2} пересекаются Leftrightarrow векторы vec{m},,vec{p}_{1},,vec{p}_{2} компланарны, а векторы vec{p}_{1},,vec{p}_{2} не коллинеарны;

– прямые l_{1} и l_{2} параллельные Leftrightarrow векторы vec{p}_{1},,vec{p}_{2} коллинеарны, а векторы vec{m},,vec{p}_{2} не коллинеарны;

– прямые l_{1} и l_{2} совпадают Leftrightarrow векторы vec{m},,vec{p}_{1},,vec{p}_{2} коллинеарны.

Эти условия можно записать, используя свойства смешанного и векторного произведений. Напомним, что смешанное произведение векторов в правой прямоугольной системе координат находится по формуле:

leftlanglevec{m},vec{p}_{1},vec{p}_{2}rightrangle= begin{vmatrix} x_{2}-x_{1}&y_{2}-y_{1}&z_{2}-z_{1}\ a_{1}&b_{1}&c_{1}\ a_{2}&b_{2}&c_{2} end{vmatrix}.

Равенство нулю смешанного произведения векторов является необходимым и достаточным условием их компланарности. Поэтому:

– прямые l_{1} и l_{2} скрещивающиеся Leftrightarrow определитель отличен от нуля;

– прямые l_{1} и l_{2} пересекаются Leftrightarrow определитель равен нулю, а вторая и третья его строки не пропорциональны, т.е. operatorname{rang}!begin{pmatrix}a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2}end{pmatrix}=2,;

– прямые l_{1} и l_{2} параллельные Leftrightarrow вторая и третья строки определителя пропорциональны, т.е. operatorname{rang}!begin{pmatrix}a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2}end{pmatrix}=1,, а первые две строки не пропорциональны, т.е. operatorname{rang}!begin{pmatrix}x_{2}-x_{1}&y_{2}-y_{1}&z_{2}-z_{1}\a_{1}&b_{1}&c_{1}end{pmatrix}=2,;

– прямые l_{1} и l_{2} совпадают Leftrightarrow все строки определителя пропорциональны, т.е. operatorname{rang}!begin{pmatrix}x_{2}-x_{1}&y_{2}-y_{1}&z_{2}-z_{1}\a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2}end{pmatrix}=1,.


Расстояние между параллельными прямыми

Найдем расстояние d между параллельными прямыми, заданными каноническими уравнениями (рис.4.35)

Расстояние d между параллельными прямыми

lcolon~frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}, quad l_{1}colon~frac{x-x_{1}}{a_{1}}=frac{y-y_{1}}{b_{1}}=frac{z-z_{1}}{c_{1}},

где M_{0}(x_{0},y_{0},z_{0}),,M_{1}(x_{1},y_{1},z_{1}) — произвольные точки на прямых l и l_{1} соответственно, а координаты направляющих векторов прямых пропорциональны: frac{a}{a_{1}}=frac{b}{b_{1}}=frac{c}{c_{1}},.

Искомое расстояние d равно высоте параллелограмма, построенного на векторах vec{p}=avec{i}+bvec{j}+cvec{k} и vec{m}=overrightarrow{M_{0}M_{1}}=(x_{1}-x_{0})vec{i}+(y_{1}-y_{0})vec{j}+(z_{1}-z_{0})vec{k}, и может быть найдено по формуле (4.35).


Расстояние между скрещивающимися прямыми

Напомним, что расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра, т.е. кратчайшее расстояние между точками этих прямых.

Расстояние d между скрещивающимися прямыми

Найдем расстояние d между скрещивающимися прямыми, заданными каноническими уравнениями

lcolon_{1}~frac{x-x_{1}}{a_{1}}=frac{y-y_{1}}{b_{1}}=frac{z-z_{1}}{c_{1}}, quad l_{2}colon~frac{x-x_{2}}{a_{2}}=frac{y-y_{2}}{b_{2}}=frac{z-z_{2}}{c_{2}},

где M_{1}(x_{1},y_{1},z_{1}),,M_{2}(x_{2},y_{2},z_{2}) — произвольные точки на прямых l_{1} и l_{2} соответственно.

Искомое расстояние d равно высоте параллелепипеда, построенного на векторах vec{m}=overrightarrow{M_{1}M_{2}}=(x_{2}-x_{1})vec{i}+(y_{2}-y_{1})vec{j}+(z_{2}-z_{1})vec{k}, vec{p}_{1}=a_{1}vec{i}+b_{1}vec{j}+c_{1}vec{k}, vec{p}_{2}=a_{2}vec{i}+b_{2}vec{j}+c_{2}vec{k}, (рис.4.36), т.е.

d=frac{|langlevec{m},vec{p}_{1},vec{p}_{2}rangle|}{|[vec{p}_{1},vec{p}_{2}]|},,

(4.38)

где

langlevec{m},vec{p}_{1},vec{p}_{2}rangle= begin{vmatrix}x_{2}-x_{1}&y_{2}-y_{1}&z_{2}-z_{1}\a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2}end{vmatrix}, quad [vec{p}_{1},vec{p}_{2}]= begin{vmatrix}vec{i}&vec{j}&vec{k}\a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2}end{vmatrix}

— смешанное и векторное произведения векторов. Как показано выше, прямые l_{1} и l_{2} скрещивающиеся тогда и только тогда, когда векторы vec{m},vec{p}_{1},vec{p}_{2} некомпланарные, т.е.

begin{vmatrix}x_{2}-x_{1}&y_{2}-y_{1}&z_{2}-z_{1}\a_{1}&b_{1}&c_{1}\a_{2}&b_{2}&c_{2}end{vmatrix}ne0,.

Отсюда следует, что вторая и третья строки не пропорциональны. Поэтому векторы vec{p}_{1},vec{p}_{2} неколлинеарные, т.е. |,[vec{p}_{1},vec{p}_{2}],|ne0 и знаменатель в правой части (4.38) отличен от нуля.


Угол между прямыми

Угол между прямыми определяется как угол между их направляющими векторами. Поэтому величина varphi острого угла между прямыми

l_{1}colon~frac{x-x_{1}}{a_{1}}=frac{y-y_{1}}{b_{1}}=frac{z-z_{1}}{c_{1}}, qquad l_{2}colon~frac{x-x_{2}}{a_{2}}=frac{y-y_{2}}{b_{2}}=frac{z-z_{2}}{c_{2}}

вычисляется по формуле

cosvarphi= frac{|,langlevec{p}_{1},vec{p}_{2}rangle,|}{|vec{p}_{1}|cdot|vec{p}_{2}|}= frac{|a_{1}cdot a_{2}+b_{1}cdot b_{2}+c_{1}cdot c_{2}|}{sqrt{a_{1}^2+b_{1}^2+c_{1}^2}cdotsqrt{a_{2}^2+b_{2}^2+c_{2}^2}},.

(4.39)


Пример 4.16. Найти расстояние d между прямой, проходящей через точки B(3;0;2), C(7;4;6), и осью абсцисс. Найти величину varphi острого угла между этими прямыми.

Решение. Каноническое уравнение оси абсцисс имеет вид frac{x}{1}=frac{y}{0}=frac{z}{0},, так как ось проходит через точку O(0;0;0) а vec{i} — ее направляющий вектор. Каноническое уравнение прямой BC получено в примере 4.15,»а»: frac{x-3}{1}=frac{y}{1}=frac{z-2}{1}.

Полагая vec{m}=overrightarrow{OB}=(3-0)vec{i}+(0-0)vec{j}+(2-0)vec{j}=3vec{i}+2vec{k}, vec{p}_{1}=vec{i}, vec{p}_{2}=vec{i}+vec{j}+vec{k} по формуле (4.38) получаем:

begin{gathered} langle,vec{m},vec{p}_{1},vec{p}_{2},rangle= begin{pmatrix}3&0&2\1&0&0\1&1&1end{pmatrix}=2, quad [,vec{p}_{1},vec{p}_{2},]= begin{pmatrix}vec{i}&vec{j}&vec{k}\1&0&0\1&1&1end{pmatrix}= -vec{j}+vec{k},\[4pt] d=frac{|,langle,vec{m},vec{p}_{1},vec{p}_{2},rangle,|}{|,[,vec{p}_{1},vec{p}_{2},],|}= frac{2}{sqrt{0^2+(-1)^2+1^2}}=sqrt{2},.end{gathered}

Острый угол varphi находим по формуле (4.39):

cosvarphi=frac{|,langle,vec{p}_{1},vec{p}_{2},rangle,|}{|,vec{p}_{1},|cdot|,vec{p}_{2},|}= frac{|1cdot1+0cdot1+0cdot1|}{sqrt{1^2+0^2+0^2}cdotsqrt{1^2+1^2+1^2}}= frac{1}{sqrt{3}}quad Rightarrow quad varphi=arccosfrac{1}{sqrt{3}},.


Взаимное расположение прямой и плоскости

Возможны три случая взаимного расположения прямой и плоскости:

– прямая и плоскость пересекаются, т.е. имеют одну общую точку;

– прямая и плоскость параллельны, т.е. не имеют общих точек;

– прямая лежит в плоскости, т.е. все точки прямой принадлежат плоскости.

Получим признаки для всех этих случаев. Пусть прямая l и плоскость rho заданы уравнениями:

lcolon,frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}; qquad rhocolon,Acdot x+Bcdot y+Ccdot z+D=0,

т.е. прямая l проходит через точку M_{0}(x_{0},y_{0},z_{0}) коллинеарно вектору vec{p}=avec{i}+bvec{j}+cvec{k} а плоскость rho перпендикулярна вектору vec{n}=Avec{i}+Bvec{j}+Cvec{k},.

Перечисленным выше случаям взаимного расположения прямой l и плоскости rho соответствуют следующие признаки:

– прямая l и плоскость rho пересекаются Leftrightarrow векторы vec{p} и vec{n} не ортогональны (рис.4.37,а);

– прямая l и плоскость rho параллельны Leftrightarrow векторы vec{p} и vec{n} ортогональны, а точка M_{0} не принадлежит плоскости rho (рис.4.37,б);

– прямая l лежит в плоскости rho~Leftrightarrow векторы vec{p} и vec{n} ортогональны, а точка M_{0} принадлежит плоскости rho (рис.4.37,в).

Взаимное расположение прямой и плоскости

Учитывая свойство скалярного произведения векторов langle,vec{p},vec{n},rangle=acdot A+bcdot B+ccdot C получаем:

– прямая l и плоскость rho пересекаются Leftrightarrow acdot A+bcdot B+ccdot Cne0;

– прямая l и плоскость rho параллельны Leftrightarrow~ begin{cases}acdot A+bcdot B+ccdot C=0,\ Acdot x_{0}+Bcdot y_{0}+Ccdot z_{0}+Dne0;end{cases}

– прямая l лежит в плоскости rho~Leftrightarrow~ begin{cases}acdot A+bcdot B+ccdot C=0,\ Acdot x_{0}+Bcdot y_{0}+Ccdot z_{0}+D=0;end{cases}


Угол между прямой и плоскостью

Угол между прямой и плоскостью

Угол между прямой l и плоскостью rho определяется как угол между прямой и ее ортогональной проекцией на плоскость (рис.4.38). Из двух смежных углов varphi и varphi', как правило, выбирают меньший. Если прямая l перпендикулярна плоскости (ее ортогональная проекция на плоскость является точкой), то угол считается равным textstyle{frac{pi}{2}}. Если обозначить psi и psi' углы, образованные наклонной l с перпендикуляром к плоскости, то

sinvarphi=sinvarphi'=|cospsi|=|cospsi'|,.

Поскольку угол psi (или psi') равен углу между направляющим вектором vec{p} прямой l и нормалью vec{n} к плоскости rho, то sinvarphi= |cospsi|= frac{|langlevec{p},vec{n}rangle|}{|vec{p}|{cdot}|vec{n}|}. Записывая скалярное произведение через координаты множителей, получаем формулу вычисления угла varphi между прямой и плоскостью:

sinvarphi= frac{|acdot A+bcdot B+ccdot C|}{sqrt{a^2+b^2+c^2}cdotsqrt{A^2+B^2+C^2}},.

(4.40)

Отсюда, например, следует полученное ранее необходимое условие acdot A+bcdot B+ccdot C=0 параллельности прямой и плоскости.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:
  • Как найти медиану статистика пример
  • Как составить рассказ про космос
  • Комплексные числа как найти rez
  • Как найти людей наб челнах
  • Как найти рабочий объем цилиндра формула