Как найти расстояние от земли зная параллакс

1. Определение размеров Земли. Первый известный науке метод определения размеров Земли применил греческий учёный Эратосфен. Он выбрал два города, лежащих на одном и том же географическом меридиане земного шара, — Александрию (01) и Сиену (02) (рис. 41). Из рисунка видно, что если обозначить длину дуги меридиана 0102 через l, а её угловое значение через n (в градусах), то длина дуги 1° меридиана l0 будет равна:

а длина всей окружности меридиана:

где R — радиус земного шара. Отсюда

Длина дуги меридиана между выбранными на земной поверхности точками 01 и 02 в градусах равна разности географических широт этих точек, т. е. n = Δφ = φ1 – φ2.

Рисунок 41 — Вычисление радиуса Земли

Длина дуги l — расстояние между Александрией и Сиеной — была хорошо известна. Угол n Эратосфен измерил, используя то обстоятельство, что Сиена лежит на тропике Рака и в день летнего солнцестояния Солнце в полдень здесь наблюдалось в зените. А в Александрии Солнце до зенита не доходило и шест, врытый перпендикулярно в землю, отбрасывал тень. Измерив длину этой тени, Эратосфен получил значение n = 7,2° и длину окружности L примерно 45 тыс. км (современное значение 40 тыс. км).

Современная геодезия располагает точными методами для измерения расстояний на земной поверхности. Определение расстояния l между точками 01 и 02 (см. рис. 41) затруднено из-за естественных препятствий (гор, рек, лесов и т. п.).

Рисунок 42 — Метод триангуляции

Поэтому длина дуги l определяется путём вычислений, требующих измерения только сравнительно небольшого расстояния — базиса и ряда углов.

Этот метод разработан в геодезии и называется триангуляцией (лат. triangulum — треугольник).

Суть его состоит в следующем. По обе стороны дуги O1О2, длину которой необходимо определить, выбирается несколько точек А, В, С, … на взаимных расстояниях до 50 км с таким расчётом, чтобы из каждой точки были видны по меньшей мере две другие точки (рис. 42).

Геодезическая вышка. На ее вершине укреплен цилиндр, на который при измерениях наводят теодолит для измерения углов.

Длину базиса очень тщательно измеряют специальными мерными лентами. Измеренные углы в треугольниках и длина базиса позволяют по тригонометрическим формулам вычислить стороны треугольников, а по ним — длину дуги O1О2 с учётом её кривизны.

В России с 1816 по 1855 г. под руководством В. Я. Струве была измерена дуга меридиана длиной 2800 км. В 30-е гг. ХХ в. высокоточные градусные измерения были проведены в СССР под руководством профессора Ф. Н. Красовского.

Триангуляционные измерения показали, что длина дуги 1° меридиана не одинакова под разными широтами: около экватора она равна 110,6 км, а около полюсов — 111,7 км, т. е. увеличивается к полюсам.
Истинная форма Земли не может быть представлена ни одним из известных геометрических тел. Поэтому в геодезии и гравиметрии форму Земли считают геоидом, т. е. телом с поверхностью, близкой к поверхности спокойного океана и продолженной под материками.

В настоящее время созданы триангуляционные сети со сложной радиолокационной аппаратурой, установленной на наземных пунктах, и с отражателями на геодезических искусственных спутниках Земли, что позволяет точно вычислять расстояния между пунктами. Значительный вклад в развитие космической геодезии внёс уроженец Беларуси — известный геодезист, гидрограф и астроном И. Д. Жонголович. На основе изучения динамики движения искусственных спутников Земли он уточнил сжатие нашей планеты и несимметричность Северного и Южного полушарий.

Рисунок 43 — Горизонтальный параллакс светила

2. Определение расстояний методом горизонтального параллакса. Кажущееся смещение светила, обусловленное перемещением наблюдателя, называется параллактическим смещением или параллаксом светила. Параллактические смещения светила тем больше, чем ближе оно к наблюдателю и чем больше перемещение наблюдателя.

Определение расстояний до тел Солнечной системы основано на измерении их горизонтальных параллаксов. Угол р, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом (рис. 43). Чем больше расстояние до светила, тем меньше угол р.

Зная горизонтальный параллакс светила, можно определить его расстояние D = SO от центра Земли. Расстояние до светила

( D=frac{R_oplus}{sin p} ), где RЕ — радиус Земли. Приняв RЕ за единицу, можно выразить расстояние до светила в земных радиусах.

Например, параллакс Солнца р¤ = 8,794″. Параллаксу Солнца соответствует среднее расстояние от Земли до Солнца, примерно равное 149,6 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.). В астрономических единицах удобно измерять расстояния между телами Солнечной системы.

При малых углах sin p » p, если угол р выражен в радианах. Если угол р выражен в секундах дуги, то вводится множитель

где 206 265 — число секунд в одном радиане. Тогда

Эта формула значительно упрощает вычисление расстояния D до светила по известному параллаксу p.

3. Радиолокационный метод. Для определения расстояний до тел Солнечной системы используются наиболее точные методы измерений — радиолокационные измерения. Измерив время t, необходимое для того, чтобы радиолокационный импульс достиг небесного тела, отразился и вернулся на Землю, вычисляют расстояние D до этого тела по формуле:

где с — скорость света, равная примерно 3·108 м/с.

С помощью радиолокации определены наиболее точные значения расстояний до тел Солнечной системы, уточнены расстояния между материками Земли, более точно определена астрономическая единица (1 а. е. = 149 597 870 ± 2 км).

Методы лазерной локации (использующие, например, специальные уголковые отражатели, доставленные на Луну) позволили измерить расстояния от Земли до Луны с точностью до нескольких сантиметров.

Рисунок 44 — Определение линейных размеров тел Солнечной системы

4. Определение размеров тел Солнечной системы. При наблюдениях небесных тел Солнечной системы можно измерить угол, под которым они видны наблюдателю с Земли. Зная угловой радиус светила р (рис. 44) и расстояние D до светила, можно вычислить линейный радиус R этого светила по формуле R = D ⋅ sin ρ.

По определению горизонтального параллакса, радиус Земли RÅ виден со светила под углом р, тогда получим:

Так как значения углов r и р малы, окончательно имеем:

Определение размеров небесных тел таким способом возможно только тогда, когда видны их диски.

Главные выводы

1. В основу метода определения размеров Земли положены градусные измерения (триангуляция) длин дуг на её поверхности.
2. Определение расстояний до тел Солнечной системы основано на измерении малых углов (параллаксов). В настоящее время для этого используются методы лазерной локации и радиолокации.
3. Для измерения расстояний между телами Солнечной системы используется астрономическая единица (1 а. е.), равная примерно 149,6 млн км.
4. Определение размеров тел Солнечной системы основано на измерении угловых радиусов и расстояний до них.

Контрольные вопросы и задания
1. Каким образом греческий ученый Эратосфен определил размеры Земли?
2. Как определяют длину дуги меридиана триангуляционным методом?
3. Что понимают под горизонтальным параллаксом?
4. Как определить расстояние до светила, зная его горизонтальный параллакс?
5. Что такое астрономическая единица?
6. В чем состоит радиолокационный метод определения расстояний до небесных тел?
7. На каком расстоянии от Земли находится небесное тело, если его горизонтальный параллакс равен 1ʹ?
8. Определите линейный радиус Луны, если в ходе наблюдений стало известно, что ее горизонтальный параллакс в это время равен 57’, а угловой радиус — 15,5ʹ. Радиус Земли принять равным 6400 км.
9. Оцените расстояние от Солнца до Меркурия, если его наибольшая элонгация равна 28°.
10. Определите диаметр Меркурия, если при прохождении по диску Солнца его угловой диаметр оказался 11,0″, а горизонтальный параллакс в этот момент равен 14,3″.

Проверь себя

Выбор тем

Random converter

  • Калькуляторы
  • Астрономия

Калькулятор расстояния и годичного параллакса

Scheme

Калькулятор определяет расстояние до недалекой звезды в световых годах и парсеках, если известен годичный параллакс этой звезды в угловых секундах. Можно также определить параллакс, если известно расстояние.

Пример: рассчитать расстояние в световых годах до самой яркой звезды звездного неба северного полушария Арктура (α Волопаса) в созвездии Волопаса, если известно что ее параллакс равен 88.83 угловым миллисекундам.

Параллакс

p

Расстояние

D

Поделиться ссылкой на этот калькулятор, включая входные параметры

Определение параллакса и формула для расчета расстояния

Параллакс — это изменение видимого кажущегося положения объекта, наблюдаемого с разных точек и измеренное как угол (или половинный угол) между направлениями от наблюдателя на объект. Годичный звездный параллакс — это изменение положения звезды, наблюдаемой с двух находящихся на большом расстоянии друг от друга точек. Эти две точки наблюдения расположены на земной орбите, как показано ниже. Параллакс небесного тела можно использовать для нахождения расстояния до него по формуле:

Formula

Здесь D — расстояние до небесного тела, измеренное в парсеках, и p — наблюдаемый годичный параллакс, измеренный в дуговых секундах. Эта формула и используется для расчетов в нашем калькуляторе. Парсек определяется как расстояние до объекта, годичный звездный параллакс которого равен 1 дуговой секунде. Иными словами, парсек — это расстояние, с которого диск размером в 1 а.е. будет иметь угловой размер в 1 угловую секунду.

Годичный параллакс звезды (чертеж не в масштабе); 1 — астрономическая единица (а.е.), то есть расстояние от Земли до Солнца; D — расстояние от центра земной орбиты до звезды S; p — параллакс, измеренный в угловых секундах (")

Годичный параллакс звезды (чертеж не в масштабе); 1 — астрономическая единица (а.е.), то есть расстояние от Земли до Солнца; D — расстояние от центра земной орбиты до звезды S; p — параллакс, измеренный в угловых секундах («)

Подробнее о длине и расстоянии: измерение расстояний в космосе

Picture

Общие сведения

Picture

Космос огромен — поэтому космические расстояния измеряются не так, как это делается на Земле. В статье о длине и расстояниях мы говорили главным образом об измерении относительно небольших расстояний, которые не трудно себе представить. Однако расстояния в космосе представить себе очень трудно из-за их огромной величины, а привычные метры и километры едва ли годятся для использования в космосе. Для измерения расстояний между планетами и галактиками вряд ли можно использовать измерительные приборы типа рулетки или линейки. Спутниковая навигация в космосе тоже не работает. Поэтому для космоса придется ввести не только новые единицы измерения, но и новые методы измерения этих расстояний.

Измерения с помощью радиолокации

Расположенная на Земле радиолокационная станция (РЛС) посылает СВЧ-излучение в сторону астрономического объекта, расстояние до которого нужно вычислить. Затем измеряется время, которое необходимо, чтобы сигнал достиг объекта и вернулся назад, к РЛС. Зная это время и скорость света в вакууме, можно определить расстояние, умножая скорость на время.

Расположенная на Земле радиолокационная станция (РЛС) посылает СВЧ-излучение в сторону астрономического объекта, расстояние до которого нужно вычислить. Затем измеряется время, которое необходимо, чтобы сигнал достиг объекта и вернулся назад, к РЛС. Зная это время и скорость света в вакууме, можно определить расстояние, умножая скорость на время.

Использовать РЛС для этих измерений удобно не только для определения расстояния до нужного астрономического объекта, но и для оценки скорости изменения этого расстояния (ведь объекты во Вселенной движутся друг относительно друга!). Это, в свою очередь, полезно при слежении за перемещениями объектов в космосе, например, для оценки возможности столкновения астероида с Землей.

Этот метод ограничен астрономическими объектами, которые находятся на небольших расстояниях от Земли. Можно сказать, что он пригоден для объектов, находящихся в пределах Солнечной системы. Это связано с тем, что радиосигнал ослабляется и рассеивается на больших расстояниях. Кроме того, чем больше расстояние, тем больше должен быть объект для того, чтобы его могла «увидеть» радиолокационная станция.

Годичный звездный параллакс

В статье о длине и расстоянии мы уже обсуждали годичный звездный параллакс. Здесь мы кратко рассмотрим это явление, потому что именно параллакс используется для измерения расстояний в космосе. Параллакс — геометрические явление, используемое для определения расстояний. Он хорошо выражен, если наблюдать объект с разных точек зрения относительно удаленного фона. Познать суть параллакса достаточно легко: вытяните перед собой палец или карандаш и закройте один глаз. Отметьте насколько далеко этот палец от другого объекта (скажем, от дерева, если вы на улице, или от шкафа, если вы находитесь в помещении). Теперь закройте этот глаз и откройте другой. Заметили, что палец или карандаш переместился относительно удаленного объекта? Это перемещение и является параллаксом. Если проделать аналогичный эксперимент, удерживая палец ближе к глазам, можно заметить, что расстояние, на которое перемещается палец или карандаш относительно удаленного объекта, стало больше. Чем ближе палец к глазам, тем больше он сдвигается относительно удаленного объекта при рассматривании пальца обоими глазами. Понятно, что это явление можно использовать для измерения расстояния до объекта, в данном случае — пальца.

На этом рисунке два положения Земли обозначены голубыми кружками, а Солнце — оранжевое. А — реальное положение звезды, расстояние до которой необходимо измерить. А2 и А3 — кажущиеся положения этой звезды с двух точек наблюдения относительно удаленной белой звезды DS. Р — параллактический угол. Измеряемое расстояние между Солнцем и звездой, обозначенное оранжевой линией AS, равно одному парсеку, если угол Р равен одной дуговой секунде.

На этом рисунке два положения Земли обозначены голубыми кружками, а Солнце — оранжевое. А — реальное положение звезды, расстояние до которой необходимо измерить. А2 и А3 — кажущиеся положения этой звезды с двух точек наблюдения относительно удаленной белой звезды DS. Р — параллактический угол. Измеряемое расстояние между Солнцем и звездой, обозначенное оранжевой линией AS, равно одному парсеку, если угол Р равен одной дуговой секунде.

Более подробное математическое объяснение измерения расстояний с помощью параллакса приводится в статье о длине и расстоянии. В общем случае, можно сказать, что расстояния следует измерять, когда Земля находится в двух противоположных точках ее орбиты вокруг Солнца (с интервалом в шесть месяцев, так как Земля делает один оборот вокруг Солнца за один год). Мы используем известное расстояние от Земли до Солнца (точно измеренное и называемое астрономической единицей) и измерим угол, образованный линией, соединяющей Землю в точке первого измерения, звезду, расстояние до которой измеряется, и точкой, в которой находится Земля во время второго измерения. Фактически, нам нужно знать только половину этого угла, которая называется параллактическим углом и обозначена на рисунке буквой P. Таким образом, имеется достаточно информации, чтобы рассчитать расстояние от Земли до звезды с помощью тригонометрических уравнений.

С помощью описанного метода можно измерить расстояние в различных единицах длины, но астрономы предпочитают парсек. Один парсек — это расстояние от Солнца до рассматриваемой звезды, если параллактический угол равен 1 дуговой секунде. Другой единицей длины является световой год (1 парсек = 3,26 светового года), однако эту единицу чаще используют журналисты. Астрономы предпочитают парсеки.

Четыре звезды имеют один и тот же размер, но расположены на разных расстояниях от нас. Звезда в положении 1 находится ближе всего, а звезда в положении 4 на максимальном удалении от нас. В результате мы видим ближние к нам звезды как более яркие, а удаленные — как менее яркие. Если известная их реальная яркость, можно сравнить ее с их кажущейся яркостью и, таким образом, узнать расстояние до них

Четыре звезды имеют один и тот же размер, но расположены на разных расстояниях от нас. Звезда в положении 1 находится ближе всего, а звезда в положении 4 на максимальном удалении от нас. В результате мы видим ближние к нам звезды как более яркие, а удаленные — как менее яркие. Если известная их реальная яркость, можно сравнить ее с их кажущейся яркостью и, таким образом, узнать расстояние до них

Как и при радиолокационных измерениях, этот метод ограничен расстоянием, на которое удалена звезда. Если она слишком далеко (более 500 парсеков), то угол, который нужно измерить, слишком мал и измерить его практически невозможно. Поэтому для больших расстояний данный метод не работает.

Цефеиды

Для измерения расстояний в космосе можно использовать определенные типы звезд, называемых Цефеидами. Цефеида — пульсирующая звезда с точной зависимостью светимости (яркости) от периода пульсации. Чем больше этот период, тем выше яркость Цефеид. Эта корреляция между периодом пульсации я светимостью хорошо известна и все Цефеиды ведут себя одинаково. Поэтому, если известен период пульсации, который несложно наблюдать, можно измерить светимость звезды. Мы знаем, что чем дальше звезда, тем меньше ее яркость. Таким образом, если сравнить реальную яркость с кажущейся, можно определить расстояние до звезды.

Пульсация цефеид обусловлена их сжатием и расширением. При этом их яркость изменяется, и для определения периода нужно измерить время между точками с максимальной яркостью. Ядро звезды не изменяет размеры, однако их внешние газовые слои расширяются и сжимаются вследствие флуктуаций давления газа в этих слоях. Сжатие и расширение происходит за счет двух сил: гравитационного притяжения, которое приводит к сближению молекул газа в направлении центра звезды, и давления газа, которое приводит к расширению внешнего слоя.

Схематическое изображение пульсирующей Цефеиды с периодом в два дня. Пики светимости 1 декабря 2010 г., когда звезда начинает постепенно терять яркость. 2 декабря яркость минимальная. Затем звезда снова достигает максимальной светимости 3 декабря и уменьшает светимость 4 декабря и так далее

Схематическое изображение пульсирующей Цефеиды с периодом в два дня. Пики светимости 1 декабря 2010 г., когда звезда начинает постепенно терять яркость. 2 декабря яркость минимальная. Затем звезда снова достигает максимальной светимости 3 декабря и уменьшает светимость 4 декабря и так далее

Когда звезда находится в сжатом состоянии, ее фотоны имеют высокую энергию и в результате давление повышается, что приводит к расширению внешней оболочки звезды. Когда это давление падает и становится меньше гравитационных сил, сжимающих оболочку, звезда сжимается. Затем процесс повторяется.

Цефеиды можно использовать для измерения расстояний до 40 миллионов парсеков, то есть намного больших, чем позволяет метод параллакса. Недостаток метода — цефеиды не так уж часто встречаются.

Сверхновая типа Ia

Еще одним стандартным измерителем расстояния являются сверхновые типа Ia. Идея аналогичная использованию Цефеид: при известной реальной светимости сверхновой в момент взрыва, когда яркость максимальна, можно сравнить ее с видимой яркостью звезды и, таким образом, определить насколько далеко она от нас. Именно эта категория сверхновых интересует нас в связи с тем, что они наиболее хорошо изучены, а их поведение предсказуемо, поэтому максимальная светимость во время взрыва хорошо известна. Эти взрывы происходит с двумя астрономическими объектами — с белыми карликами и еще одним белым карликом или со звездой-гигантом. Белый карлик представляет собой звезду очень высокой плотности в конце ее жизненного цикла, когда эта звезда «всасывает» материю находящихся рядом звезд (в нашем случае — второй звезды) до тех пор, пока не взорвется. Эти взрывы сверхновых позволяет измерять расстояния до галактик, в которых они находятся.

Другие методы измерения расстояний

Имеется еще несколько методов измерения расстояний в космосе. Один из них основан на предположении, что вселенная расширяется с известной скоростью. Если известна скорость, с которой галактики удаляются от нашей галактики, то с помощью закона Хаббла можно рассчитать насколько далеко они от нас. Закон Хаббла гласит, что расстояние до галактики равно скорости галактики, деленной на постоянную Хаббла, которая является известной константой. Скорость галактики можно определить, изучая спектр галактики, а затем, учитывая эффект Доплера, можно определить расстояние. Эффект Доплера, более известный в астрономии как смещение Доплера — это изменение частоты электромагнитного излучения (в нашем случае — света), излучаемого объектом, который движется относительно наблюдателя. При движении в сторону от наблюдателя этот спектр сдвигается в сторону низких частот, то есть в красную сторону, причем степень сдвига зависит от скорости удаления галактики. По смещению можно рассчитать скорость, а затем вычислить расстояние.

Picture

Примеры расчета расстояния до некоторых звезд и их звездного параллакса

Параллакс в дуговых миллисекундах и расстояние в световых годах

Канопус (α Киля)

Ригель Кентаурус (α Центавра A)

Сириус (α Большого Пса)

Вега (α Лиры)

Капелла (α Возничего)

Ригель (β Ориона)

Альтаир (α Орла)

Альдебаран (α Тельца)

Антарес (α Скорпиона)

Арктур (α Волопаса)

Unit Converter articles were edited and illustrated by Анатолий Золотков

Определение расстояний и размеров тел в Солнечной системе

1) Определение расстояний до небесных тел.

В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а. е.).

1-й способ: (известен) По третьему закону Кеплера можно определить расстояние до тел СС, зная периоды обращений и одно из расстояний.

Приближённый метод.

2-й способ: Определение расстояний до Меркурия и Венеры в моменты элонгации (из прямоугольного треугольника по углу элонгации).

3-й способ: Геометрический (параллактический).

Пример: Найти неизвестное расстояние АС. [АВ] – Базис — основное известное расстояние, т. к. углы САВ и СВА – известны, то по формулам тригонометрии (теорема синусов) можно в ∆ найти неизвестную сторону, т. е. [CА]. Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя. Параллакс- угол (АСВ), под которым из недоступного места виден базис (АВ — известный отрезок). В пределах СС за базис берут экваториальный радиус Земли R=6378км.

Пусть К — местонахождение наблюдателя, из которого светило видно на горизонте. Из рисунка видно, что из прямоугольного треугольника гипотенуза, расстояние D равно: , так как при малом значении угла если выражать величину угла в радианах и учитывать, что угол выражен в секундах дуги, а 1рад =57,30=3438’=206265″, то и получается вторая формула.

Угол (ρ) под которым со светила, находящегося на горизонте (┴ R — перпендикулярно лучу зрения) был бы виден экваториальный радиус Земли называется горизонтальным экваториальным параллаксом светила.

Т.к. со светила никто наблюдать не будет в силу объективных причин, то горизонтальный параллакс определяют так: измеряем высоту светила в момент верхней кульминации из двух точек земной поверхности, находящихся на одном географическом меридиане и имеющем известные географические широты. Из полученного четырехугольника вычисляют все углы (в т. ч. параллакс).

Из истории: Первое измерение параллакса (параллакса Луны) сделано в 129г до НЭ Гиппархом (180-125, Др. Греция).

Впервые расстояния до небесных тел (Луны, Солнца, планет) оценивает Аристотель (384-322, Др. Греция) в 360г до НЭ в книге «О небе» →слишком не точно, например радиус Земли в 10000 км.

В 265г до НЭ Аристарх Самосский (310-230, Др. Греция) в работе «О величине и расстоянии Солнца и Луны» определяет расстояние через лунные фазы. Так расстояния у него до Солнца (по фазе Луны в 1 четверти из прямоугольного треугольника, т. е. впервые использует базисный метод: ЗС=ЗЛ/cos 87º≈19*ЗЛ). Радиус Луны определил в 7/19 радиуса Земли, а Солнца в 6,3 радиусов Земли (на самом деле в 109 раз). На самом деле угол не 87º а 89º52′ и поэтому Солнце дальше Луны в 400 раз. Предложенные расстояния использовались многие столетия астрономами.

В 240г до НЭ ЭРАТОСФЕН (276-194, Египет) произведя измерения 22 июня в Александрии угла между вертикалью и направлением на Солнце в полдень (считал, что раз Солнце очень далеко, то лучи параллельны) и используя записи наблюдений в тот же день падения лучей света в глубокий колодец в Сиене (Асуан) (в 5000 стадий = 1/50 доли земной окружности (около 800км) т. е. Солнце находилось в зените) получает разность углов в 7º12′ и определяет размер земного шара, получив длину окружности шара 39690 км (радиус=6311км). Так была решена задача определения размера Земли, используя астрогеодезический способ. Результат не был произведён до 17 века, лишь астрономы Багдадской обсерватории в 827г немного поправили его ошибку.

В 125г до НЭ Гиппарх довольно точно определяет (в радиусах Земли) радиус Луны (3/11 R) и расстояние до Луны (59 R).

Точно определил расстояние до планет, приняв расстояние от Земли до Солнца за 1а.е., Н. Коперник.

Наибольший горизонтальный параллакс имеет ближайшее тело к Земле — Луна. Р=57’02«; а для Солнца Р¤=8,794«

Задача 1. Найти расстояние от Земли до Луны, зная параллакс Луны и радиус Земли.

Задача 2. На каком расстоянии от Земли находится Сатурн, если его параллакс 0,9″. [из формулы D=(206265/0,9)*6378= 1461731300км = 1461731300/149600000≈9,77а.е.]

4-й способ Радиолокационный: импульс→объект →отраженный сигнал→время. Предложен советскими физиками Л.И. Мандельштамом и Н.Д. Папалекси. Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946г была произведена первая радиолокация Луны Баем в Венгрии и в США, а в 1957-1963гг — радиолокация Солнца (исследования солнечной короны проводятся с 1959г), Меркурия (с 1962г на ll= 3.8, 12, 43 и 70 см), Венеры, Марса и Юпитера (в 1964 г. на волнах l = 12 и 70 см), Сатурн (в 1973 г. на волне l = 12.5 см) в Великобритании, СССР и США. Первые эхо-сигналы от солнечной короны были получены в 1959 (США), а от Венеры в 1961 (СССР, США, Великобритания). По скорости распространения радиоволн с = 3 × 105 км/с и по промежутку времени t (с) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела. VЭМВ=С=299792458м/с≈3*108 м/с. Основная трудность в исследовании небесных тел методами радиолокации связана с тем, что интенсивность радиоволн при радиолокации ослабляется обратно пропорционально четвертой степени расстояния до исследуемого объекта. Поэтому радиолокаторы, используемые для исследования небесных тел, имеют антенны больших размеров и мощные передатчики. Например, радиолокационная установка центра дальней космической связи в Крыму имеет антенну с диаметром главного зеркала 70 м и оборудована передатчиком мощностью несколько сотен кВт на волне 39 см. Энергия, направляемая к цели, концентрируется в луче с углом раскрыва 25′.

Из радиолокации Венеры, уточнено значение астрономической единицы: 1 а. е.=149 597 870 691 ± 6м ≈149,6 млн.км., что соответствует Р¤=8,7940″. Так проведенная в Советском Союзе обработка данных радиолокационных измерений расстояния до Венеры в 1962-75гг (один из первых удачных экспериментов по радиолокации Венеры провели сотрудники Института радиотехники и электроники АН СССР в апреле 1961г антенной дальней космической связи в Крыму, l= 39 см) дала значение 1 а.е. =149597867,9 ±0,9 км. XVI Генеральная ассамблея Международного астрономического союза приняла в 1976г значение 1 а.е.=149597870±2 км. Путем радиолокации с КА определяется рельеф поверхности планет и их спутников, составляются их карты.

Основные антенны, используемые для радиолокации планет:

= Евпатория, Крым, диаметр 70 м, l= 39 см;

= Аресибо, Пуэрто Рико, диаметр 305 м, l= 12.6 см;

= Голдстоун, Калифорния, диаметр 64 м, l = 3.5 и 12.6 см, в бистатическом режиме прием осуществляется на системе апертурного синтеза VLA.

С изобретением Квантовых генераторов (лазера) в 1969г произведена первая лазерная локация Луны (зеркало для отражения лазерного луча на Луне установили астронавты США «Ароllо — 11» 20.07.69г), точность измерения составили ±30 см. На рисунке показано расположение лазерных уголковых отражателей на Луне, установленных при полете КА «Луна-17, 21» и «Аполлон — 11, 14, 15». Все, за исключением отражателя Лунохода-1 (L1), работают и сейчас. Лазерная (оптическая) локация нужна для: -решение задач космических исследований. -решение задач космической геодезии. -выяснения вопроса о движении земных материков и т.д. 2) Определение размеров небесных тел.

а) Определение радиуса Земли.

АОВ=n=φА-φВ(разность географических широт)

е=АВ — длина дуги вдоль меридиана

т.к. е10=е/n=2πR/3600 ,то

R ± = 180ºl / πn

Аналогичным способом в 240г до НЭ (рисунок выше) определяет радиус Земли географ Эратосфен. L/800=3600/7,20

б) Определение размера небесных тел.

p-параллакс. ρ — угловой радиус светила Из прямоугольных треугольников дважды используя формулу R=r. sin ρ (чертёж) получимR=D sin ρ

  1. Задача 3. Во сколько раз линейный радиус Солнца превышает радиус земли, если угловой радиус Солнца 16′?

  2. CD- «Red Shift 5.1» — Определить на данный момент удаленность нижних (планет земной группы, верхних планет, планет гигантов) от Земли и Солнца в а.е.

  3. Угловой радиус Марса 9,6″, а горизонтальный параллакс 18″. Чему равен линейный радиус Марса?

  4. Каково расстояние между лазерным отражателем на Луне и телескопом на Земле, если импульс возвратился через 2,43545с?

  5. Расстояние от Земли до Луны в перигее 363000км, а в апогее 405000км. Определите горизонтальный параллакс Луны в этих положениях.

  6. Тест. Определение расстояний

  7. Дополнительно, для тех кто сделал — кроссворд.

  1. Планета СС

  2. Ближайшая к Земле точка орбиты ИСЗ

  3. Ученый, создатель гелиоцентрической системы мира

  4. Угол под которым со светила виден R Земли

  5. Ученый, направивший первым в 1609г телескоп на небо

  6. Сторона горизонта

Итог:

1) Что такое параллакс?

2) Какими способами можно определить расстояние до тел СС?

3) Что такое базис? Что принимается за базис для определения расстояния до тел СС?

4) Как зависит параллакс от удаленности небесного тела?

5) Как зависит размер тела от угла?

Домашнее задание: §13; вопросы и задания стр. 64-71 упр.11, стр. 71

Практическая работа «Определение размера Луны».

В период полнолуния, используя две соединенные под прямым углом линейки, определяются видимые размеры лунного диска: поскольку треугольники KCD и КАВ подобны, из теоремы о подобии треугольников следует, что: АВ/СD=KB/KD. Диаметр Луны АВ = (CD.KB)/KD. Расстояние от Земли до Луны берёте из справочных таблиц (но лучше, если сумеете вычислить его сами).

Представление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

Считается, что первое достаточно точное определение размеров Земли провёл греческий учёный Эратосфен (276—194 до н. э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет. Получив эти данные, можно вычислить длину дуги в 1°, а затем длину окружности и величину её радиуса, т. е. радиуса земного шара. Очевидно, что длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: ϕB – ϕA.

Рис. 3.8. Способ Эратосфена

Для того чтобы определить эту разность, Эратосфен сравнил полуденную высоту Солнца в один и тот же день в двух городах, находящихся на одном меридиане. Измерив высоту Солнца hB (рис. 3.8) в полдень 22 июня в Александрии, где он жил, Эратосфен установил, что Солнце отстоит от зенита на 7,2°. В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените (hA = 90°). Следовательно, длина дуги составляет 7,2°. Расстояние между Сиеной (A) и Александрией (B) около 5000 греческих стадий — l.

Стадией в Древней Греции считалось расстояние, которое проходит легко вооружённый греческий воин за тот промежуток времени, в течение которого Солнце, коснувшееся горизонта своим нижним краем, целиком скроется за горизонт.

Несмотря на кажущееся неудобство такой единицы и достаточную громоздкость словесного определения, её введение выглядело вполне оправданным, учитывая, что строгая периодичность небесных явлений позволяла использовать их движение для счёта времени.

Обозначив длину окружности земного шара через L, получим такое выражение:

= ,

откуда следует, что длина окружности земного шара равняется 250 тыс. стадий.

Точная величина стадии в современных единицах неизвестна, но, зная, что расстояние между Александрией и Асуаном составляет 800 км, можно полагать, что 1 стадия = 160 м. Результат, полученный Эратосфеном, практически не отличается от современных данных, согласно которым длина окружности Земли составляет 40 тыс. км.

Эратосфен ввёл в практику использование терминов «широта» и «долгота». Видимо, появление этих терминов связано с особенностями формы карт того времени: они повторяли по очертаниям побережье Средиземного моря, которое длиннее по направлению запад—восток (по долготе), чем с севера на юг (по широте).

Рис. 3.9. Параллактическое смещение

Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними. Зачастую непосредственное измерение кратчайшего расстояния между этими пунктами оказывается невозможным из-за различных естественных препятствий (гор, рек и т. п.). Поэтому применяется способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса — BC) и двух углов B и C в треугольнике ABC (рис. 3.9).

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.

Чем дальше расположен предмет, тем меньше его параллактическое смещение, и чем больше перемещение наблюдателя (базис измерения), тем больше параллактическое смещение.

Рис. 3.10. Схема триангуляции

Для определения длины дуги используется система треугольников — способ триангуляции, который впервые был применён ещё в 1615 г. Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30—40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других. Основой для вычисления длин сторон во всех этих треугольниках является размер базиса AC (рис. 3.10). Точность измерения базиса длиной в 10 км составляет около 1 мм. Во всех пунктах устанавливают геодезические сигналы — вышки высотой в несколько десятков метров. С вершины сигнала с помощью угломерного инструмента (теодолита) измеряют углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон. Проводя затем измерение углов из пунктов, расстояние между которыми вычислено, можно узнать длину двух очередных сторон в треугольнике. Зная длину сторон этих треугольников, можно определить длину дуги AB.

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в. Для уточнения формы Земли Французская академия наук снарядила сразу две экспедиции. Одна из них работала в экваториальных широтах Южной Америки в Перу, другая — вблизи Северного полярного круга на территории Финляндии и Швеции. Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора. Последующие исследования подтвердили, что длина дуги одного градуса меридиана увеличивается с возрастанием географической широты. Это означало, что форма Земли — не идеальный шар: она сплюснута у полюсов. Её полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1 : 50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.

Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием. По современным данным, оно составляет , или 0,0034. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения.

В XX в. благодаря измерениям, точность которых составила 15 м, выяснилось, что земной экватор также нельзя считать окружностью. Сплюснутость экватора составляет всего (в 100 раз меньше сплюснутости меридиана). Более точно форму нашей планеты передаёт фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

В настоящее время форму Земли принято характеризовать следующими величинами:

сжатие эллипсоида — 1 : 298,25;

средний радиус — 6371,032 км;

длина окружности экватора — 40075,696 км.

Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Горизонтальным параллаксом (    p) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11).

Рис. 3.11. Горизонтальный параллакс светила

Из треугольника OAS можно выразить величину — расстояние OS = D:

D = ,

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57ʹ. Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8ʺ. Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin p p, если угол p выражен в радианах. В одном радиане содержится 206 265ʺ. Тогда, заменяя sin p на p и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:

D = R,

или (с достаточной точностью)

D = R.

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации. Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9ʺ?

Дано:

p1 = 0,9ʺ

D = 1 а. е.

p = 8,8ʺ

Решение:

Известно, что параллакс Солнца на расстоянии в 1 а. е. равен 8,8ʺ.

Тогда, написав формулы для расстояния до Солнца и до Сатурна и поделив их одна на другую, получим:

D1 — ?

= .

Откуда

D1 = = = 9,8 а. е.

Ответ: D1 = 9,8 а. е.

Рис. 3.12. Угловые размеры светила

Зная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12). Формула, связывающая эти величины, аналогична формуле для определения параллакса:

D = .

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30ʹ, а все планеты видны невооружённым глазом как точки, можно воспользоваться соотношением: sin ρ ρ. Тогда:

D = и D = .

Следовательно,

r = R.

Если расстояние D известно, то

r = Dρ,

где величина ρ выражена в радианах.

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30ʹ?

Дано:

D = 400 000 км

ρ = 30ʹ

Решение:

Если ρ выразить в радианах, то

d = Dρ.

Следовательно,

d — ?

d = = 3490 км.

Ответ: d = 3490 км.

Вопросы1. Какие измерения, выполненные на Земле, свидетельствуют о её сжатии? 2. Меняется ли и по какой причине горизонтальный параллакс Солнца в течение года? 3. Каким методом определяется расстояние до ближайших планет в настоящее время?

Упражнение 111. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля? 2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удалённой (апогее) — 405 000 км. Определите горизонтальный параллакс Луны в этих положениях. 3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8ʺ и 57ʹ соответственно? 4. Чему равен угловой диаметр Солнца, видимого с Нептуна?

И покидает поле брани,
И отступает «Аполлон».
Стартуют рыцари иные
К сетям сатурновых колец,
Туда, где жжёт дыханье Ио
И ощущается конец
Той Удивительной Системы
Владений Царственной Звезды,
Которой уроженцы все мы.
И. Галкин

Урок 5/11

 презентация

Тема: Определение расстояний до тел СС и размеров этих небесных тел.

Цель: Рассмотреть различные способы определения расстояния до тел СС. Дать понятие горизонтального параллакса и закрепить способ нахождения расстояния и размеров тел через горизонтальный параллакс.

Задачи:
1. Обучающая:   Ввести понятия геометрического (параллактического), «радиолокационного» и «лазерного» методов определения расстояний до тел Солнечной системы. Вывести формулу для определения радиуса небесных тел Солнечной системы (понятия: линейный радиус, угловой радиус). Использовать решение задач для продолжения формирования расчетных навыков.
2. Воспитывающая: раскрыв тему урока что современная наука располагает различными методами определения расстояний до небесных тел и их размеров для получения достоверные сведения о масштабах Солнечной системы и размерах входящих в нее небесных тел, содействовать формированию мировоззренческой идеи о познаваемости мира.
3. Развивающая: показать, что на первый взгляд неразрешимая проблема определения расстояний до небесных тел и радиусов небесных тел в настоящее время решается различными методами.

Знать:
I-й уровень (стандарт) — способы определения расстояний до тел СС, понятие базиса и параллакса, способ определения размера Земли и любого небесного тела.
II-й уровень — способы определения расстояний до тел СС, понятие базиса и параллакса, способ определения размера Земли и любого небесного тела. Что диаметр Луны во столько раз меньше диаметра Солнца, во сколько раз расстояние от Луны до Земли меньше расстояния от Земли до Солнца.

Уметь:
I-й уровень (стандарт) -определять расстояния до тел СС используя параллакс и данные радиолокации, определять размеры небесных тел.
II-й уровень -определять расстояния до тел СС используя параллакс и данные радиолокации, определять размеры небесных тел.

Оборудование: Таблицы: «Солнечная система», теодолит, к/ф «Радиолокация», диапозитивы, диафильм «Определение расстояний до небесных тел». CD- «Red Shift 5.1». ШАК.

Межпредметная связь: Градусная и радианная меры угла, смежные и вертикальные углы. Шар и сфера (математика, 5, 7, 10, 11 кл.). Расстояние от Земли до Луны и Солнца. Сравнительные размеры Солнца и Земли, Земли и Луны (природоведение, 5 кл). Скорость распространения электромагнитных волн. Метод радиолокации (физика, 11 кл).

Ход урока:

I. Опрос учащихся (5-7 минут). Диктант.
 

  1. Ученый, создатель гелиоцентрической системы мира. (Н. Коперник)
  2. Ближайшая точка орбиты ИСЗ. (Перигей)
  3. Значение астрономической единицы. (1 а. е.=149600000км )
  4. Основные законы небесной механики. (4 закона-3Вт и 3-й закон Коперника)
  5. Планета, открытая на «кончике пера». (Нептун)
  6. Значение круговой (I космической) скорости для Земли. (7,9 км/с)
  7. Отношение квадратов периодов обращения двух планет равно 8. Чему равно отношение больших полуосей этих планет? (2)
  8. В какой точке эллиптической орбиты ИСЗ имеет минимальную скорость? (В апогее)
  9. Немецкий астроном, открывший законы движения планет (И. Кеплер)
  10. Формула третьего закона Кеплера, после уточнения И. Ньютона.
  11. Вид орбиты межпланетной станции, посланной для облета Луны. (Эллипс)
  12. Чем отличается первая космическая скорость от второй. (в раз >)
  13. В какой конфигурации находится Венера, если она наблюдается на фоне диска Солнца? (Соединение нижнее)
  14. В какой конфигурации Марс ближе всего к Земле. (В противостоянии)
  15. Виды периодов движения Луны = (временных)? (Сидерический, синодический).

II Новый материал

1) Определение расстояний до небесных тел.
     В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а. е.).
1-й способ: (известен) По третьему закону Кеплера можно определить расстояние до тел СС, зная периоды обращений и одно из расстояний. 

    Приближённый метод.

2-й способ: Определение расстояний до Меркурия и Венеры в моменты элонгации (из прямоугольного треугольника по углу элонгации).
3-й способ: Геометрический (параллактический).
  Пример: Найти неизвестное расстояние АС.
  [АВ] – Базис — основное известное расстояние, т. к. углы САВ и СВА – известны, то по формулам тригонометрии (теорема синусов) можно в ? найти неизвестную сторону, т. е. [CА]. Параллактическим  смещением называется изменение направления на предмет при перемещении наблюдателя.
  Параллакс- угол (АСВ), под которым из недоступного места виден базис (АВ — известный отрезок). В пределах СС за базис берут экваториальный радиус Земли R=6378км.

     Пусть К — местонахождение наблюдателя, из которого светило видно на горизонте. Из рисунка видно, что из прямоугольного треугольника гипотенуза, расстояние D равно: , так как при малом значении угла если выражать величину угла в радианах и учитывать, что угол выражен в секундах дуги, а 1рад =57,30=3438’=206265«, то и получается вторая формула.

Угол (ρ) под которым со светила, находящегося на горизонте (? R — перпендикулярно лучу зрения) был бы виден экваториальный радиус Земли называется горизонтальным экваториальным параллаксом светила.
Т.к. со светила никто наблюдать не будет в силу объективных причин, то горизонтальный параллакс определяют так:

  1. измеряем высоту светила в момент верхней кульминации из двух точек земной поверхности, находящихся на одном географическом меридиане и имеющем известные географические широты.
  2. из полученного четырехугольника вычисляют все углы (в т. ч. параллакс).

Из истории: Первое измерение параллакса (параллакса Луны) сделано в 129г до НЭ Гиппархом (180-125, Др. Греция).
    Впервые расстояния до небесных тел (Луны, Солнца, планет) оценивает    Аристотель (384-322, Др. Греция) в 360г до НЭ в книге «О небе» →слишком не точно, например радиус Земли в 10000 км.
    В 265г до НЭ Аристарх Самосский (310-230, Др. Греция) в работе «О величине и расстоянии Солнца и Луны» определяет расстояние через лунные фазы. Так расстояния у него до Солнца (по фазе Луны в 1 четверти из прямоугольного треугольника, т. е. впервые использует базисный метод: ЗС=ЗЛ/cos 87º≈19*ЗЛ). Радиус Луны определил в 7/19 радиуса Земли, а Солнца в 6,3 радиусов Земли (на самом деле в 109 раз). На самом деле угол не 87º а 89º52′ и поэтому Солнце дальше Луны в 400 раз. Предложенные расстояния использовались многие столетия астрономами.
    В 240г до НЭ ЭРАТОСФЕН (276-194, Египет) произведя измерения 22 июня в Александрии угла между вертикалью и направлением на Солнце в полдень (считал, что раз Солнце очень далеко, то лучи параллельны) и используя записи наблюдений в тот же день падения лучей света в глубокий колодец в Сиене (Асуан) (в 5000 стадий = 1/50 доли земной окружности (около 800км) т. е. Солнце находилось в зените) получает разность углов в 7º12′ и определяет размер земного шара, получив длину окружности шара 39690 км (радиус=6311км). Так была решена задача определения размера Земли, используя астрогеодезический способ. Результат не был произведён до 17 века, лишь астрономы Багдадской обсерватории в 827г немного поправили его ошибку.
   В 125г до НЭ Гиппарх довольно точно определяет (в радиусах Земли) радиус Луны (3/11 R) и расстояние до Луны (59 R).
Точно определил расстояние до планет, приняв расстояние от Земли до Солнца за 1а.е., Н. Коперник.
    Наибольший горизонтальный параллакс имеет ближайшее тело к Земле — Луна. Р?=57’02«; а для Солнца   Р¤=8,794«

Задача 1

: учебник Пример № 6 — Найти расстояние от Земли до Луны, зная параллакс Луны и радиус Земли.

Задача 2

: (самостоятельно). На каком расстоянии от Земли находится Сатурн, если его параллакс 0,9″. [из формулы D=(206265/0,9)*6378= 1461731300км = 1461731300/149600000≈9,77а.е.]

4-й способ

Радиолокационный: импульс→объект →отраженный сигнал→время. Предложен советскими физиками Л.И. Мандельштам и Н.Д. Папалекси. Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946г была произведена первая радиолокация Луны Баем в Венгрии и в США, а в 1957-1963гг — радиолокация Солнца (исследования солнечной короны проводятся с 1959г), Меркурия (с 1962г на ll= 3.8, 12, 43 и 70 см), Венеры, Марса и Юпитера (в 1964 г. на волнах l = 12 и 70 см), Сатурн (в 1973 г. на волне l = 12.5 см) в Великобритании, СССР и США. Первые эхо-сигналы от солнечной короны были получены в 1959 (США), а от Венеры в 1961 (СССР, США, Великобритания). По скорости распространения радиоволн с = 3 × 105 км/сек и по промежутку времени t (сек) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела.
VЭМВ=С=299792458м/с≈3*108 м/с.

     Основная трудность в исследовании небесных тел методами радиолокации связана с тем, что интенсивность радиоволн при радиолокации ослабляется обратно пропорционально четвертой степени расстояния до исследуемого объекта. Поэтому радиолокаторы, используемые для исследования небесных тел, имеют антенны больших размеров и мощные передатчики. Например, радиолокационная установка центра дальней космической связи в Крыму имеет антенну с диаметром главного зеркала 70 м и оборудована передатчиком мощностью несколько сотен кВт на волне 39 см. Энергия, направляемая к цели, концентрируется в луче с углом раскрыва 25′.
    Из радиолокации Венеры, уточнено значение астрономической единицы:    1 а. е.=149 597 870 691 ± 6м ≈149,6 млн.км., что соответствует Р¤=8,7940″. Так проведенная в Советском Союзе обработка данных радиолокационных измерений расстояния до Венеры в 1962-75гг (один из первых удачных экспериментов по радиолокации Венеры провели сотрудники Института радиотехники и электроники АН СССР в апреле 1961г антенной дальней космической связи в Крыму, l= 39 см) дала значение 1 а.е. =149597867,9 ±0,9 км. XVI Генеральная ассамблея Международного астрономического союза приняла в 1976г значение 1 а.е.=149597870±2 км. Путем радиолокации с КА определяется рельеф поверхности планет и их спутников, составляются их карты.

Основные антенны, используемые для радиолокации планет:

   = Евпатория, Крым, диаметр 70 м, l= 39 см;
   = Аресибо, Пуэрто Рико, диаметр 305 м, l= 12.6 см;
   = Голдстоун, Калифорния, диаметр 64 м, l = 3.5 и 12.6 см, в бистатическом режиме прием осуществляется на системе апертурного синтеза VLA.

     С изобретение Квантовых генераторов (лазера) в 1969г произведена первая лазерная локация Луны (зеркало для отражения лазерного луча на Луне установили астронавты США «Ароllо — 11» 20.07.69г), точность измерения составили ±30 см. На рисунке показано расположение лазерных уголковых отражателей на Луне, установленных при полете КА «Луна-17, 21» и «Аполлон — 11, 14, 15». Все, за исключением отражателя Лунохода-1 (L1), работают и сейчас.
Лазерная (оптическая) локация нужна для:
-решение задач космических исследований.
-решение задач космической геодезии.
-выяснения вопроса о движении земных материков и т.д.
   

2) Определение размеров небесных тел.

а) Определение радиуса Земли.
 

АОВ=n=φА-φВ(разность географических широт)
е=АВ — длина дуги вдоль меридиана
т.к. е10=е/n=2πR/3600 ,то  [форм 21].

 Аналогичным способом в 240г до НЭ (рисунок выше) определяет радиус Земли географ Эратосфен.   L/800=3600/7,20

б) Определение размера небесных тел.

Р- параллакс.
ρ — угловой радиус светила
Из прямоугольных треугольников дважды используя формулу R=r. sin ρ (чертёж) получим
 [форм. 22]

III. Закрепление материала

  1. Пример 7 (стр. 51).
  2. CD- «Red Shift 5.1» — Определить на данный момент удаленность нижних (планет земной группы, верхних планет, планет гигантов) от Земли и Солнца в а.е.
  3. Угловой радиус Марса 9,6″, а горизонтальный параллакс 18″. Чему равен линейный радиус Марса? [Из формулы 22 получим 3401,6 км. (фактически 3396 км)].
  4. Каково расстояние между лазерным отражателем на Луне и телескопом на Земле, если импульс возвратился через 2,43545с? [ из формулы R=(c.t)/2 R=3.108.2,43545/2≈365317500,92м≈365317,5км]
  5. Расстояние от Земли до Луны в перигее 363000км, а в апогее 405000км. Определите горизонтальный параллакс Луны в этих положениях. [ из формулы D=(206265″/p)*R отсюда р=(206265″/D)*R; рА=(206265″/405000)*6378≈3248,3″≈54,1′, рП= (206265″/363000)*6378≈3624,1″≈60,4′].
  6. Тест с картинками по главе 2.
  7. Дополнительно, для тех кто сделал — кроссворд.

  1. Планета СС  [Меркурий]
  2. Ближайшая к Земле точка орбиты ИСЗ  [перигей]
  3. Ученый, создатель гелиоцентрической системы мира  [Коперник]
  4. Угол под которым со светила виден R Земли  [параллакс]
  5. Ученый, направивший первым в 1609г телескоп на небо [Галилей]
  6. Сторона горизонта  [север]

Итог:
1) Что такое параллакс?
2) Какими способами можно определить расстояние до тел СС?
3) Что такое базис? Что принимается за базис для определения расстояния до тел СС?
4) Как зависит параллакс от удаленности небесного тела?
5) Как зависит размер тела от угла?
6)  Оценки

Домашнее задание: §11; вопросы и задания стр. 52, стр. 52-53 знать и уметь. Повторить полностью вторую главу. СР№6, ПР№4.
Можно задать по данному разделу подготовить кроссворд, опросчик, реферат об одном из ученых-астрономов или истории астрономии (один из вопросов или направлений).
   Можно предложить практическую работу «Определение размера Луны».
   В период полнолуния, используя две соединенные под прямым углом линейки, определяются видимые размеры лунного диска: поскольку треугольники KCD и КАВ подобны, из теоремы о подобии треугольников следует, что: АВ/СD=KB/KD. Диаметр Луны АВ = (CD.KB)/KD. Расстояние от Земли до Луны берёте из справочных таблиц (но лучше, если сумеете вычислить его сами).

   Если планируется еще один урок по обобщению материала 2-й главы, то можно предложить:
1. Вопросы экспресс опроса
1. Можно ли наблюдать Меркурий по вечерам на востоке?
2. Что такое соединение?
3. Можно ли наблюдать Венеру утром на востоке, а вечером на западе?
4.Угловое расстояние планеты от Солнца равно 55°.Какая это планета, верхняя или нижняя?
5. Что такое конфигурация?
6. Какие планеты могут пройти на фоне диска Солнца?
7. Во время каких конфигураций хорошо видны нижние планеты?
8. Во время каких конфигураций хорошо видны верхние планеты?
9. Что такое сидерический период планеты?
10. Что такое синодический период?
11. Что такое горизонтальный параллакс?
12. Что называется параллактическим смещением?
13. Когда верхняя планета находится в квадратуре?
14. Что такое элонгация?
15. При каком соединении можно наблюдать внутреннюю планету?
2. Также можно дать . КР№2, Тест №2
 

Урок оформила члены кружка «Интернет-технологии» — Леоненко Катя (11кл)

Изменен 10.11.2009 года

«Планетарий»  410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса «Планетарий». «Планетарий» —  подборка тематических статей — предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах.  При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса «Планетарий».
Планетарий 2,67 мб Данный ресурс представляет собой интерактивную модель «Планетарий», которая позволяет изучать звездное небо посредством работы с данной моделью. Для полноценного использования ресурса необходимо установить Java Plug-in
Урок Тема урока Разработки уроков в коллекции ЦОР Статистическая графика из ЦОР
Урок 11 Определение расстояния до тел Солнечной системы и размеров этих тел   Параллакс светила 130,1 кб
Определение расстояния по параллаксу 128,5 кб

Понравилась статья? Поделить с друзьями:
  • Как найти заливку в экселе
  • Как найти футляр от airpods через телефон
  • Как найти выработку на одного работающего формула
  • Как найти водительские права по фамилии
  • Как найти фоновый режим на xiaomi