Как найти расстояние между прямыми куба

Среди огромного количества стереометрических
задач в учебниках геометрии, в различных
сборниках задач, пособиях по подготовке в ВУЗы
крайне редко встречаются задачи на нахождение
расстояния между скрещивающимися прямыми.
Возможно, это обусловлено как узостью их
практического применения (относительно школьной
программы, в отличие от «выигрышных» задач на
вычисление площадей и объемов), так и сложностью
данной темы.

Практика проведения ЕГЭ показывает, что многие
учащиеся вообще не приступают к выполнению
заданий по геометрии, входящих в экзаменационную
работу. Для обеспечения успешного выполнения
геометрических заданий повышенного уровня
сложности необходимо развивать гибкость
мышления, способность анализировать
предполагаемую конфигурацию и вычленять в ней
части, рассмотрение которых позволяет найти путь
решения задачи.

Школьный курс предполагает изучение четырех
способов решения задач на нахождение расстояния
между скрещивающимися прямыми. Выбор способа
обусловлен, в первую очередь, особенностями
конкретной задачи, предоставленными ею
возможностями для выбора, и, во вторую очередь,
способностями и особенностями
«пространственного мышления» конкретного
учащегося. Каждый из этих способов позволяет
решить самую главную часть задачи — построение
отрезка, перпендикулярного обеим скрещивающимся
прямым (для вычислительной же части задач
деление на способы не требуется).

Основные способы решения задач на нахождение
расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух
скрещивающихся прямых, т.е. отрезка с концами на
этих прямых и перпендикулярного каждой из этих
прямых.

Нахождение расстояния от одной из
скрещивающихся прямых до параллельной ей
плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя
параллельными плоскостями, проходящими через
заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся
проекцией одной из скрещивающихся прямых, на
перпендикулярную ей плоскость (так называемый
«экран») до проекции другой прямой на ту же
самую плоскость.

Проведем демонстрацию всех четырех способов на
следующей простейшей задаче: «В кубе с
ребром а найти расстояние между любым ребром
и диагональю не пересекающей его грани». Ответ: .

1 способ.

Рисунок 1

hскр перпендикулярна плоскости боковой
грани, содержащей диагональ d и
перпендикулярна ребру, следовательно, hскр
и является расстоянием между ребром а и
диагональю d.

2 способ.

Рисунок 2

Плоскость A параллельна ребру и проходит через
данную диагональ, следовательно, данная hскр
является не только расстоянием от ребра до
плоскости A, но и расстоянием от ребра до данной
диагонали.

3 способ.

Рисунок 3

Плоскости A и B параллельны и проходят через две
данные скрещивающиеся прямые, следовательно,
расстояние между этими плоскостями равно
расстоянию между двумя скрещивающимися прямыми.

4 способ.

Рисунок 4

Плоскость A перпендикулярна ребру куба. При
проекции на A диагонали d данная диагональ
обращается в одну из сторон основания куба.
Данная hскр является расстоянием между
прямой, содержащей ребро, и проекцией диагонали
на плоскость C, а значит и между прямой,
содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого
способа для изучаемых в школе многогранников.

СПОСОБ I.

Применение первого способа достаточно
ограничено: он хорошо применяется лишь в
некоторых задачах, так как достаточно сложно
определить и обосновать в простейших задачах
точное, а в сложных — ориентировочное
местоположение общего перпендикуляра двух
скрещивающихся прямых. Кроме того, при
нахождении длины этого перпендикуляра в сложных
задачах можно столкнуться с непреодолимыми
трудностями.

Примеры

Задача 1. В прямоугольном параллелепипеде с
размерами a, b, h найти расстояние между
боковым ребром и не пересекающейся с ним
диагональю основания.

Рисунок 5

Пусть AHBD.
Так как А1А перпендикулярна плоскости АВСD ,
то А1А
AH.

AH перпендикулярна обеим из двух скрещивающихся
прямых, следовательно AH?- расстояние между
прямыми А1А и BD. В прямоугольном
треугольнике ABD, зная длины катетов AB и AD, находим
высоту AH, используя формулы для вычисления
площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с
боковым ребром L и стороной основания a
найти расстояние между апофемой и стороной
основания, пересекающей боковую грань,
содержащую эту апофему.

Рисунок 6

SHCD как
апофема, ADCD,
так как ABCD — квадрат. Следовательно, DH —
расстояние между прямыми SH и AD. DH равно половине
стороны CD. Ответ:

СПОСОБ II

Применение этого способа также ограничено в
связи с тем, что если можно быстро построить (или
найти уже готовую) проходящую через одну из
скрещивающихся прямых плоскость, параллельную
другой прямой, то затем построение
перпендикуляра из любой точки второй прямой к
этой плоскости (внутри многогранника) вызывает
трудности. Однако в несложных задачах, где
построение (или отыскивание) указанного
перпендикуляра трудностей не вызывает, данный
способ является самым быстрым и легким, и поэтому
доступен.

Примеры

Задача 2. Решение уже указанной выше задачи
данным способом особых трудностей не вызывает.

Рисунок 7

Плоскость EFM параллельна прямой AD, т. к AD || EF.
Прямая MF лежит в этой плоскости, следовательно,
расстояние между прямой AD и плоскостью EFM равно
расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO,
следовательно, OH(EFM),
следовательно, OH — расстояние между прямой AD и
плоскостью EFM, а значит, и расстояние между прямой
AD и прямой MF. Находим OH из треугольника AOD.

Ответ:

Задача 3. В прямоугольном параллелепипеде с
размерами a,b и h найти расстояние между
боковым ребром и не пересекающейся с ним
диагональю параллелепипеда.

Рисунок 8

Прямая AA1 параллельна плоскости BB1D1D,
B1D принадлежит этой плоскости,
следовательно расстояние от AA1 до
плоскости BB1D1D равно расстоянию между
прямыми AA1 и B1D. Проведем AHBD. Также, AH B1B,
следовательно AH(BB1D1D), следовательно AHB1D, т. е. AH —
искомое расстояние. Находим AH из прямоугольного
треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме
A:F1 c высотой h и стороной основания a
найти расстояние между прямыми:

Рисунок 9 Рисунок 10

а) AA1 и ED1.

Рассмотрим плоскость E1EDD1. A1E1EE1, A1E1E1D1,
следовательно

A1E1 (E1EDD1). Также A1E1 AA1.
Следовательно, A1E1 является
расстоянием от прямой AA1 до плоскости E1EDD1.
ED1(E1EDD1).,
следовательно AE1 — расстояние от прямой AA1
до прямой ED1. Находим A1E1 из
треугольника F1A1E1 по теореме
косинусов. Ответ:

б) AF и диагональю BE1.

Проведем из точки F прямую FH перпендикулярно BE.
EE1FH, FHBE, следовательно
FH(BEE1B1),
следовательно FH является расстоянием между
прямой AF и (BEE1B1), а значит и
расстоянием между прямой AF и диагональю BE1.
Ответ:

СПОСОБ III

Применение этого способа крайне ограничено,
так как плоскость, параллельную одной из прямых
(способ II) строить легче, чем две параллельные
плоскости, однако способ III можно использовать в
призмах, если скрещивающиеся прямые принадлежат
параллельным граням, а также в тех случаях, когда
в многограннике несложно построить параллельные
сечения, содержащие заданные прямые.

Примеры

Задача 4.

Рисунок 11

а) Плоскости BAA1B1 и DEE1D1
параллельны, так как AB || ED и AA1 || EE1. ED1DEE1D1,
AA1(BAA1B1),
следовательно, расстояние между прямыми AA1
и ED1 равно расстоянию между плоскостями BAA1B1
и DEE1D1. A1E1AA1, A1E1A1B1, следовательно, A1E1BAA1B1.
Аналогично доказываем, что A1E1(DEE1D1). Т.о., A1E1
является расстоянием между плоскостями BAA1B1
и DEE1D1, а значит, и между прямыми AA1
и ED1. Находим A1E1 из треугольника
A1F1E1, который является
равнобедренным с углом A1F1E1,
равным .
Ответ:

Рисунок 12

б) Расстояние между AF и диагональю BE1
находится аналогично.

Ответ:.

Задача 5. В кубе с ребром а найти
расстояние между двумя непересекающимися
диагоналями двух смежных граней.

Данная задача рассматривается как
классическая в некоторых пособиях, но, как
правило, ее решение дается способом IV, однако
является вполне доступной для решения с помощью
способа III.

Рисунок 13

Некоторую трудность в данной задаче вызывает
доказательство перпендикулярности диагонали A1C
обеим параллельным плоскостям (AB1D1 ||
BC1D). B1CBC1 и BC1A1B1, следовательно,
прямая BC1 перпендикулярна плоскости A1B1C,
и следовательно, BC1A1C. Также, A1CBD.
Следовательно, прямая A1C перпендикулярна
плоскости BC1D. Вычислительная же часть
задачи особых трудностей не вызывает, так как hскр
= EF находится как разность между диагональю куба
и высотами двух одинаковых правильных пирамид A1AB1D1
и CC1BD.

Ответ:

СПОСОБ IV.

Данный способ имеет достаточно широкое
применение. Для задач средней и повышенной
трудности его можно считать основным. Нет
необходимости применять его только тогда, когда
один из трех предыдущих способов работает проще
и быстрее, так как в таких случаях способ IV может
только усложнить решение задачи, или сделать его
труднодоступным. Данный способ очень выгодно
использовать в случае перпендикулярности
скрещивающихся прямых, так как нет необходимости
построения проекции одной из прямых на «экран»

Примеры.

Задача 5. Все та же «классическая» задача
(с непересекающимися диагоналями двух смежных
граней куба) перестает казаться сложной, как
только находится «экран» — диагональное
сечение куба.

Рисунок 14

Экран:

Рисунок 15

Рассмотрим плоскость A1B1CD. C1F (A1B1CD),
т. к. C1FB1C
и C1FA1B1.
Тогда проекцией C1D на «экран» будет
являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием
между двумя непересекающимися диагоналями двух
смежных граней. Находим EM из прямоугольного
треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде
найти расстояние и угол между скрещивающимися
прямыми: боковым ребром l и стороной
основания a.

Рисунок 16

В данной и аналогичных ей задачах способ IV
быстрее других способов приводит к решению, так
как построив сечение, играющее роль «экрана»,
перпендикулярно AC (треугольник BDM), видно, что
далее нет необходимости строить проекцию другой
прямой (BM) на этот экран. DH — искомое расстояние. DH
находим из треугольника MDB, используя формулы
площади. Ответ: .

14. Задачи по стереометрии


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Нахождение расстояния между скрещивающимися прямыми

(blacktriangleright) Скрещивающиеся прямые – это прямые, через которые нельзя провести одну плоскость.

Признак скрещивающихся прямых: если первая прямая пересекает плоскость, в которой лежит вторая прямая, в точке, не лежащей на второй прямой, то такие прямые скрещиваются.

(blacktriangleright) Т.к. через одну из скрещивающихся прямых проходит ровно одна плоскость, параллельная другой прямой, то расстояние между скрещивающимися прямыми — это расстояние между одной из этих прямых и плоскостью, проходящей через вторую прямую параллельно первой.

Таким образом, если прямые (a) и (b) скрещиваются, то:

Шаг 1. Провести прямую (cparallel b) так, чтобы прямая (c) пересекалась с прямой (a). Плоскость (alpha), проходящая через прямые (a) и (c), и будет плоскостью, параллельной прямой (b).

Шаг 2. Из точки пересечения прямых (a) и (c) ((acap c=H)) опустить перпендикуляр (HB) на прямую (b) (первый способ).

Или из любой точки (B’) прямой (b) опустить перпендикуляр на прямую (c) (второй способ).

В зависимости от условия задачи какой-то из этих двух способов может быть гораздо удобнее другого.


Задание
1

#2452

Уровень задания: Легче ЕГЭ

В кубе (ABCDA_1B_1C_1D_1), ребро которого равно (sqrt{32}), найдите расстояние между прямыми (DB_1) и (CC_1).

Прямые (DB_1) и (CC_1) скрещиваются по признаку, т.к. прямая (DB_1) пересекает плоскость ((DD_1C_1)), в которой лежит (CC_1), в точке (D), не лежащей на (CC_1).

Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой (CC_1) и плоскостью, проходящей через (DB_1) параллельно (CC_1). Т.к. (DD_1parallel CC_1), то плоскость ((B_1D_1D)) параллельна (CC_1).
Докажем, что (CO) – перпендикуляр на эту плоскость. Действительно, (COperp BD) (как диагонали квадрата) и (COperp DD_1) (т.к. ребро (DD_1) перпендикулярно всей плоскости ((ABC))). Таким образом, (CO) перпендикулярен двум пересекающимся прямым из плоскости, следовательно, (COperp (B_1D_1D)).

(AC), как диагональ квадрата, равна (ABsqrt2), то есть (AC=sqrt{32}cdot sqrt2=8). Тогда (CO=frac12cdot AC=4).

Ответ: 4


Задание
2

#2453

Уровень задания: Сложнее ЕГЭ

Дан куб (ABCDA_1B_1C_1D_1). Найдите расстояние между прямыми (AB_1) и (BC_1), если ребро куба равно (a).

1) Заметим, что эти прямые скрещиваются по признаку, т.к. прямая (AB_1) пересекает плоскость ((BB_1C_1)), в которой лежит (BC_1), в точке (B_1), не лежащей на (BC_1).
Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой (BC_1) и плоскостью, проходящей через (AB_1) параллельно (BC_1).

Для этого проведем (AD_1) — она параллельна (BC_1). Следовательно, по признаку плоскость ((AB_1D_1)parallel BC_1).

2) Опустим перпендикуляр (C_1H) на эту плоскость и докажем, что точка (H) упадет на продолжение отрезка (AO), где (O) – точка пересечения диагоналей квадрата (A_1B_1C_1D_1).
Действительно, т.к. по свойству квадрата (C_1Operp B_1D_1), то по теореме о трех перпендикуляр проекция (HOperp B_1D_1). Но (triangle AB_1D_1) равнобедренный, следовательно, (AO) – медиана и высота. Значит, точка (H) должна лежать на прямой (AO).

3) Рассмотрим плоскость ((AA_1C_1)).

(triangle AA_1Osim triangle OHC_1) по двум углам ((angle
AA_1O=angle OHC_1=90^circ)
, (angle AOA_1=angle HOC_1)). Таким образом,

[dfrac{C_1H}{AA_1}=dfrac{OC_1}{AO} qquad (*)]

По теореме Пифагора из (triangle AA_1O): [AO=sqrt{a^2+dfrac{a^2}2}=dfrac{sqrt6}2a.]

Следовательно, из ((*)) теперь можно найти перпендикуляр

[C_1H=dfrac a{sqrt3}.]

Ответ:

(dfrac a{sqrt3})


Задание
3

#2439

Уровень задания: Сложнее ЕГЭ

Дан куб (ABCDA_1B_1C_1D_1). Найдите расстояние между прямыми (A_1B) и (AC_1), если ребро куба равно (sqrt6).

По определению угол между скрещивающимися прямыми — это угол между одной прямой и плоскостью, проходящей через вторую прямую параллельно первой. Найдем плоскость, проходящую через (A_1B) параллельно (AC_1).

Заметим, что данные прямые являются скрещивающимися. Т.к. (B_1C_1perp (AA_1B_1)), то проекция наклонной (AC_1) на эту плоскость – это прямая (AB_1).

Пусть (AB_1cap A_1B=O). Опустим из точки (O) на (AC_1) перпендикуляр (OK) и докажем, что это и есть искомое расстояние. Т.к. по определению расстояние между скрещивающимися прямыми – длина отрезка, перпендикулярного обеим прямым, то осталось доказать, что (OK) перпендикулярен прямой (A_1B).
Действительно, проведем (KHparallel B_1C_1) (следовательно, (Hin
AB_1)
). Тогда т.к. (B_1C_1perp (AA_1B_1)), то и (KHperp
(AA_1B_1))
. Тогда по теореме о трех перпендикулярах (т.к. проекция (HOperp A_1B)) наклонная (KOperp A_1B), чтд.
Таким образом, (KO) – искомое расстояние.

Заметим, что (triangle AOKsim triangle AC_1B_1) (по двум углам). Следовательно,

[dfrac{AO}{AC_1}=dfrac{OK}{B_1C_1} quad Rightarrow quad
OK=dfrac{sqrt6cdot sqrt2}{2sqrt3}=1.]

Ответ: 1

УСТАЛ? Просто отдохни

Напомним, что скрещивающимися прямыми называют прямые, не принадлежащие одной плоскости и не имеющие между собой общих точек.

Признак скрещивания прямых: если прямая a пересекается с плоскостью, в которой лежит прямая b и при этом точка пересечения не принадлежит a, то a и b скрещиваются.

В качестве наглядного представления скрещивающихся прямых можно привести транспортную развязку. Верхнюю из дорог следует считать за одну прямую, нижнюю принять за другую.

Теорема 1

Пусть мы имеем две скрещивающиеся в пространстве прямые. Через каждую из них можно провести плоскость, параллельную другой скрещивающейся прямой, причём только одну.

Пересечение прямых на плоскости

Доказательство:

Через точку D у нас получится провести прямую DE, которая будет параллельной AB.

Через CD и DE (смотрите рис. выше) можно провести плоскость α.

В связи с тем, что AB не принадлежит этой плоскости и при этом параллельна DE, то она будет параллельной и плоскости.

Указанная плоскость единственная. Это ясно из того, что любая другая плоскость, которая проходит через CD, неизбежно пересечёт DE и AB, которая ей параллельна.

Доказательство завершено.

Различные определения расстояния между скрещивающимися прямыми

Определения 1 — 5

Расстоянием между скрещивающимися в пространстве прямыми именуют длину промежутка, отделяющего одну из скрещивающихся прямых от параллельной плоскости, которая пересекает другую прямую.


Расстоянием между скрещивающимися прямыми это расстояние между самыми близкими точками этих прямых.


Расстоянием между двумя скрещивающимися прямыми называют расстояние, разделяющее две плоскости, которым они принадлежат.


Расстоянием между двумя скрещивающимися прямыми считают длину, которую имеет их общий перпендикуляр.


Пусть нам даны скрещивающиеся прямые a и b. Произвольно выберем на a некоторую точку M1. На b наложим плоскость χ, которая будет параллельна a. Из точки M1 на указанную плоскость χ проведём перпендикуляр M1H1. Его длина и есть расстояние, разделяющее скрещивающиеся прямые.

Расстояние разделяющее скрещивающиеся прямые

Ка найти расстояние между скрещивающимися прямыми

Главная трудность здесь состоит в построении отрезка равного по своей длине расстоянию, которое нам требуется найти. Если его удалось построить, то используя теорему Пифагора, признаки подобия или равенства треугольников либо иные подобные пути, расстояние получится найти достаточно легко.

Как следует искать расстояние между скрещивающимися прямыми методом координат

Он основан на определении 5 и использовании формулы расстояния от точки M до плоскости α.

r(M, a) = (ax0 + by0 + cz0 + d)/ √(a2 + b2 + c2)

Последовательность действий здесь следующая:

  1. Выясняем, какие координаты имеют точки M1 (x1, y1, z1)и M2(x2, y2,z2) , принадлежащие прямым a и b;
  2. Выясняем координаты (ax,ay,az) и (bx,by,bz), принадлежащие направляющим векторам a и b;
  3. Выясняем, какие координаты (A,B,C) имеет нормальный вектор n плоскости χ, который проходит через b, параллельной a. Проще всего это сделать из равенства

[mathrm{n}=left[begin{array}{llll} mathrm{a} X mathrm{~b} end{array}right]=begin{array}{ccc} i & j & k \ ax & ay & a z \ b x & b y & b z end{array}]

  1. Записываем общее уравнение плоскости χ как
    [mathrm{A}left(mathrm{x}-mathrm{x}_{1}right)+mathrm{B}left(mathrm{y}-mathrm{y}_{1}right)+mathrm{C}left(mathrm{z}-mathrm{z}_{1}right)=0;]
  2. Приводим полученное уравнение к нормальному виду
    [cos alpha * mathrm{x}+cos beta * mathrm{y}+cos gamma * mathrm{z}-mathrm{p}=0;]
  3. Вычисляем величину промежутка M1H1 от точки M(x1,y1,z1) до плоскости χ по формуле

[mathrm{M}_{1} mathrm{H}_{1}=cos alpha mathrm{x}_{1}+cos beta mathrm{y}_{1}+cos gamma mathrm{z}_{1}-mathrm{p}]

Пример 1

В системе координат заданы скрещивающиеся прямые a и b.

Первая определена параметрическими уравнениями [mathrm{x}=-2, mathrm{y}=1+2 * lambda, mathrm{z}=4-3^{*} lambda]

Вторая задана каноническим уравнением [mathrm{x} / 1=(mathrm{y}-1) /-2=(mathrm{z}+4) / 6]

Нужно выяснить расстояние между этими прямыми.

Решение: Из уравнений прямых ясно, что первая из них проходит через точку M1(-2, 1,4), а вторая через точку M2(0,1,-4).

Направляющий вектор первой прямой a = (0,2,-3). Второй  –  b = (1,-2,6).

Вычислим векторное произведение указанных векторов.

[mathrm{n}=left[begin{array}{llcc}
a mathrm{X} b
end{array}right]=begin{array}{ccc}
i & j & k \
0 & 2 & -3 \
1 & -2 & 6
end{array}=6 * I-3* mathrm{j}-2* mathrm{k}]

У n будут координаты (6, -3, -2).

Из этого получается, что уравнение плоскости χ является уравнением той плоскости, которой принадлежит точка M2(0,1,-4). Она имеет нормальный вектор n = (6,-3,-2).

6*(x-0) — 3(y-1) – 2(z-(-4)) = 0

6x – 3y – 2z – 5 = 0

Нормирующим множителем выше указанного уравнения плоскости будет

1/ √((62) – (-3)2 – (-22)) = 1/7

Отсюда следует, что у уравнения данной плоскости будет вид

(6/7)*x – (3/7)*y – (2/7)*z – 5/7 = 0

Теперь нам осталось лишь воспользоваться формулой расстояния от точки M1(-2,1,4) до плоскости (6/7)*x – (3/7)*y – (2/7)*z – 5/7 = 0

В результате несложных вычислений мы получаем

M1H1= ((6/7)*(-2) – (3/7)*1 – (2/7)*4 – (5/7) = (-28/7) = 4

Ответ: расстояние между прямыми равно 4.

Нет времени решать самому?

Наши эксперты помогут!

Метод базирующийся на определении 1

Его покажем сразу на решении конкретно задачи. Так будет понятнее и яснее.

Пример 2

Основанием прямоугольной призмы АВСDA1B1C1D1 является квадрат ABCD. Каждая из его сторон равна 4. Высота призмы 2√2. Требуется найти величину промежутка между прямыми DA1 и CD1.

Пересечение прямых пример 1

Решение: Т. к. прямая CD1 принадлежит плоскости CB1D1 . DA1||CB1, прямая DA1 является параллельной плоскости CB1D1. Из сказанного следует, что нужно найти разделяющее их расстояние. Оно и будет ответом на наш вопрос. Упомянутое расстояние, есть расстояние от точки A1 до плоскости CB1D1.

BD1 перпендикулярна плоскости ACC1. Из этого следует, что плоскость ACC1 будет перпендикулярной плоскости CB1D1. Их пересечением является прямая O1C. O и O1 есть центры верхнего и нижнего оснований призмы.

Из точки A1, которая принадлежит плоскости ACC1 опустим перпендикуляр A1H на прямую CO1. Длина A1H будет тем расстоянием, которое мы ищем.

Из прямоугольного треугольника A1HO1, зная, что его гипотенуза AO1 равна 2√2, и

sin(HO1A1) =  √2/2 находим катет HA1 = A1O1sin(HO1A1) = 2.

Ответ: величина промежутка между прямыми DA1 и CD1 равно 2.

Метод объёмов

Он использует вспомогательную пирамиду, высота которой и будет искомым расстоянием, разделяющем скрещивающиеся прямые. Для нахождения упомянутой высоты сначала нужно узнать объём указанной пирамиды. Отсюда и название метода.

Отметим, что данный метод исключает проведение перпендикуляра к скрещивающимся прямым.

Пересечение прямых пример 2

Пример 3

Выясните, чему равна величина промежутка между прямыми A1D и D1C. Сторона квадрата равна 4. Высота призмы 2√2.

Решение: Т. к. DA1||CB1 и CD1||BA1 , то  (BDA1 )||(CB1D1). Расстояние между указанными плоскостями равняется расстоянию от точки C до плоскости A1BD.

Посмотрите на пирамиду BCDA1. H – высота, соединяющая вершину С с основанием BDA1.

Длина высоты равняется расстоянию между DA1 и DC1.

BD = AC = √32 = 4√2. AO = 2√2

Из прямоугольного треугольника легко находим

A1O = CO1 = √(AA12 + AO2) = √(4*2 + 4*2) = 4

Находим объём пирамиды CA1BD. Она имеет основание A1BD и высоту h. Он будет равен

V(1) = (1/3)SABD * h = (1/3)*(1/2)A1O * BD * h = (4 * 4√2)*h/6 = (8√2)*h/3

Вычислим теперь той же самой пирамиды объём, считая её основанием BCD, а высоту AA1.

V{2} = (1/3)SBCD*AA1 = (1/3)*(1/2)*16*2√2 = 16*(√2/3)

Теперь приравняем эти выражения

[(8√2)*h/3] = [16*(√2/3)]

Из этого выражения очень легко найти расстояние между прямыми DA1 и CD1. Упрощаем и получаем, что h = 2.

Ответ: величина промежутка равна 2.

Расстояние между прямыми в пространстве онлайн

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых («канонический» или «параметрический» ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:

. (1)
, (2)

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

которое и является расстоянием между прямыми L1 и L2 (Рис.1).

Пример 1. Найти расстояние между прямыми L1 и L2:

(3)
(4)

Найдем проекцию точки M1 на прямую L2. Для этого построим плоскость α, проходящей через точку M1 и перпендикулярной прямойL2.

Для того, чтобы плоскость α было перепендикулярна прямой L2, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L2, т.е. в качестве нормального вектора плоскости α можно взять направляющий вектор прямой L2. Тогда уравнение искомой плоскости, проходящей через точку M1(x1, y1, z1) имеет следующий вид:

m2<xx1)+p2(yy1)+ l2(zz1)=0 (5)

После упрощения получим уравнение плоскости, проходящей через точку M1 и перпендикулярной прямой L2:

Найдем точку пересечения прямой L2 и плоскости α, для этого построим параметрическое уравнение прямой L2.

Выразив переменные x, y, z через параметр t, получим параметрическое уравнение прямой L2:

(7)

Чтобы найти точку пересечения прямой L2 и плоскости α, подставим значения переменных x, y, z из (7) в (6):

Решив уравнение получим:

(8)

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L2 и плоскости α:

Остается найти расстояние между точками M1 и M3:

Ответ: Расстояние между прямыми L1 и L2 равно d=7.2506.

Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L1 и L2. Если направляющие векторы прямых L1 и L2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q1=λq2, то прямые L1 и L2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d, разделив площадь на основание q1 параллелограмма.

Вычислим координаты вектора :

Вычислим векторное произведение векторов и q1:

Вычисляя определители второго порядка находим координаты вектора c:

Далее находим площадь параллелограмма:

.

Расстояние между прямыми L1 и L2 равно:

,

,

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

(25)
(26)

Векторы q1 и q2 коллинеарны. Следовательно прямые L1 и L2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор =<x2x1, y2y1, z2z1>=<7, 2, 0>.

Вычислим векторное произведение векторов и q1. Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов и q1:

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов и q1:

Таким образом, результатом векторного произведения векторов и q1 будет вектор:

Поскольку векторное произведение векторов и q1 дает плошадь параллелограмма образованным этими векторами, то расстояние между прямыми L1 и L2 равно :

Ответ: Расстояние между прямыми L1 и L2 равно d=7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 (уравнения (1) и (2)).

Пусть прямые L1 и L2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L1 и L2 нужно построить параллельные плоскости α1 и α2 так, чтобы прямая L1 лежал на плоскости α1 а прямая L2 − на плоскости α2. Тогда расстояние между прямыми L1 и L2 равно расстоянию между плоскостями L1 и L2 (Рис. 3).

Поскольку плоскость α1, проходит через прямую L1, то он проходит также через M1(x1, y1, z1). Следовательно справедливо следующее равенство:

A1x1+B1y1+C1z1+D1=0. (27)

где n1=<A1, B1, C1> − нормальный вектор плоскости α1. Для того, чтобы плоскость α1 проходила через прямую L1, нормальный вектор n1 должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A1, B1, C1, D1, и подставляя в уравнение

получим уравнение плоскости α1. (Как построить уравнение плоскости, проходящей через прямую, параллельно другой прямой подробно изложено здесь).

Аналогичным образом находим уравнение плоскости α2:

Плоскости α1 и α2 параллельны, следовательно полученные нормальные векторыn1=<A1, B1, C1> и n2=<A2, B2, C2> этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

.

Полученное расстояние между плоскостями α1 и α2 является также расстоянием между прямыми L1 и L2.

Пример 3. Найти расстояние между прямыми

(32)
(33)

Построим плоскость α1, проходящую через прямую L1, параллельно прямой L2.

Поскольку плоскость α1 проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(2, 1, 4) и нормальный вектор n1=<m1, p1, l1> плоскости α1 перпендикулярна направляющему вектору q1 прямой L1. Тогда уравнение плоскости должна удовлетворять условию:

A1x1+B1y1+C1z1+D1=0. (34)

а условие параллельности прямой L1 и искомой плоскости α1 представляется следующим условием:

Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:

A1·2+B1·1+C1·4+D1=0. (37)
A1·1+B1·3+C1·(−2)=0. (38)
A1·2+B1·(−3)+C1·7=0. (39)

Представим эти уравнения в матричном виде:

(40)
(41)

Искомая плоскость может быть представлена формулой:

Упростим уравнение, умножив на число 17.

(43)

Построим плоскость α2, проходящую через прямую L2, параллельно прямой L1.

Поскольку плоскость α2 проходит через прямую L2 , то она проходит также через точку M2(x2, y2, z2)=M2(6, −1, 2) и нормальный вектор n2=<m2, p2, l2> плоскости α2 перпендикулярна направляющему вектору q2 прямой L2. Тогда уравнение плоскости должна удовлетворять условию:

A2x2+B2y2+C2z2+D2=0. (44)

а условие параллельности прямой L2 и искомой плоскости α2 представляется следующим условием:

Так как плоскость α2 должна быть параллельной прямой L1, то должна выполнятся условие:

A1·6+B1·(−1)+C1·2+D1=0. (47)
A1·2+B1·(−3)+C1·7=0. (48)
A1·1+B1·3+C1·(−2)=0. (49)

Представим эти уравнения в матричном виде:

(50)
(51)

Искомая плоскость может быть представлена формулой:

Упростим уравнение, умножив на число −83.

(53)

Расстояние между построенными плоскостями (43) и (53) будет расстоянием между прямыми (1) и (2).

Запишем формулы уравнений плоскостей α1 и α2 :

Поскольку нормальные векторы плоскостей α1 и α2 совпадают, то можно найти расстояние между плоскостями α1 и α2, используя следующую формулу:

(54)

Упростим и решим:

Расстояние между прямыми равно: d=4.839339

Четыре способа решения задач на нахождение расстояния между скрещивающимися прямыми

Разделы: Математика

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от «выигрышных» задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу. Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми. Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями «пространственного мышления» конкретного учащегося. Каждый из этих способов позволяет решить самую главную часть задачи — построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый «экран») до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче: «В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани». Ответ: .

hскр перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, hскр и является расстоянием между ребром а и диагональю d.

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная hскр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная hскр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных — ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Задача 1. В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Пусть AHBD. Так как А1А перпендикулярна плоскости АВСD , то А1А AH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А1А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

SHCD как апофема, ADCD, так как ABCD — квадрат. Следовательно, DH — расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Задача 2. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO, следовательно, OH(EFM), следовательно, OH — расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Ответ:

Задача 3. В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Прямая AA1 параллельна плоскости BB1D1D, B1D принадлежит этой плоскости, следовательно расстояние от AA1 до плоскости BB1D1D равно расстоянию между прямыми AA1 и B1D. Проведем AHBD. Также, AH B1B, следовательно AH(BB1D1D), следовательно AHB1D, т. е. AH — искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме A:F1 c высотой h и стороной основания a найти расстояние между прямыми:

Рассмотрим плоскость E1EDD1. A1E1EE1, A1E1E1D1, следовательно

A1E1 (E1EDD1). Также A1E1 AA1. Следовательно, A1E1 является расстоянием от прямой AA1 до плоскости E1EDD1. ED1(E1EDD1)., следовательно AE1 — расстояние от прямой AA1 до прямой ED1. Находим A1E1 из треугольника F1A1E1 по теореме косинусов. Ответ:

б) AF и диагональю BE1.

Проведем из точки F прямую FH перпендикулярно BE. EE1FH, FHBE, следовательно FH(BEE1B1), следовательно FH является расстоянием между прямой AF и (BEE1B1), а значит и расстоянием между прямой AF и диагональю BE1. Ответ:

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

а) Плоскости BAA1B1 и DEE1D1 параллельны, так как AB || ED и AA1 || EE1. ED1DEE1D1, AA1(BAA1B1), следовательно, расстояние между прямыми AA1 и ED1 равно расстоянию между плоскостями BAA1B1 и DEE1D1. A1E1AA1, A1E1A1B1, следовательно, A1E1BAA1B1. Аналогично доказываем, что A1E1(DEE1D1). Т.о., A1E1 является расстоянием между плоскостями BAA1B1 и DEE1D1, а значит, и между прямыми AA1 и ED1. Находим A1E1 из треугольника A1F1E1, который является равнобедренным с углом A1F1E1, равным . Ответ:

б) Расстояние между AF и диагональю BE1 находится аналогично.

Ответ:.

Задача 5. В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A1C обеим параллельным плоскостям (AB1D1 || BC1D). B1CBC1 и BC1A1B1, следовательно, прямая BC1 перпендикулярна плоскости A1B1C, и следовательно, BC1A1C. Также, A1CBD. Следовательно, прямая A1C перпендикулярна плоскости BC1D. Вычислительная же часть задачи особых трудностей не вызывает, так как hскр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A1AB1D1 и CC1BD.

Ответ:

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным. Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным. Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на «экран»

Задача 5. Все та же «классическая» задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится «экран» — диагональное сечение куба.

Рассмотрим плоскость A1B1CD. C1F (A1B1CD), т. к. C1FB1C и C1FA1B1. Тогда проекцией C1D на «экран» будет являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a.

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль «экрана», перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH — искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: .

РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного. — презентация

Презентация была опубликована 8 лет назад пользователемПавел Наследышев

Похожие презентации

Презентация на тему: » РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.» — Транскрипт:

1 РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного к этим прямым. Если одна из двух скрещивающихся прямых лежит в плоскости, а другая – параллельна этой плоскости, то расстояние между данными прямыми равно расстоянию между прямой и плоскостью. Если две скрещивающиеся прямые лежат в параллельных плоскостях, то расстояние между этими прямыми равно расстоянию между параллельными плоскостями.

2 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BC. Ответ: 1. Куб 1

3 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и CD. Ответ: 1. Куб 2

4 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и B 1 C 1. Ответ: 1. Куб 3

5 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и C 1 D 1. Ответ: 1. Куб 4

6 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BC 1. Ответ: 1. Куб 5

7 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и B 1 C. Ответ: 1. Куб 6

8 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и CD 1. Ответ: 1. Куб 7

9 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и DC 1. Ответ: 1. Куб 8

10 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и CC 1. Ответ: Куб 9

11 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BD. Ответ: Решение. Пусть O – середина BD. Искомым расстоянием является длина отрезка AO. Она равна Куб 10

12 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и B 1 D 1. Ответ: Куб 11

13 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BD 1. Ответ: Решение. Пусть P, Q – середины AA 1, BD 1. Искомым расстоянием является длина отрезка PQ. Она равна Куб 12

14 В единичном кубе A…D 1 найдите расстояние между прямыми AA 1 и BD 1. Ответ: Куб 13

15 В единичном кубе A…D 1 найдите расстояние прямыми AB 1 и CD 1. Ответ: 1. Куб 14

16 В единичном кубе A…D 1 найдите расстояние между прямыми AB 1 и BC 1. Ответ: Решение. Искомое расстояние равно расстоянию между параллельными плоскостями AB 1 D 1 и BDC 1. Диагональ A 1 C перпендикулярна этим плоскостям и делится в точках пересечения на три равные части. Следовательно, искомое расстояние равно длине отрезка EF и равно Куб 15

17 В единичном кубе A…D 1 найдите расстояние между прямыми AB 1 и A 1 C 1. Ответ: Решение аналогично предыдущему. Куб 16

18 В единичном кубе A…D 1 найдите расстояние между прямыми AB 1 и BD. Ответ: Решение аналогично предыдущему. Куб 17

19 В единичном кубе A…D 1 найдите расстояние прямыми AB 1 и BD 1. Ответ: Решение. Диагональ BD 1 перпендикулярна плоскости равностороннего треугольника ACB 1 и пересекает его в центре P вписанной в него окружности. Искомое расстояние равно радиусу OP этой окружности. OP = Куб 18

20 В единичном тетраэдре ABCD найдите расстояние между прямыми AD и BC. Ответ: Решение. Искомое расстояние равно длине отрезка EF, где E, F – середины ребер AD, BC. В треугольнике ADF AD = 1, AF = DF = Следовательно, EF = Пирамида 1

21 В правильной пирамиде SABCD, все ребра которой равны 1, найдите расстояние между прямыми AB и CD. Ответ: 1. Пирамида 2

22 В правильной пирамиде SABCD, все ребра которой равны 1, найдите расстояние между прямыми SA и BD. Ответ: Решение. Искомое расстояние равно высоте OH треугольника SAO, где O – середина BD. В прямоугольном треугольнике SAO имеем: SA = 1, AO = SO = Следовательно, OH = Пирамида 3

23 В правильной пирамиде SABCD, все ребра которой равны 1, найдите расстояние между прямыми SA и BC. Ответ: Решение. Плоскость SAD параллельна прямой BC. Следовательно, искомое расстояние равно расстоянию между прямой BC и плоскостью SAD. Оно равно высоте EH треугольника SEF, где E, F – середины ребер BC, AD. В треугольнике SEF имеем: EF = 1, SE = SF = Высота SO равна Следовательно, EH = Пирамида 4

24 В правильной 6-ой пирамиде SABCDEF, ребра основания которой равны 1, найдите расстояние между прямыми AB и DE. Ответ: Пирамида 5

25 В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и BC. Ответ: Решение: Продолжим ребра BC и AF до пересечения в точке G. Общим перпендикуляром к SA и BC будет высота AH треугольника ABG. Она равна Пирамида 6

26 В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и BF. Ответ: Решение: Искомым расстоянием является высота GH треугольника SAG, где G – точка пересечения BF и AD. В треугольнике SAG имеем: SA = 2, AG = 0,5, высота SO равна Отсюда находим GH = Пирамида 7

27 В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и CE. Ответ: Решение: Искомым расстоянием является высота GH треугольника SAG, где G – точка пересечения CE и AD. В треугольнике SAG имеем: SA = 2, AG =, высота SO равна Отсюда находим GH = Пирамида 8

28 В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и BD. Ответ: Решение: Прямая BD параллельна плоскости SAE. Искомое расстояние равно расстоянию между прямой BD и этой плоскостью и равно высоте PH треугольника SPQ. В этом треугольнике высота SO равна, PQ = 1, SP = SQ = Отсюда находим PH = Пирамида 9

29 В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите расстояние между прямыми SA и BG, где G – середина ребра SC. Пирамида 10 Ответ: Решение: Через точку G проведем прямую, параллельную SA. Обозначим Q точку ее пересечения с прямой AC. Искомое расстояние равно высоте QH прямоугольного треугольника ASQ, в котором AS = 2, AQ =, SQ =. Отсюда находим QH =

30 В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: BC и B 1 C 1. Ответ: 1. Призма 1

31 В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BC. Ответ: Призма 2

32 В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BC 1. Ответ: Призма 3

33 В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AB и A 1 C 1. Ответ: 1. Призма 4

34 В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AB и A 1 C. Решение: Искомое расстояние равно расстоянию между прямой AB и плоскостью A 1 B 1 C. Обозначим D и D 1 середины ребер AB и A 1 B 1. В прямоугольном треугольнике CDD 1 из вершины D проведем высоту DE. Она и будет искомым расстоянием. Имеем, DD 1 = 1, CD =, CD 1 =. Следовательно, DE = Ответ: Призма 5

35 В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите расстояние между прямыми: AB 1 и BC 1. Призма 6 Решение: Достроим призму до 4-х угольной призмы. Искомое расстояние будет равно расстоянию между параллельными плоскостями AB 1 D 1 и BDC 1. Оно равно высоте OH прямоугольного треугольника AOO 1, в котором Эта высота равна Ответ.

36 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и A 1 B 1. Ответ: 1. Призма 7

37 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и B 1 C 1. Ответ: 1. Призма 8

38 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и C 1 D 1. Ответ: 1. Призма 9

39 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и DE. Ответ:. Призма 10

40 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB и D 1 E 1. Ответ: 2. Призма 11

41 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и CC 1. Ответ:. Призма 12

42 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и DD 1. Ответ: 2. Призма 13

43 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и B 1 C 1. Ответ:. Решение: Продолжим стороны B 1 C 1 и A 1 F 1 до пересечения в точке G. Треугольник A 1 B 1 G равносторонний. Его высота A 1 H является искомым общим перпендикуляром. Его длина равна. Призма 14

44 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и C 1 D 1. Ответ:. Решение: Искомым общим перпендикуляром является отрезок A 1 C 1. Его длина равна. Призма 15

45 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BC 1. Ответ:. Решение: Искомым расстоянием является расстояние между параллельными плоскостями ADD 1 и BCC 1. Оно равно. Призма 16

46 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и CD 1. Ответ:. Решение: Искомым общим перпендикуляром является отрезок AC. Его длина равна. Призма 17

47 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и DE 1. Ответ:. Решение: Искомым общим перпендикуляром является отрезок A 1 E 1. Его длина равна. Призма 18

48 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BD 1. Решение: Искомым общим перпендикуляром является отрезок AB. Его длина равна 1. Ответ: 1. Призма 19

49 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и CE 1. Ответ:. Решение: Искомым расстоянием является расстояние между прямой AA 1 и плоскостью CEE 1. Оно равно. Призма 20

50 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и BE 1. Ответ:. Решение: Искомым расстоянием является расстояние между прямой AA 1 и плоскостью BEE 1. Оно равно. Призма 21

51 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AA 1 и CF 1. Ответ:. Решение: Искомым расстоянием является расстояние между прямой AA 1 и плоскостью CFF 1. Оно равно. Призма 22

52 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между прямыми: AB 1 и DE 1. Ответ:. Решение: Искомым расстоянием является расстояние между параллельными плоскостями ABB 1 и DEE 1. Расстояние между ними равно. Призма 23

53 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между прямыми: AB 1 и CF 1. Ответ: Решение: Искомым расстоянием является расстояние между прямой AB 1 и плоскостью CFF 1. Оно равно. Призма 24

54 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB 1 и BC 1. Решение: Пусть O, O 1 –центры граней призмы. Плоскости AB 1 O 1 и BC 1 O параллельны. Плоскость ACC 1 A 1 перпендикулярна этим плоскостям. Искомое расстояние d равно расстоянию между прямыми AG 1 и GC 1. В параллелограмме AGC 1 G 1 имеем AG = ; AG 1 =. Высота, проведенная к стороне AA 1 равна 1. Следовательно, d =. Ответ: Призма 25

55 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB 1 и BD 1. Решение: Рассмотрим плоскость A 1 B 1 HG, перпендикулярную BD 1. Ортогональная проекция на эту плоскость переводит прямую BD 1 в точку H, а прямую AB 1 – в прямую GB 1. Следовательно искомое расстояние d равно расстоянию от точки H до прямой GB 1. В прямоугольном треугольнике GHB 1 имеем GH = 1; B 1 H =.Следовательно, d =. Ответ: Призма 26

56 В правильной 6-й призме A…F 1, ребра которой равны 1, найдите расстояние между прямыми: AB 1 и BE 1. Решение: Рассмотрим плоскость A 1 BDE 1, перпендикулярную AB 1. Ортогональная проекция на эту плоскость переводит прямую AB 1 в точку G, а прямую BE 1 оставляет на месте. Следовательно искомое расстояние d равно расстоянию GH от точки G до прямой BE 1. В прямоугольном треугольнике A 1 BE 1 имеем A 1 B = ; A 1 E 1 =. Следовательно, d =. Ответ: Призма 27

источники:

http://urok.1sept.ru/articles/614270

http://www.myshared.ru/slide/727641/

Расстояние между двумя скрещивающимися прямыми

Воскресенье, 25 ноября, 2012

Скрещивающиеся прямые

В данной статье на примере решения задачи C2 из ЕГЭ разобран способ нахождения расстояния между скрещивающимися прямыми с помощью метода координат. Напомним, что прямые являются скрещивающи-мися, если они не лежат в одной плоскости. В частности, если одна прямая лежит в плоскости, а вторая прямая пересекает эту плоскость в точке, которая не лежит на первой прямой, то такие прямые являются скрещивающимися (см. рисунок).

Для нахождения расстояния между скрещивающимися прямыми необходимо:

  1. Провести через одну из скрещивающихся прямых плоскость, которая параллельна другой скрещивающейся прямой.
  2. Опустить перпендикуляр из любой точки второй прямой на полученную плоскость. Длина этого перпендикуляра будет являться искомым расстоянием между прямыми.

Разберем данный алгоритм подробнее на примере решения задачи C2 из ЕГЭ по математике.

Расстояние между прямыми в пространстве

Задача. В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1.

Куб со скрещивающимися прямыми

Рис. 1. Чертеж к задаче

Решение. Через середину диагонали куба DB1 (точку O) проведем прямую, параллельную прямой A1B. Точки пересечения данной прямой с ребрами BC и A1D1 обозначаем соответственно N и M. Прямая MN лежит в плоскости MNB1 и параллельна прямой A1B, которая в этой плоскости не лежит. Это означает, что прямая A1B параллельна плоскости MNB1 по признаку параллельности прямой и плоскости (рис. 2).

Куб с требуемыми дополнительными построениями

Рис. 2. Искомое расстояние между скрещивающимися прямыми равно расстоянию от любой точки выделенной прямой до изображенной плоскости

Ищем теперь расстояние от какой-нибудь точки прямой A1B до плоскости MNB1. Это расстояние по определению будет являться искомым расстоянием между скрещивающимися прямыми.

Для нахождения этого расстояния воспользуемся методом координат. Введем прямоугольную декартову систему координат таким образом, чтобы ее начало совпало с точкой B, ось X была направлена вдоль ребра BA, ось Y — вдоль ребра BC, ось Z — вдоль ребра BB1 (рис. 3).

Куб в прямоугольной декартовой системе координат

Рис. 3. Прямоугольную декартову систему координат выберем так, как показано на рисунке

Находим уравнение плоскости MNB1 в данной системе координат. Для этого определяем сперва координаты точек M, N и B1: Mleft(1;frac{1}{2};1right), Nleft(0;frac{1}{2};0right), B_1left(0;0;1right). Полученные координаты подставляем в общее уравнение прямой ax+by+cz+d=0 и получаем следующую систему уравнений:

    [ begin{cases}acdot 1+bcdot frac{1}{2}+ccdot 1 + d = 0, \ acdot 0+bcdot frac{1}{2}+ccdot 0 + d = 0, \ 0cdot 1+bcdot 0+ccdot 1 + d = 0.end{cases} ]

Из второго уравнения системы получаем b = -2d, из третьего получаем c = - d, после чего из первого получаем a = d. Подставляем полученные значения в общее уравнение прямой:

    [ dcdot x-2dcdot y-dcdot z+d = 0. ]

Замечаем, что dne 0, иначе плоскость MNB1 проходила бы через начало координат. Делим обе части этого уравнения на dne 0 и получаем:

    [ x-2y-z+1 = 0. ]

Расстояние от точки до плоскости определяется по формуле:

    [ l = frac{|acdot x_0+bcdot y_0+ccdot z_0 + d|}{sqrt{a^2+b^2+c^2}}, ]

где x_0,, y_0,, z_0 — координаты точки B. a,, b,, c — коэффициенты при переменных x,, y,, z в уравнении плоскости. Точка B имеет координаты (0;0;0). Получаем окончательно:

    [ l = frac{|1cdot 0-2cdot 0-1cdot 0 + 1|}{sqrt{1^2+(-2)^2+(-1)^2}}=frac{1}{sqrt{6}}=frac{sqrt{6}}{6}. ]

Ответ: frac{sqrt{6}}{6}.

Сергей Валерьевич
Репетитор по геометрии в Тропарёво

Понравилась статья? Поделить с друзьями:
  • Как найти собаку которая потерялась в лесу
  • Dxgi error device hung как исправить на виндовс 10
  • Как исправить цвет лица в фотошопе
  • Как найти защемление седалищного нерва
  • Как найти бывшего судью