Как найти расстояние между точкой пересечения прямых

����:    [

����� ��������� �� ���������

]
���������: 3-
������: 8,9

� �������

�������� �����������

�������

������� ���������� ����� ������  A(1, 7)  � ������
����������� ������  x – y – 1 = 0  �  x + 3y – 12 = 0.

�������

����� �������, ���ģ� �����  B(15/4, 11/4)  ����������� ������ ������. �� ������� ��� ���������� ����� ����� �������
AB2 = (15/4 – 1)2 + (11/4 – 1)2 = (11/4)2 + (17/4)2 = 1/16 + (121 + 289) = 410/16.

�����

.

��������� � ���������� �������������

web-����
�������� ������� ����� �� ��������� �.�.�������
URL http://zadachi.mccme.ru
������
����� 4221

Пусть
даны две прямые l1
и l2
на плоскости:

.

Чтобы
определить их взаимное расположение,
достаточно решить систему уравнений:

(3.8)

Если
эта система имеет единственное решение
(х0,
у0),
то прямые l1
и l2,
пересекается в точке М0(х0,
у0).
Если система (3.8) не имеет решений, то
прямые l1
и l2
не пересекаются, следовательно, l1
|| l2.
Если система (3.8) имеет бесконечное
множество решений, то l1
и l2
совпадают.

Однако
решить вопрос о взаимном расположении
l1
и l2
можно и не решая системы (3.3). Действительно,
из общего уравнения прямой l1,
находим, что ее нормальный вектор
имеет координатыА1
и В1
, т.е.
= {А1,
В1},
а прямая l2
имеет нормальный вектор
= {А2,
В2}.
Если векторы
,коллинеарны, то прямыеl1
и l2
либо параллельны, либо совпадают. Если
,неколлинеарны, то прямые пересекаются.
Зная, что коллинеарные векторы (и только
они) имеют пропорциональные координаты,
получаем: если,
то прямыеl1
и l2
пересекаются; если
то
прямыеl1
и l2
параллельны;
если
то
прямыеl1
и l2
совпадают.

Используя
нормальные векторы
,можно также найти угол между прямыми,
так как угол между нормальными векторами
равен одному из угловмежду прямымиl1
и l2
(рис. 3.9).

Из
определения скалярного произведения
векторов получаем:,
поэтому.

Пусть
на плоскости заданы прямая
и точкаМ0(х0,
у0).
Найдем расстояние d
от точки М0(х0,
у0)
до прямой l
(рис. 3.10). Пусть М1(х1,
у1)
– точка пересечения прямой l
и прямой, проходящей через точку М0
перпендикулярно l.
Так как М1
лежит на l,
то ее
координаты удовлетворяют уравнению
этой прямой, таким образом, имеем
тождество:

.
(3.9)

Рассмотрим
вектор
.
Этот вектор коллинеарен нормальному
вектору= {А1,
В1}
прямой l
и
,
поэтому косинус угла между векторамииравен либо 1, либо -1. Следовательно,,
откуда

.

Учитывая
тождество (3.9) получаем:

.
(3.10)

Пример
3.3.
Найти
расстояние от точки пересечения прямых
ll
и l2
до прямой l3.
Определить взаимное расположение пар
прямых l1,
l3
и l2,
l3,
если прямые заданы общими уравнениями:

Решение.Решим систему уравнений:

Получим:
х0
= 1, у0
= 2
единственное
решение. Следовательно, прямые l1
и l2
пересекается
в точке М0(1,
2). Используя формулу (3.10), найдем расстояние
d
от М0
до l3:

Нормальные
векторы прямых l1,
l2
и l3
соответственно будут
= {3, –2},= {1, 1},= {–6, 4}. Так как координатыипропорциональны 3/( – 6) = –2/3 и –2/41/(
–3), тоl1
|| l3.
Для
и
имеем:
1/(–6)1/4,
следовательно,l2
и l3
пересекаются.

3.3. Плоскость в пространстве

Пусть
в пространстве задана прямоугольная
система координат: 0 – начало координат,– единичные направляющие векторы осей
координат, соответственно 0х,
0у
и 0z.
Рассмотрим в пространстве произвольную
плоскость
.
Выведем уравнение этой плоскости, т.е.
уравнение, содержащее переменныех,
у,
z,
которому удовлетворяют координаты
любой точки, лежащей на плоскости
и не удовлетворяют координаты никакой
точки, не лежащей
на этой
плоскости.

Пусть
задана точка М1(х1,
у1,
z1)и вектор={А,
В,
C}
перпендикулярный плоскости
(нормальный вектор плоскости). ПустьM(x,
у,
z)
– произвольная точка, принадлежащая
плоскости
.
Тогда вектор

перпендикулярен
вектору
(рис. 3.11), а поэтому=
0 (условие перпендикулярности векторов
(см. разд. 2.4)) или

.
(3.11)

Итак,
координаты любой точки М,
лежащей в плоскости
,
удовлетворяют этому уравнению
и,
легко видеть, что координаты точки, не
лежащей в плоскости
,
не удовлетворяют уравнению (3.11).
Следовательно, уравнение (3.11) является
уравнением плоскости и называется
уравнением плоскостипо
точке и нормальному вектору
.

Уравнение
(3.11) является уравнением первой степени
относительно текущих координат х,
у,
z.
Можно показать (аналогично тому, как
это было сделано в разд. 3.1), что всякое
уравнение первой степени относительно
x,
у,
z


(3.12)

является
уравнением некоторой плоскости (оно
называется общим
уравнением плоскости), причем вектор
={А,
В,
C},
является нормальным вектором плоскости.

Если
в уравнении (3.12) D
= 0, то этому
уравнению удовлетворяет тройка чисел
(0, 0, 0), т.е. соответствующая плоскость
проходит через начало координат. Нетрудно
видеть, что плоскость 0ху
имеет уравнение
,
плоскость 0xz
– уравнение
,
a плоскость 0yz
задается уравнением
.

Известно,
что плоскость однозначно определяется
тремя точками, не лежащими на одной
прямой. Пусть
иМ(х,
у,
z)
– произвольная точка плоскости
(рис. 3.12). Рассмотрим векторы

они
компланарны, поэтому
их смешанное
произведение равно 0, т.е.


(3.13)

Это
уравнение называется уравнением
плоскости по
трем точкам
.

Пусть
плоскость
пересекает оси координат в точках:М1(а,
0, 0), М2(0,
b,
0), M3(0,
0, с).
Подставляя
их координаты
в уравнение (3.13), находим:

Вычислив определитель,
получим:

,

откуда

Это
уравнение называется уравнением
плоскости в
отрезках
.

Пример
3.4.
Построить
плоскость, заданную общим уравнением:

.

Решение.
Преобразуем данное уравнение в уравнение
в отрезках

В

M1

идим,
что плоскость отсекает на осях 0x,
0y, 0z, соответственно отрезки 3,
2, 1. Следовательно, она проходит через
точки

М1(3,
0, 0), М2(0
2, 0), М3(0,
0, 1).

По этим данным легко
построить плоскость (рис. 3.13).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Задать свой вопрос

  *более 50 000 пользователей получили ответ на «Решим всё»

Задача 66753 3. Найти расстояние от точки пересечения…

Условие

6369509f4ce58c1f3e23acb6

08.11.2022 18:31:57

3. Найти расстояние от точки пересечения прямых, заданных уравнениями

математика ВУЗ
265

Решение

5f3ea7e3faf909182968ddd9

08.11.2022 18:54:58

Находим координаты точки пересечения прямых

Решаем систему уравнений:
{(x/8)+(y/6)=1
{x-4y+8=0

{3x+4y-24=0
{x-4y+8=0

4x-16=0

x=4

y=3

Расстояние от точки (4;3) до прямой х+2у+2=0 находим по формуле.

Написать комментарий

Меню

  • Решим всё
  • Найти задачу
  • Категории
  • Статьи
  • Тесты
  • Архив задач

Присоединяйся в ВК

Автор статьи

Анна Кирпиченкова

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Очень часто на практике необходимо найти расстояние между точкой и некой прямой линией или между двумя прямыми линиями в пространстве, например, иногда определять расстояние между двумя линиями приходится и в реальной жизни. Хорошая иллюстрация такого примера — это знак, который вешают на мосты для грузовиков, указывающий максимальную высоту грузовика, которая может проехать под данным мостом.

Расстояние от верхней грани грузовика и нижней грани в данном случае определяют как расстояние между двумя прямыми.

Расстояние между 2 прямыми в пространстве — это отрезок, соединяющий две прямые линии по наикратчайшему расстоянию между ними, то есть перпендикулярный к обеим прямым.

Определение 1

Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной заданной прямой и плоскостью, в которой лежит вторая прямая.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Чтобы было чуть проще понять, что это такое, давайте повторим определение скрещивающихся прямых:

Определение 2

Скрещивающиеся прямые — это две прямые, которые не лежат в одной плоскости и не имеют каких-либо совместных друг для друга точек.

Соответственно, для того чтобы найти расстояние между скрещивающимися прямыми в пространстве, необходимо от одной из прямых опустить перпендикуляр на плоскость, в которой лежит другая прямая.

Расстояние же между двумя параллельными прямыми в пространстве является одинаковым на протяжении всей длины параллельных прямых, то есть перпендикуляр, опущенный из одной параллельной прямой на другую, всегда будет одной и той же длины вне зависимости от того, из какой именно точки его опустили.

Метод координат для определения расстояния между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми в пространстве можно найти используя метод координат, для этого необходимо:

«Расстояние между 2 прямыми в пространстве» 👇

  1. Найти координаты точек $M_1$ и $M_2$, лежащих на прямых $a$ и $b$ соответственно.
  2. Вычислить икс, игрек и зет направляющих векторов для прямых $a$ и $b$.
  3. С помощью векторного произведения векторов $overline{a}$ и $overline{b}$ нужно найти вектор-нормаль для плоскости, в которой лежит прямая $b$. Затем необходимо записать общее уравнение плоскости: $A (x – x_0) + B(y – y_0) + C(z – z_0) = 0$, и от него перейти к нормированному виду уравнения плоскости следующего вида: $ x cdot cos α + y cdot cos β + z cdot cos{γ} – p = 0$, где $cos α, cos β$ и $cos γ$ — координаты единичного нормального вектора плоскости, а $p$ — свободный член, это число равно расстоянию от точки начала координат до плоскости.
  4. Для вычисления расстояния от точки $M$ до искомой плоскости, нужно воспользоваться следующим уравнением:
    $M_1H_1 = |x_1 cdot cos α + y_1 cdot cos β + z_1 cdot cos{γ} – p|$, где $x_1, y_1, z_1$ – координаты точки $M_1$, лежащей на прямой $a$, а $H_1$ — точка, лежащая на искомой плоскости.

Пример 1

Найти расстояние между двумя скрещивающимися прямыми, заданными уравнениями:
$d_1$:
$frac {x-2}{2} = frac {y + 1}{-3} = frac{z}{-1}$

и $d_2$: $begin{cases} frac{x + 1}{1} = frac{y}{-2} \ z – 1 = 0 end{cases}$

Расстояние между двумя скрещивающимися прямыми в пространстве

Рисунок 1. Расстояние между двумя скрещивающимися прямыми в пространстве

Для этого воспользуемся следующей формулой:

$ ρ(d_1d_2) = frac{| overline{p_1} cdot overline{p_2} cdot overline{M_1M_2}|}{[overline{p_1} × overline{p_2}]}$

Сначала найдём смешанное произведение векторов. Для этого найдём точки, лежащие на данных прямых, и их направляющие вектора:

$d_1$: $frac {x-2}{2} = frac {y + 1}{-3} = frac{z}{-1}$, точка, лежащая на прямой — $M_1$ с координатами $(2;-1;0)$, а направляющий вектор — $overline{p_1}$ с координатами $(2; -3; -1)$

$d_2$: $begin{cases} frac{x + 1}{1} = frac{y}{-2} \ z – 1 = 0 end{cases}$, точка, лежающая на прямой — $M_2$ с координатами $(-1; 0; 1)$,

а её направляющий вектор — $overline{p_2}$ с координатами $(1; -2; 0)$

Теперь найдём вектор $overline{M_1M_2}$:

$overline{M_1M_2} = (-1-2;0-(-1);1-0) = (-3; 1; 1)$

Найдём смешанное произведение векторов:

$overline{p_1} cdot overline{p_2} cdot overline{M_1M_2} = begin{array}{|ccc|} 2& 1 & -3 \ -3& -2 & 1 \ -1 & 0 & 1 \ end{array} = — begin{array}{|cc|} 1 & -3 \ -2 & 1 \ end{array} + begin{array}{|cc|} 2 & 1 \ -3 & -2 \ end{array} = -(1 — 6) + (4 + 3) = 4$

Теперь найдём векторное произведение векторов:

$[|overline{p_1} × overline{p_2}|] = begin{array}{|ccc|} i& j & k \ 2 & -3 & -1 \ 1 & -2 & 0 end{array} = begin{array}{|cc|} -3 & -1 \ -2 & 0 end{array} cdot overline{i} — begin{array}{|cc|} 2 & -1 \ 1 & 0 end{array} cdot overline{j} + begin{array}{|cc|} 2 & -3 \ 1 & -2 end{array} cdot overline{k}$

$[|overline{p_1} × overline{p_2} |]= -2 overline{i} — overline{j} — overline{k}$

Длина этого векторного произведения составит:

$overline{p_1} × overline{p_2} = sqrt{(-2)^2 + (-1)^2 + (-1)^2} = sqrt{6}$

Соответственно, длина между скрещивающимися прямыми составит:

$ ρ(d_1d_2) = frac{|4|}{sqrt{6}} ≈ 1,63$

Пример 2

Даны две параллельные несовпадающие прямые $g$ и $m$, ниже приведены уравнения для них. Определить расстояние между ними.

$g$: $frac{x-1}{4} = frac{y + 1}{6}= frac{z+3}{8}$

$m$: $frac{x+1}{2} = frac{y — 1}{3}= frac{z — 3}{4}$

Расстояние в этом случае для них вычисляется по следующей формуле:

$ρ(m;g) =frac{|[overline{r_2} — overline{r_1} × overline{s_1}]|}{|overline{s_1}|}$, где

$overline{r_2}, overline{r_1}$ — радиус-векторы для каждой прямой, а $s_1$ — направляющий вектор.

Радиус-вектор для первой прямой будет $r_1={1; -1; -3}$, а направляющий вектор $s_1 = {4; 6; 8}$.

Радиус-вектор для второй прямой будет $r_2={-1; 1; 3}$, а направляющий вектор $s_2 = {2; 3; 4}$.

Найдём векторную разность радиус-векторов:

$overline{r_2} — overline{r_1} = {-1; 1; 3} — {1; -1; -3} = {-2;0;0}$

Теперь найдём её произведение с направляющим вектором для первой прямой:

$[overline{r_2} — overline{r_1} × overline{s_1}] = begin{array}{|ccc|} i & j & k \ -2 & 0 & 0 \ 4 & 6 & 8 \ end{array} = — 16j – 12k = {0;-16;-12}$

$|[overline{r_2} — overline{r_1} × overline{s_1}]| = sqrt{(-16)^2 + (-12)^2} = 20$

$|overline{s_1}| = sqrt{4^2 + 6^2 +8^2} = 2sqrt{29}$

$ρ(m;g) = frac{20}{2sqrt{29}} = frac{10}{sqrt{29}} ≈ 1.85$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Расстояние от точки до прямой онлайн

С помощю этого онлайн калькулятора можно найти расстояние от точки до прямой. Дается подробное решение с пояснениями. Для вычисления расстояния от точки до прямой, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точки и элементы уравнения в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние от точки до прямой − теория, примеры и решения

Рассмотрим эту задачу в двухмерном и трехмерном пространствах.

1. Расстояние от точки до прямой на плоскости

Пусть в двухмерном пространстве задана точка M0(x0, y0) и прямая L:

где q=(m,p) направляющий вектор прямой L.

Найдем расстояние от точки M0 до прямой (1)(Рис.1).

Алгоритм нахождения расстояния от точки M0 до прямой L содержит следующие шаги:

  • построить прямую L1, проходящую через точку M0 и перпендикулярную прямой L,
  • найти пересечение прямых L и L1(точка M1)
  • найти найти расстояние между точками M0 и M1.

Уравнение прямой, проходящей через точку M0(x0, y0) имеет следующий вид:

Как видно из рисунка Рис.1, для того, чтобы прямая L1 была перпендикулярна прямой L нужно , чтобы направляющий вектор q прямой L была коллинеарна нормальному вектору n прямой L1, поэтому в качестве нормального вектора прямой L1 достаточно взять направляющий вектор прямой L. Тогда уравнение прямой L1, представленной уравнением (2) можно записать так:

Для нахождения точки пересечения прямых L и L1, которая и будет проекцией точки M0 на прямую L, можно решить систему из двух уравнений (1) и (3) с двумя неизвестными x и y. Выражая неизвестную x из одного уравнения и подставляя в другое уравнение получим координаты точки M1(x1, y1).

Найдем точку пересечения прямых L и L1 другим методом.

Выведем параметрическое уравнение прямой (1):

Подставим значения x и y в (4):

m(mt+x’)+p(pt+y’)−mx0py0=0

m 2 t+mx’+p 2 t+py’mx0py0=0

Мы нашли такое значение t=t’, при котором координаты x и y точки на прямой L удовлетворяют уравнению прямой L1(4). Следовательно, подставляя значение t’ в (5) получим координаты проекции точки M0 на прямую L:

Далее находим расстояние между точками M0 и M1 используя формулу:

Пример 1. Найти расстояние от точки M0(−6, 2) до прямой

Направляющий вектор прямой (8) имеет вид:

Т.е. m=2, p=−1. Из уравнения прямой (8) видно, что она проходит через точку M’ (x’, y’)=(1, 7)(в этом легко убедится − подставляя эти значения в (8) получим тождество 0=0), т.е. x’=1, y’=7. Подставим значения m, p, x0, y0, x’, y’ в (6):

Подставляя значение t в (5), получим:

Вычислим расстояние между точками M0(-6, 2) и M1

Упростим и решим:

Расстояние от точки M0(-6, 2) до прямой (8) :

2. Расстояние от точки до прямой в пространстве

где q=(m, p, l) направляющий вектор прямой L.

Найдем расстояние от точки M0 до прямой (9)(Рис.2).

Алгоритм нахождения расстояния от точки до прямой L содержит следующие шаги:

  • построить плоскость α, проходящую через точку M0 и перпендикулярную прямой L,
  • найти пересечение плоскости α и прямой L(точка M1)
  • найти расстояние между точками M0 и M1.
A(xx0)+B(yy0)+C(zz0)=0 (10)

где n=(A,B,C) нормальный вектор плоскости α.

Как видно из рисунка Рис.2, для того, чтобы плоскость α была перпендикулярна прямой L нужно , чтобы направляющий вектор q прямой L была коллинеарна нормальному вектору n плоскости α, поэтому в качестве нормального вектора плоскости α достаточно взять направляющий вектор прямой L. Тогда уравнение плоскости α, представленной уравнением (10) можно записать так:

m(xx0)+p(yy0)+l(zz0)=0

mx+py+lzmx0py0lz0=0 (11)

Для нахождения точки пересечения плоскости α и прямой L, которая и будет проекцией точки M0 на прямую L, выведем параметрическое уравнение прямой (9):

Подставим значения x и y в (11):

m(mt+x’)+p(pt+y’)+l(lt+z’)−mx0py0lz0=0

m 2 t+mx’+p 2 t+py’+l 2 t+ly’mx0py0lz0=0

Мы нашли такое значение t=t’, при котором координаты x,y и z точки на прямой L удовлетворяют уравнению плоскости (11). Следовательно, подставляя значение t’ в (12) получим координаты проекции точки M0 на прямую L:

Далее вычисляем расстояние между точками M0 и M1 используя формулу

которое является расстоянием между точкой M0 и прямой (9).

Пример 2. Найти расстояние от точки M0(1, 2, 1) до прямой

Направляющий вектор прямой (15) имеет вид:

Т.е. m=2, p=4, l=−6. Из уравнения прямой (15) видно, что она проходит через точку M’ (x’, y’, z’)=(4, 3, 1)(в этом легко убедится − подставляя эти значения в (15) получим тождество 0=0=0), т.е. x’=4, y’=3, z’=1. Подставим значения m, p, l x0, y0, z0 x’, y’, z’ в (13):

Подставляя значение t=t’ в (12), получим координаты точки M1:

Далее, используя формулу (14) вычисляем расстояние от точки M0 до прямой (15):

Упростим и решим:

Расстояние от точки M0(1, 2, 1) до прямой (15) :

Расстояние от точки до прямой на плоскости.

Формула для вычисления расстояния от точки до прямой на плоскости

Если задано уравнение прямой A x + B y + C = 0, то расстояние от точки M(M x , M y ) до прямой можно найти, используя следующую формулу

d = |A·M x + B·M y + C|
√ A 2 + B 2

Примеры задач на вычисление расстояния от точки до прямой на плоскости

Решение. Подставим в формулу коэффициенты прямой и координаты точки

d = |3·(-1) + 4·3 — 6| = |-3 + 12 — 6| = |3| = 0.6
√ 3 2 + 4 2 √ 9 + 16 5

Ответ: расстояние от точки до прямой равно 0.6.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Расстояние от точки до прямой на плоскости и в пространстве: определение и примеры нахождения

Данная статья рассказывает о теме «расстояния от точки до прямой», рассматриваются определения расстояния от точки к прямой с иллюстрированными примерами методом координат. Каждый блок теории в конце имеет показанные примеры решения подобных задач.

Расстояние от точки до прямой – определение

Расстояние от точки до прямой находится через определение расстояния от точки до точки. Рассмотрим подробней.

Пусть имеется прямая a и точка М 1 , не принадлежащая заданной прямой. Через нее проведем прямую b , расположенную перпендикулярно относительно прямой a . Точка пересечения прямых возьмем за Н 1 . Получим, что М 1 Н 1 является перпендикуляром, который опустили из точки М 1 к прямой a .

Расстоянием от точки М 1 к прямой a называется расстояние между точками М 1 и Н 1 .

Бывают записи определения с фигурированием длины перпендикуляра.

Расстоянием от точки до прямой называют длину перпендикуляра, проведенного из данной точки к данной прямой.

Определения эквивалентны. Рассмотрим рисунок, приведенный ниже.

Известно, что расстояние от точки до прямой является наименьшим из всех возможных. Рассмотрим это на примере.

Если взять точку Q , лежащую на прямой a , не совпадающую с точкой М 1 , тогда получим, что отрезок М 1 Q называется наклонной, опущенной из М 1 к прямой a . Необходимо обозначить, что перпендикуляр из точки М 1 является меньше, чем любая другая наклонная, проведенная из точки к прямой.

Чтобы доказать это, рассмотрим треугольник М 1 Q 1 Н 1 , где М 1 Q 1 является гипотенузой. Известно, что ее длина всегда больше длины любого из катетов. Значим, имеем, что M 1 H 1 M 1 Q . Рассмотрим рисунок, приведенный ниже.

Расстояние от точки до прямой на плоскости – теория, примеры, решения

Исходные данные для нахождения от точки до прямой позволяют использовать несколько методов решения: через теорему Пифагора, определения синуса, косинуса, тангенса угла и другими. Большинство заданий такого типа решают в школе на уроках геометрии.

Когда при нахождении расстояния от точки до прямой можно ввести прямоугольную систему координат, то применяют метод координат. В данном пункте рассмотрим основных два метода нахождения искомого расстояния от заданной точки.

Первый способ подразумевает поиск расстояния как перпендикуляра, проведенного из М 1 к прямой a . Во втором способе используется нормальное уравнение прямой а для нахождения искомого расстояния.

Если на плоскости имеется точка с координатами M 1 ( x 1 , y 1 ) , расположенная в прямоугольной системе координат, прямая a , а необходимо найти расстояние M 1 H 1 , можно произвести вычисление двумя способами. Рассмотрим их.

Если имеются координаты точки H 1 , равные x 2 , y 2 , тогда расстояние от точки до прямой вычисляется по координатам из формулы M 1 H 1 = ( x 2 — x 1 ) 2 + ( y 2 — y 1 ) 2 .

Теперь перейдем к нахождению координат точки Н 1 .

Известно, что прямая линия в О х у соответствует уравнению прямой на плоскости. Возьмем способ задания прямой a через написание общего уравнения прямой или уравнения с угловым коэффициентом. Составляем уравнение прямой, которая проходит через точку М 1 перпендикулярно заданной прямой a . Прямую обозначим буковой b . Н 1 является точкой пересечения прямых a и b , значит для определения координат необходимо воспользоваться статьей, в которой идет речь о координатах точек пересечения двух прямых.

Видно, что алгоритм нахождения расстояния от заданной точки M 1 ( x 1 , y 1 ) до прямой a проводится согласно пунктам:

  • нахождение общего уравнения прямой a , имеющее вид A 1 x + B 1 y + C 1 = 0 ,или уравнение с угловым коэффициентом, имеющее вид y = k 1 x + b 1 ;
  • получение общего уравнения прямой b , имеющее вид A 2 x + B 2 y + C 2 = 0 или уравнение с угловым коэффициентом y = k 2 x + b 2 , если прямая b пересекает точку М 1 и является перпендикулярной к заданной прямой a ;
  • определение координат x 2 , y 2 точки Н 1 , являющейся точкой пересечения a и b , для этого производится решение системы линейных уравнений A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 или y = k 1 x + b 1 y = k 2 x + b 2 ;
  • вычисление искомого расстояния от точки до прямой, используя формулу M 1 H 1 = ( x 2 — x 1 ) 2 + ( y 2 — y 1 ) 2 .

Теорема способна помочь ответить на вопрос о нахождении расстояния от заданной точки до заданной прямой на плоскости.

Прямоугольная система координат имеет О х у имеет точку M 1 ( x 1 , y 1 ) , из которой проведена прямая а к плоскости, задаваемая нормальным уравнением плоскости, имеющее вид cos α · x + cos β · y — p = 0 , равно по модулю значению, получаемому в левой части нормального уравнения прямой, вычисляемому при x = x 1 , y = y 1 , значит, что M 1 H 1 = cos α · x 1 + cos β · y 1 — p .

Прямой а соответствует нормальное уравнение плоскости, имеющее вид cos α · x + cos β · y — p = 0 , тогда n → = ( cos α , cos β ) считается нормальным вектором прямой a при расстоянии от начала координат до прямой a с p единицами. Необходимо изобразить все данные на рисунке, добавить точку с координатами M 1 ( x 1 , y 1 ) , где радиус-вектор точки М 1 — O M 1 → = ( x 1 , y 1 ) . Необходимо провести прямую от точки до прямой, которое обозначим M 1 H 1 . Необходимо показать проекции М 2 и Н 2 точек М 1 и Н 2 на прямую, проходящую через точку O с направляющим вектором вида n → = ( cos α , cos β ) , а числовую проекцию вектора обозначим как O M 1 → = ( x 1 , y 1 ) к направлению n → = ( cos α , cos β ) как n p n → O M 1 → .

Вариации зависят от расположения самой точки М 1 . Рассмотрим на рисунке, приведенном ниже.

Результаты фиксируем при помощи формулы M 1 H 1 = n p n → O M → 1 — p . После чего приводим равенство к такому виду M 1 H 1 = cos α · x 1 + cos β · y 1 — p для того, чтобы получить n p n → O M → 1 = cos α · x 1 + cos β · y 1 .

Скалярное произведение векторов в результате дает преобразованную формулу вида n → , O M → 1 = n → · n p n → O M 1 → = 1 · n p n → O M 1 → = n p n → O M 1 → , которая является произведением в координатной форме вида n → , O M 1 → = cos α · x 1 + cos β · y 1 . Значит, получаем, что n p n → O M 1 → = cos α · x 1 + cos β · y 1 . Отсюда следует, что M 1 H 1 = n p n → O M 1 → — p = cos α · x 1 + cos β · y 1 — p . Теорема доказана.

Получаем, что для нахождения расстояния от точки M 1 ( x 1 , y 1 ) к прямой a на плоскости необходимо выполнить несколько действий:

  • получение нормального уравнения прямой a cos α · x + cos β · y — p = 0 , при условии, что его нет в задании;
  • вычисление выражения cos α · x 1 + cos β · y 1 — p , где полученное значение принимает M 1 H 1 .

Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости

Применим данные методы на решении задач с нахождением расстояния от точки до плоскости.

Найти расстояние от точки с координатами M 1 ( — 1 , 2 ) к прямой 4 x — 3 y + 35 = 0 .

Применим первый способ для решения.

Для этого необходимо найти общее уравнение прямой b , которая проходит через заданную точку M 1 ( — 1 , 2 ) , перпендикулярно прямой 4 x — 3 y + 35 = 0 . Из условия видно, что прямая b является перпендикулярной прямой a , тогда ее направляющий вектор имеет координаты, равные ( 4 , — 3 ) . Таким образом имеем возможность записать каноническое уравнение прямой b на плоскости, так как имеются координаты точки М 1 , принадлежит прямой b . Определим координаты направляющего вектора прямой b . Получим, что x — ( — 1 ) 4 = y — 2 — 3 ⇔ x + 1 4 = y — 2 — 3 . Полученное каноническое уравнение необходимо преобразовать к общему. Тогда получаем, что

x + 1 4 = y — 2 — 3 ⇔ — 3 · ( x + 1 ) = 4 · ( y — 2 ) ⇔ 3 x + 4 y — 5 = 0

Произведем нахождение координат точек пересечения прямых, которое примем за обозначение Н 1 . Преобразования выглядят таким образом:

4 x — 3 y + 35 = 0 3 x + 4 y — 5 = 0 ⇔ x = 3 4 y — 35 4 3 x + 4 y — 5 = 0 ⇔ x = 3 4 y — 35 4 3 · 3 4 y — 35 4 + 4 y — 5 = 0 ⇔ ⇔ x = 3 4 y — 35 4 y = 5 ⇔ x = 3 4 · 5 — 35 4 y = 5 ⇔ x = — 5 y = 5

Из выше написанного имеем, что координаты точки Н 1 равны ( — 5 ; 5 ) .

Необходимо вычислить расстояние от точки М 1 к прямой a . Имеем, что координаты точек M 1 ( — 1 , 2 ) и H 1 ( — 5 , 5 ) , тогда подставляем в формулу для нахождения расстояния и получаем, что

M 1 H 1 = ( — 5 — ( — 1 ) 2 + ( 5 — 2 ) 2 = 25 = 5

Второй способ решения.

Для того, чтобы решить другим способом, необходимо получить нормальное уравнение прямой. Вычисляем значение нормирующего множителя и умножаем обе части уравнения 4 x — 3 y + 35 = 0 . Отсюда получим, что нормирующий множитель равен — 1 4 2 + ( — 3 ) 2 = — 1 5 , а нормальное уравнение будет вида — 1 5 · 4 x — 3 y + 35 = — 1 5 · 0 ⇔ — 4 5 x + 3 5 y — 7 = 0 .

По алгоритму вычисления необходимо получить нормальное уравнение прямой и вычислить его со значениями x = — 1 , y = 2 . Тогда получаем, что

— 4 5 · — 1 + 3 5 · 2 — 7 = — 5

Отсюда получаем, что расстояние от точки M 1 ( — 1 , 2 ) к заданной прямой 4 x — 3 y + 35 = 0 имеет значение — 5 = 5 .

Видно, что в данном методе важно использование нормального уравнения прямой, так как такой способ является наиболее коротким. Но первый метод удобен тем, что последователен и логичен, хотя имеет больше пунктов вычисления.

На плоскости имеется прямоугольная система координат О х у с точкой M 1 ( 8 , 0 ) и прямой y = 1 2 x + 1 . Найти расстояние от заданной точки до прямой.

Решение первым способом подразумевает приведение заданного уравнения с угловым коэффициентом к уравнению общего вида. Для упрощения можно сделать иначе.

Если произведение угловых коэффициентов перпендикулярных прямых имеют значение — 1 , значит угловой коэффициент прямой перпендикулярной заданной y = 1 2 x + 1 имеет значение 2 . Теперь получим уравнение прямой, проходящее через точку с координатами M 1 ( 8 , 0 ) . Имеем, что y — 0 = — 2 · ( x — 8 ) ⇔ y = — 2 x + 16 .

Переходим к нахождению координат точки Н 1 , то есть точкам пересечения y = — 2 x + 16 и y = 1 2 x + 1 . Составляем систему уравнений и получаем:

y = 1 2 x + 1 y = — 2 x + 16 ⇔ y = 1 2 x + 1 1 2 x + 1 = — 2 x + 16 ⇔ y = 1 2 x + 1 x = 6 ⇔ ⇔ y = 1 2 · 6 + 1 x = 6 = y = 4 x = 6 ⇒ H 1 ( 6 , 4 )

Отсюда следует, что расстояние от точки с координатами M 1 ( 8 , 0 ) к прямой y = 1 2 x + 1 равно расстоянию от точки начала и точки конца с координатами M 1 ( 8 , 0 ) и H 1 ( 6 , 4 ) . Вычислим и получим, что M 1 H 1 = 6 — 8 2 + ( 4 — 0 ) 2 20 = 2 5 .

Решение вторым способом заключается в переходе от уравнения с коэффициентом к нормальному его виду. То есть получим y = 1 2 x + 1 ⇔ 1 2 x — y + 1 = 0 , тогда значение нормирующего множителя будет — 1 1 2 2 + ( — 1 ) 2 = — 2 5 . Отсюда следует, что нормальное уравнение прямой принимает вид — 2 5 · 1 2 x — y + 1 = — 2 5 · 0 ⇔ — 1 5 x + 2 5 y — 2 5 = 0 . Произведем вычисление от точки M 1 8 , 0 к прямой вида — 1 5 x + 2 5 y — 2 5 = 0 . Получаем:

M 1 H 1 = — 1 5 · 8 + 2 5 · 0 — 2 5 = — 10 5 = 2 5

Необходимо вычислить расстояние от точки с координатами M 1 ( — 2 , 4 ) к прямым 2 x — 3 = 0 и y + 1 = 0 .

Получаем уравнение нормального вида прямой 2 x — 3 = 0 :

2 x — 3 = 0 ⇔ 1 2 · 2 x — 3 = 1 2 · 0 ⇔ x — 3 2 = 0

После чего переходим к вычислению расстояния от точки M 1 — 2 , 4 к прямой x — 3 2 = 0 . Получаем:

M 1 H 1 = — 2 — 3 2 = 3 1 2

Уравнение прямой y + 1 = 0 имеет нормирующий множитель со значением равным -1. Это означает, что уравнение примет вид — y — 1 = 0 . Переходим к вычислению расстояния от точки M 1 ( — 2 , 4 ) к прямой — y — 1 = 0 . Получим, что оно равняется — 4 — 1 = 5 .

Ответ: 3 1 2 и 5 .

Подробно рассмотрим нахождение расстояния от заданной точки плоскости к координатным осям О х и О у .

В прямоугольной системе координат у оси О у имеется уравнение прямой, которое является неполным имеет вида х = 0 , а О х — y = 0 . Уравнения являются нормальными для осей координат, тогда необходимо найти расстояние от точки с координатами M 1 x 1 , y 1 до прямых. Это производится, исходя из формул M 1 H 1 = x 1 и M 1 H 1 = y 1 . Рассмотрим на рисунке, приведенном ниже.

Найти расстояние от точки M 1 ( 6 , — 7 ) до координатных прямых, расположенных в плоскости О х у .

Так как уравнение у = 0 относится к прямой О х , можно найти расстояние от M 1 с заданными координатами, до этой прямой, используя формулу. Получаем, что 6 = 6 .

Так как уравнение х = 0 относится к прямой О у , то можно найти расстояние от М 1 к этой прямой по формуле. Тогда получим, что — 7 = 7 .

Ответ: расстояние от М 1 к О х имеет значение 6 , а от М 1 к О у имеет значение 7 .

Расстояние от точки до прямой в пространстве – теория, примеры, решения

Когда в трехмерном пространстве имеем точку с координатами M 1 ( x 1 , y 1 , z 1 ) , необходимо найти расстояние от точки A до прямой a .

Рассмотрим два способа, которые позволяют производить вычисление расстояние от точки до прямой a , расположенной в пространстве. Первый случай рассматривает расстояние от точки М 1 к прямой, где точка на прямой называется Н 1 и является основанием перпендикуляра, проведенного из точки М 1 на прямую a . Второй случай говорит о том, что точки этой плоскости необходимо искать в качестве высоты параллелограмма.

Из определения имеем, что расстояние от точки М 1 , расположенной на прямой а, является длиной перпендикуляра М 1 Н 1 , тогда получим, что при найденных координатах точки Н 1 , тогда найдем расстояние между M 1 ( x 1 , y 1 , z 1 ) и H 1 ( x 1 , y 1 , z 1 ) , исходя из формулы M 1 H 1 = x 2 — x 1 2 + y 2 — y 1 2 + z 2 — z 1 2 .

Получаем, что все решение идет к тому, чтобы найти координаты основания перпендикуляра, проведенного из М 1 на прямую a . Это производится следующим образом: Н 1 является точкой, где пересекаются прямая a с плоскостью, которая проходит через заданную точку.

Значит, алгоритм определения расстояния от точки M 1 ( x 1 , y 1 , z 1 ) к прямой a пространства подразумевает несколько пунктов:

  • составление уравнение плоскости χ в качестве уравнения плоскости, проходящего через заданную точку, находящуюся перпендикулярно прямой;
  • определение координат ( x 2 , y 2 , z 2 ) , принадлежавших точке Н 1 , которая является точкой пересечения прямой a и плоскости χ ;
  • вычисление расстояния от точки до прямой при помощи формулы M 1 H 1 = x 2 — x 1 2 + y 2 — y 1 2 + z 2 — z 1 2 .

Из условия имеем прямую a , тогда можем определить направляющий вектор a → = a x , a y , a z с координатами x 3 , y 3 , z 3 и определенной точки М 3 ,принадлежащей прямой a . При наличии координат точек M 1 ( x 1 , y 1 ) и M 3 x 3 , y 3 , z 3 можно произвести вычисление M 3 M 1 → :

M 3 M 1 → = ( x 1 — x 3 , y 1 — y 3 , z 1 — z 3 )

Следует отложить векторы a → = a x , a y , a z и M 3 M 1 → = x 1 — x 3 , y 1 — y 3 , z 1 — z 3 из точки М 3 , соединим и получим фигуру параллелограмма. М 1 Н 1 является высотой параллелограмма.

Рассмотрим на рисунке, приведенном ниже.

Имеем, что высота М 1 Н 1 является искомым расстоянием, тогда необходимо найти его по формуле. То есть ищем M 1 H 1 .

Обозначим площадь параллелограмма за букву S , находится по формуле, используя вектор a → = ( a x , a y , a z ) и M 3 M 1 → = x 1 — x 3 . y 1 — y 3 , z 1 — z 3 . Формула площади имеет вид S = a → × M 3 M 1 → . Также площадь фигуры равняется произведению длин его сторон на высоту, получим, что S = a → · M 1 H 1 с a → = a x 2 + a y 2 + a z 2 , являющимся длиной вектора a → = ( a x , a y , a z ) , являющейся равной стороне параллелограмма. Значит, M 1 H 1 является расстоянием от точки до прямой. Ее нахождение производится по формуле M 1 H 1 = a → × M 3 M 1 → a → .

Для нахождения расстояния от точки с координатами M 1 ( x 1 , y 1 , z 1 ) до прямой a в пространстве, необходимо выполнить несколько пунктов алгоритма:

  • определение направляющего вектора прямой a — a → = ( a x , a y , a z ) ;
  • вычисление длины направляющего вектора a → = a x 2 + a y 2 + a z 2 ;
  • получение координат x 3 , y 3 , z 3 , принадлежавших точке М3, находящейся на прямой а;
  • вычисление координат вектора M 3 M 1 → ;
  • нахождение векторного произведения векторов a → ( a x , a y , a z ) и M 3 M 1 → = x 1 — x 3 , y 1 — y 3 , z 1 — z 3 в качестве a → × M 3 M 1 → = i → j → k → a x a y a z x 1 — x 3 y 1 — y 3 z 1 — z 3 для получения длины по формуле a → × M 3 M 1 → ;
  • вычисление расстояния от точки до прямой M 1 H 1 = a → × M 3 M 1 → a → .

Решение задач на нахождение расстояния от заданной точки до заданной прямой в пространстве

Найти расстояние от точки с координатами M 1 2 , — 4 , — 1 к прямой x + 1 2 = y — 1 = z + 5 5 .

Первый способ начинается с записи уравнения плоскости χ , проходящей через М 1 и перпендикулярно заданной точке. Получаем выражение вида:

2 · ( x — 2 ) — 1 · ( y — ( — 4 ) ) + 5 · ( z — ( — 1 ) ) = 0 ⇔ 2 x — y + 5 z — 3 = 0

Нужно найти координаты точки H 1 , являющейся точкой пересечения с плоскостью χ к заданной по условию прямой. Следует переходить от канонического вида к пересекающемуся. Тогда получаем систему уравнений вида:

x + 1 2 = y — 1 = z + 5 5 ⇔ — 1 · ( x + 1 ) = 2 · y 5 · ( x + 1 ) = 2 · ( z + 5 ) 5 · y = — 1 · ( z + 5 ) ⇔ x + 2 y + 1 = 0 5 x — 2 z — 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x — 2 z — 5 = 0

Необходимо вычислить систему x + 2 y + 1 = 0 5 x — 2 z — 5 = 0 2 x — y + 5 z — 3 = 0 ⇔ x + 2 y = — 1 5 x — 2 z = 5 2 x — y + 5 z = 3 по методу Крамера, тогда получаем, что:

∆ = 1 2 0 5 0 — 2 2 — 1 5 = — 60 ∆ x = — 1 2 0 5 0 — 2 3 — 1 5 = — 60 ⇔ x = ∆ x ∆ = — 60 — 60 = 1 ∆ y = 1 — 1 0 5 5 2 2 3 5 = 60 ⇒ y = ∆ y ∆ = 60 — 60 = — 1 ∆ z = 1 2 — 1 5 0 5 2 — 1 3 = 0 ⇒ z = ∆ z ∆ = 0 — 60 = 0

Отсюда имеем, что H 1 ( 1 , — 1 , 0 ) .

Необходимо рассчитать расстояние между точками с координатами M 1 ( 2 , — 4 , — 1 ) и H 1 ( 1 , — 1 , 0 ) по формуле:

M 1 H 1 = 1 — 2 2 + — 1 — — 4 2 + 0 — — 1 2 = 11

Второй способ необходимо начать с поиска координат в каноническом уравнении. Для этого необходимо обратит внимание на знаменатели дроби. Тогда a → = 2 , — 1 , 5 является направляющим вектором прямой x + 1 2 = y — 1 = z + 5 5 . Необходимо вычислить длину по формуле a → = 2 2 + ( — 1 ) 2 + 5 2 = 30 .

Понятно, что прямая x + 1 2 = y — 1 = z + 5 5 пересекает точку M 3 ( — 1 , 0 , — 5 ) , отсюда имеем, что вектор с началом координат M 3 ( — 1 , 0 , — 5 ) и его концом в точке M 1 2 , — 4 , — 1 является M 3 M 1 → = 3 , — 4 , 4 . Находим векторное произведение a → = ( 2 , — 1 , 5 ) и M 3 M 1 → = ( 3 , — 4 , 4 ) .

Мы получаем выражение вида a → × M 3 M 1 → = i → j → k → 2 — 1 5 3 — 4 4 = — 4 · i → + 15 · j → — 8 · k → + 20 · i → — 8 · j → = 16 · i → + 7 · j → — 5 · k →

получаем, что длина векторного произведения равняется a → × M 3 M 1 → = 16 2 + 7 2 + — 5 2 = 330 .

Имеются все данные для использования формулы вычисления расстояния от точки для прямлой, поэтому применим ее и получим:

M 1 H 1 = a → × M 3 M 1 → a → = 330 30 = 11

источники:

http://ru.onlinemschool.com/math/library/analytic_geometry/p_line1/

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/rasstojanie-ot-tochki-do-prjamoj-na-ploskosti-i-v/

Понравилась статья? Поделить с друзьями:
  • Как найти расстояние между хордами окружности найдите
  • Как найти цену деления на штангенциркуле
  • Как найти огэ онлайн
  • Как найти момент опорные реакции
  • Как найти историю поисков в инстаграмме