Как найти расстояние от звезды до земли

Смотря на мерцающее ночное небо, нам кажется, что расстояние до звёзд не такое уж большое. А сами они малюсенькие точки во Вселенной. Однако это лишь видимость.

По правде говоря, маленькими светила не назовёшь, а дистанция между нами, как громадная пропасть. Кроме того, расстояние между самими звездами также неимоверно огромное. Разумеется, для нашего понимания, но не для космического пространства.

В древние времена люди считали, что все небесные тела одинаково удалены друг от друга. Но благодаря изучению космоса, со временем, взгляды изменились.

звёзды в космосе

звёзды в космосе

В чём измеряется расстояние между звездами

Действительно, интересно какими единицами астрономы измеряют расстояние до звезд?
На самом деле, расстояние до звезд, как и до любых других космических тел, измеряется не в привычных нам километрах, а в световых годах или парсеках.

Световой год подразумевает пройденное световым лучом расстояние за один год, при условии, что его скорость равна 300 тысяч км в секунду. Только представьте, один световой год соответствует 9,5 миллионам миллионов километров.

Применение метров и километров при определении дистанций между звездами и расстоянии от Земли до них, очень-очень сложно и проблематично.

Хотя часто степень удалённости астрономических объектов настолько велик, что использование световых лет также неудобно. Поэтому для сокращения используют такую единицу измерения как парсек. Он равняется 3,26 светового года.

Помимо этого, за единицу измерения могут использовать мегапарсек, который в один миллион раз больше обычного (то есть составляет 3 260 000 световых лет).

Летящая звезда

Летящая звезда

Методы и способы определения расстояния до звезд

Всегда и во всём человек ищет свойства, характеристики и отличительные черты. На сегодняшний день, мы способны рассчитать любой отрезок, применяя практические и теоретические приёмы.

А вот как определяют расстояние до звезд? Для этого чаще всего используют метод параллакса.

Параллакс — это изменение видимого положения объекта в отношении удалённого фона, которое напрямую зависит от положения наблюдателя.

В случае определения расстояния до звезд, наблюдение проводят с двух сторон от Солнца на протяжении 6 месяцев друг от друга. В результате полученное смещение светила даёт возможность оценивать дистанцию до него.

Если бы звёздное тело было бы удалено от нашей планеты на 3,26 световых года или на 1 парсек, то его параллакс составлял бы 1 секунду дуги. Но, наверное, к счастью, нет ни одного настолько близко расположенного звёздного тела к нам.

расстояние до звезды

расстояние до звезды

Другие способы определения расстояния до звёзд

Конечно, существуют и другие подходы. Так, например, определить расстояние до звезд можно с помощью фотометрического метода. При нём измеряют освещённость, которая возникает одинаковыми по силе и мощности источниками. Именно полученное значение освещённости обратно пропорциональна квадратам до удалённости тел друг от друга.

Определение расстояний до звезд возможно методом анализа спектра объектов. Для этого проводится исследование химического состава и физических характеристик, а также изучение спектров тела.

Итак, мы узнали в каких единицах измеряется и как определяют расстояние до звёзд.

Как известно, Солнце является самой близкой к нам звездой. Поэтому часто путь к нему указывают в км (149,6 млн км), что в переводе на световые года равно 8,3 световой минуте.

Расстояние между звездами и планетами нашей Солнечной системы имеет внушительные показатели. Например, степень удалённости планеты Плутон от Земли равна приблизительно 5 световым часам, а следующее близлежащее к нам светило (Проксима Центавра) располагается на расстоянии 4,2 световых года.

Представляете, сколько уже известно и доступно для нас, а сколько ещё предстоит узнать про нашу Вселенную!

Проксима Центавра (одна из самых маленьких звёзд)

Проксима Центавра (одна из самых маленьких звёзд)

Расстояния до удаленных небесных объектов, например, звезд, недоступны для прямого измерения. Их вычисляют, опираясь на измеряемые параметры этих объектов, такие как блеск звезды или периодическое изменение ее координат. В настоящее время разработано несколько методов вычисления звездных расстояний, и каждый из них имеет свои границы применимости. Рассмотрим подробнее, как ученые определяют расстояние до звезд.

Использование параллакса

Параллаксом называют смещение наблюдаемого объекта относительно удаленного фона при изменении положения наблюдателя. Зная расстояние между точками наблюдения (базис параллакса) и величину углового смещения объекта, несложно рассчитать расстояние до него. Чем меньше величина смещения, тем дальше находится объект. Межзвездные расстояния огромны, и, чтобы увеличить угол, используют максимально большой базис – для этого измеряют положение звезды в противоположных точках земной орбиты. Этот метод называется звездным годичным параллаксом.

Теперь легко понять, как измеряют расстояние до звезд методом годичного параллакса. Оно вычисляется как одна из сторон треугольника, образованного наблюдателем, Солнцем и удаленной звездой, и равно r = a/sin p, где: r – расстояние до звезды, а – расстояние от Земли до Солнца и p – годичный параллакс звезды. Поскольку параллаксы всех звезд меньше 1 угловой секунды (1’’), синус малого угла можно заменить величиной самого угла в радианной мере: sin p ≈ p’’/206265. Тогда получаем: r = a∙206265/p’’, или, в астрономических единицах, r = 206265/p’’.

Годичный звездный параллакс

Единицы межзвездных расстояний

Понятно, что полученная формула неудобна, как и выражение колоссальных расстояний в километрах или астрономических единицах. Поэтому в качестве общепринятой единицы в звездной астрономии принят парсек («параллакс-секунда»; сокращенно – пк). Это расстояние до звезды, годичный параллакс которой равен 1 секунде. В этом случае формула принимает простой и удобный вид: r = 1/p пк.

Один парсек равен 206265 астрономических единиц или приблизительно 30,8 триллионов километров. В популярной литературе и статьях часто используется такая единица, как световой год – расстояние, которое за год проходят в вакууме электромагнитные волны, не испытывая влияния гравитационных полей. Один световой год равен около 9,5 триллиона километров, или 0,3 парсека. Соответственно, один парсек составляет приблизительно 3,26 светового года.

Точность параллактического метода

Точность измерения параллакса в наземных условиях в настоящее время позволяет определение расстояний до звезд не более 200 парсек. Дальнейшее повышение точности достигается путем наблюдений с использованием космических телескопов.

Спутник "Гайя"

Так, европейский спутник «Гиппарх» (HIPPARCOS, был запущен в 1989 году) позволил, во-первых, увеличить это расстояние до 1000 пк, а во-вторых, существенно уточнить уже известные звездные расстояния. Европейский же спутник «Гайя», или «Гея» (Gaia, запущен в 2013 году), повысил точность измерений еще в на два порядка. С помощью данных «Гайя» астрономы как определяют расстояние до звезд в радиусе 40 килопарсек, так и надеются открыть новые экзопланеты. Космический телескоп им. Хаббла достигает сопоставимой с «Гайя» точности. Вероятно, она близка к предельной для оптических измерений.

Несмотря на это ограничение, тригонометрический годичный параллакс служит калибровочной основой для других методов определения расстояний до звезд.

Фотометрия. Понятие звездной величины

Фотометрия в астрономии занимается измерением интенсивности испускаемого небесным объектом электромагнитного излучения, в том числе и в оптическом диапазоне. На основе фотометрических параметров различными методами определяют расстояние как до звезд, так и до иных удаленных объектов, например, галактик. Одним из основных понятий, используемых в фотометрических методах, является звездная величина, или блеск (обозначается индексом m).

Видимая, или относительная (для оптического диапазона — визуальная) звездная величина измеряется непосредственно по яркости звезды и имеет шкалу, в которой возрастание величины характеризует падение яркости (так сложилось исторически). Например, Солнце имеет видимую звездную величину –26,7m, Сириус имеет величину –1,46m, а ближайшая к Солнцу звезда Проксима Центавра – величину +11,05m.

Проксима Центавра (отмечена кружком)

Абсолютная звездная величина – вычисляемый параметр. Он соответствует видимой звездной величине звезды, если бы эта звезда находилась на расстоянии 10 пк. Этот параметр связывает блеск объекта с расстоянием до него. У приведенных в качестве примера звезд абсолютная величина составляет: у Солнца +4,8m, у Сириуса +1,4m, у Проксимы +15,5m. Расстояние этих звезд соответственно 0,000005, 2,64 и 1,30 парсека. Они различаются по очень важному астрофизическому параметру – светимости.

Спектры и светимость звезд

Астрономы называют светимостью L полную энергию, излучаемую звездой (либо другим объектом) в единицу времени, то есть мощность звезды. Светимость может быть выражена через абсолютную звездную величину, однако, в отличие от нее, не зависит от расстояния.

По спектру излучения, отражающему в первую очередь температуру (от нее зависит цвет), звезды подразделяются на несколько спектральных классов. Звезды одного спектрального класса характеризуются, как правило, одинаковой светимостью (здесь есть исключения, но они выявляются по особенностям спектра). Зависимость «спектр – светимость» (или «цвет – звездная величина») отображена на так называемой Диаграмме Герцшпрунга – Рассела.

Диаграмма Герцшпрунга - Рассела

Эта диаграмма дает возможность по спектральным классам звезд оценивать их абсолютные величины. А поскольку абсолютная величина связана несложным соотношением с расстоянием и с видимой, наблюдаемой величиной, далее нам уже ясно, как определяют расстояние до звезд. Формула имеет следующий вид: lg r = 0,2(m – M)+1. Здесь r – расстояние, m – видимая звездная величина и M – абсолютная величина. Точность такого метода невелика, но позволяет сделать оценку расстояния.

Стандартные свечи в астрономии

Существуют звезды, светимость которых характеризуется однозначным соответствием определенному физическому параметру. Благодаря этому астрономы с хорошей точностью по закону обратных квадратов определяют расстояние до звезд как функцию падения блеска. Чем меньше видимая величина такой звезды, тем дальше расположена сама звезда. К подобным объектам относятся, например, цефеиды и сверхновые типа Ia.

Цефеиды – переменные звезды, светимость которых строго связана с периодом пульсаций. Измерив блеск и период такой звезды, легко вычислить расстояние до нее. Цефеиды – очень яркие звезды. Современные телескопы способны разрешать цефеиды в других галактиках и таким образом установить расстояние до галактики.

Цефеида в галактике Андромеды

Сверхновые типа Ia представляют собой взрывы определенного типа звезд в тесных двойных системах. Взрыв происходит при достижении звездой некоторого критического значения массы и всегда имеет одинаковую светимость и характер спада блеска, что также позволяет вычислить расстояние. Яркость сверхновых бывает сопоставима с яркостью целой галактики, поэтому с их помощью астрономы могут оценивать расстояния на очень больших, космологических масштабах – порядка миллиардов парсек.

Дальше всех

О самой близкой к нам звезде – Проксиме Центавра – знают многие. А вот какая из известных ныне звезд расположена дальше всех?

Самая дальняя звезда, принадлежащая к нашей Галактике, обнаружена не так давно. Она находится за пределами спирального диска Млечного Пути, на внешней границе галактического гало, на расстоянии около 122 700 пк, или 400 000 световых лет, в созвездии Весов. Это красный гигант 18-звездной величины. Конечно, известны и более далекие звезды, однако трудно установить точно их принадлежность к нашей Галактике.

Самая дальняя звезда LS1

Ну, а какая звезда из всех известных во Вселенной наиболее удалена от нас? Она имеет романтическое имя MACS J1149+2223 Lensed Star-1, или просто LS1, и расположена в 9 миллиардах световых лет. Ее обнаружение – это астрономическая удача, поскольку увидеть звезду на таком расстоянии оказалось возможно лишь благодаря событию гравитационного микролинзирования в далекой галактике, в свою очередь линзируемой более близким скоплением галактик. При этом использовался иной метод вычисления расстояния – по космологическому красному смещению. Этим способом определяют расстояния до самых удаленных объектов Вселенной, которые невозможно разрешить на отдельные звезды. И LS1 – один из самых удивительных и красивых примеров того, как определяют расстояния до звезд астрономы.

Наше Солнце справедливо называют типичной звездой, но среди огромного многообразия мира звёзд есть немало таких, которые значительно отличаются от него по физическим характеристикам. Поэтому более полное представление о звёздах даёт такое определение:

звезда — это пространственно обособленный, гравитационно связанный, непрозрачный для излучения космический объект, в котором в значительных масштабах происходили, происходят или будут происходить термоядерные реакции превращения водорода в гелий.

Солнце существует уже несколько миллиардов лет и мало изменилось за это время, поскольку в его недрах всё ещё происходят термоядерные реакции, в результате которых из четырёх протонов (ядер водорода) образуется альфа-частица (ядро гелия, состоящее из двух протонов и двух нейтронов). Более массивные звёзды расходуют запасы водорода значительно быстрее (за десятки миллионов лет). После того как водород израсходован, начинаются реакции между ядрами гелия с образованием устойчивого изотопа углерода-12 и другие реакции, продуктами которых являются кислород и тяжёлые элементы (натрий, сера, магний и т. д.). Таким образом, в недрах звёзд образуются ядра многих химических элементов, вплоть до железа.

У наиболее массивных звёзд прекращение всех возможных термоядерных реакций сопровождается мощным взрывом, который наблюдается как вспышка сверхновой звезды.

Все элементы, которые входят в состав нашей планеты и всего живого на ней, образовались в результате термоядерных реакций, происходивших в звёздах, поэтому звёзды не только самые распространённые во Вселенной объекты, но и самые важные для понимания происходящих в ней явлений и процессов.

Именно термоядерные реакции являются характерной отличительной особенностью звёзд от планет. Поэтому современное определение планеты формулируется так:

планета — небесное тело, обращающееся вокруг звезды или остатка звезды, достаточно массивное, чтобы приобрести сферическую форму под действием собственной гравитации, и своим воздействием удалившее малые тела с орбиты, близкой к собственной, но при этом в её недрах не происходят и никогда не происходили реакции термоядерного синтеза.

Мысли о том, что звёзды — это далёкие солнца, высказывались ещё в глубокой древности. Однако долгое время оставалось неясным, как далеко они находятся от Земли. Ещё Аристотель понимал, что если Земля движется, то, наблюдая положение какой-либо звезды из двух диаметрально противоположных точек земной орбиты, можно заметить, что направление на звезду изменится (рис. 5.12). Это кажущееся (параллактическое) смещение звезды будет служить мерой расстояния до неё: чем оно больше, тем ближе к нам расположена звезда. Но не только самому Аристотелю, но даже значительно позднее Копернику не удалось обнаружить это смещение. Только в конце первой половины XIX в., когда телескопы были оборудованы приспособлениями для точных угловых измерений, удалось измерить такое смещение у ближайших звёзд.

Рис. 5.12. Параллактическое смещение звезды

Рис. 5.13. Годичный параллакс звезды

Годичным параллаксом звезды p называется угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), перпендикулярную направлению на звезду (рис. 5.13).

Расстояние до звезды

D = ,

где a — большая полуось земной орбиты. Заменив синус малого угла величиной самого угла, выраженной в радианной мере, и приняв a = 1 а. е., получим следующую формулу для вычисления расстояния до звезды в астрономических единицах:

D = .

В 1837 г. впервые были осуществлены надёжные измерения годичного параллакса. Русский астроном Василий Яковлевич Струве (1793—1864) провёл эти измерения для ярчайшей звезды Северного полушария Веги (α Лиры). Почти одновременно в других странах определили параллаксы ещё двух звёзд, одной из которых была α Центавра. Эта звезда, которая с территории России не видна, оказалась ближайшей к нам. Даже у неё годичный параллакс составил всего 0,75ʺ. Под таким углом невооружённому глазу видна проволочка толщиной 1 мм с расстояния 280 м. Поэтому неудивительно, что столь малые угловые смещения так долго не могли заметить.

Расстояние до ближайшей звезды, параллакс которой p = 0,75ʺ, составляет D = = 270 000 а. е. Единицами для измерения столь значительных расстояний являются парсек и световой год.

Парсек — это такое расстояние, на котором параллакс звёзд равен 1ʺ. Отсюда и название этой единицы: пар — от слова «параллакс», сек — от слова «секунда». Расстояние в парсеках равно обратной величине годичного параллакса. Например, поскольку параллакс α Центавра равен 0,75ʺ, расстояние до неё равно 1,3 парсека.

Световой год — это такое расстояние, которое свет, распространяясь со скоростью 300 тыс. км/с, проходит за год. От ближайшей звезды свет идёт до Земли свыше четырёх лет, тогда как от Солнца около восьми минут, а от Луны немногим более одной секунды.

1 пк (парсек) = 3,26 светового года = 206 265 а. е. = 31013 км.

К настоящему времени с помощью специального спутника «Гиппаркос» измерены годичные параллаксы более 118 тыс. звёзд с точностью 0,001ʺ.

Таким образом, теперь измерением годичного параллакса можно надёжно определить расстояния до звёзд, удалённых от нас на 1000 пк, или 3000 св. лет. Расстояния до более далёких звёзд определяются другими методами.

После того как астрономы получили возможность определять расстояния до звёзд, выяснилось, что звёзды, находящиеся на одинаковом расстоянии, могут отличаться по видимой яркости (т. е. по блеску). Стало очевидно, что звёзды имеют различную светимость. Солнце кажется самым ярким объектом на небе только потому, что оно находится гораздо ближе всех остальных звёзд.

Светимостью называется полная энергия, излучаемая звездой в единицу времени.

Она выражается в абсолютных единицах (ваттах) или в единицах светимости Солнца.

В астрономии принято сравнивать звёзды по светимости, рассчитывая их блеск (звёздную величину) для одного и того же стандартного расстояния — 10 пк.

Видимая звёздная величина, которую имела бы звезда, если бы находилась от нас на расстоянии D0 = 10 пк, получила название абсолютной звёздной величины M.

Рассмотрим, как можно определить абсолютную звёздную величину M, зная расстояние до звезды D (или параллакс — p) и её видимую звёздную величину m. Напомним, что блеск двух источников, звёздные величины которых отличаются на единицу, отличается в 2,512 раза. Для звёзд, звёздные величины которых равны m1 и m2 соответственно, отношение их блесков I1 и I2 выражается соотношением:

I1 : I2 = .

Для видимой и абсолютной звёздных величин одной и той же звезды отношение блесков будет выглядеть так:

I : I0 = 2,512M – m,

где I0 — блеск этой звезды, если бы она находилась на расстоянии D0 = 10 пк.

В то же время известно, что блеск звезды меняется обратно пропорционально квадрату расстояния до неё. Поэтому

I : I0 = : D2.

Следовательно,

2,512M – m = : D2.

Логарифмируя это выражение, находим

0,4(M – m) = lg 102 – lg D2,

или

M = m + 5 – 5 lg D,

или

M = m + 5 + lg p.

Абсолютная звёздная величина Солнца M = 5m. Иначе говоря, с расстояния 10 пк наше Солнце выглядело бы как звезда пятой звёздной величины.

Зная абсолютную звёздную величину звезды M, легко вычислить её светимость L. Считая светимость Солнца L = 1, получаем:

L = 2,5125 – M,

или

lg L = 0,4(5 – M).

По светимости (мощности излучения) звёзды значительно отличаются друг от друга: некоторые излучают энергию в сотни тысяч раз больше, чем Солнце, другие — в десятки тысяч раз меньше. Абсолютные звёздные величины звёзд наиболее высокой светимости (гигантов и сверхгигантов) достигают M = –9m, а звёзды-карлики, обладающие наименьшей светимостью, имеют абсолютную звёздную величину M = +17m.

Всю информацию о звёздах можно получить только на основе исследования приходящего от них излучения. Наблюдая звёзды, можно заметить, что они имеют различный цвет. Хорошо известно, что цвет любого нагретого тела, в частности звезды, зависит от его температуры. Более полное представление об этой зависимости даёт изучение звёздных спектров. Для большинства звёзд это спектры поглощения, в которых на фоне непрерывного спектра наблюдаются тёмные линии.

Температуру наружных слоёв звезды, от которых приходит излучение, определяют по распределению энергии в непрерывном спектре (рис. 5.14), а также по интенсивности разных спектральных линий. Длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. По мере увеличения температуры положение максимума смещается от красного к фиолетовому концу спектра. Количественно эта зависимость выражается законом Ви́на:

λmax = ,

где λmax — длина волны (в см), на которую приходится максимум излучения, а T — абсолютная температура.

Рис. 5.14. Распределение энергии в непрерывном спектре Солнца и чёрного тела при различных температурах

Как оказалось, эта температура для различных типов звёзд заключена в пределах от 2500 до 50 000 К. Изменение температуры меняет состояние атомов и молекул в атмосферах звёзд, что отражается в их спектрах. По ряду характерных особенностей спектров звёзды разделены на спектральные классы, которые обозначены латинскими буквами и расположены в порядке, соответствующем убыванию температуры: O, B, A, F, G, K, M.

У наиболее холодных (красных) звёзд класса M в спектрах наблюдаются линии поглощения некоторых двухатомных молекул (например, оксидов титана, циркония и углерода). Примерами звёзд, температура которых около 3000 К, являются Антарес и Бетельгейзе.

В спектрах жёлтых звёзд класса G с температурой около 6000 К, к которым относится и Солнце, преобладают линии металлов: железа, натрия, кальция и т. д. По температуре, спектру и цвету сходна с Солнцем звезда Капелла.

Для спектров белых звёзд класса A, которые имеют температуру около 10 000 К (Вега, Денеб и Сириус), наиболее характерны линии водорода и множество слабых линий ионизованных металлов. В спектрах наиболее горячих звёзд появляются линии нейтрального и ионизованного гелия.

Различия звёздных спектров объясняются отнюдь не разнообразием их химического состава, а различием температуры и других физических условий в атмосферах звёзд. Изучение спектров показывает, что преобладают в составе звёздных атмосфер (и звёзд в целом) водород и гелий. На долю всех остальных химических элементов приходится не более нескольких процентов.

Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звёзд, но и определить скорость их движения. Если источник излучения (звезда или любой другой объект) приближается к наблюдателю или удаляется от него со скоростью v, то наблюдатель будет регистрировать изменение длины волны принимаемого излучения. В случае уменьшения расстояния между наблюдателем и звездой длина волны уменьшается и соответствующая линия смещается к сине-фиолетовому концу спектра. При удалении звезды длина волны излучения увеличивается, а линия смещается в красную его часть. Это явление получило название эффекта Доплера, согласно которому зависимость разности длин волн от скорости источника по лучу зрения v и скорости света c выражается следующей формулой:

= ,

где λ0 — длина волны спектральной линии для неподвижного источника, а λ — длина волны в спектре движущегося источника.

Эффект Доплера наблюдается в оптической и других областях спектра и широко используется в астрономии.

Полученные данные о светимости и спектрах звёзд уже в начале XX в. были сопоставлены двумя астрономами — Эйнаром Герцшпрунгом (Голландия) и Генри Расселлом (США) — и представлены в виде диаграммы, которая получила название «диаграмма Герцшпрунга—Расселла». Если по горизонтальной оси отложены спектральные классы (температура) звёзд, а по вертикальной — их светимости (абсолютные звёздные величины), то каждой звезде будет соответствовать определённая точка на этой диаграмме (рис. 5.15). В результате обнаруживается определённая закономерность в расположении звёзд на диаграмме — они не заполняют всё её поле, а образуют несколько групп, названных последовательностями. Наиболее многочисленной (примерно 90% всех звёзд) оказалась главная последовательность, к числу звёзд которой принадлежит наше Солнце (его положение отмечено на диаграмме кружочком). Звёзды этой последовательности отличаются друг от друга по светимости и температуре, и взаимосвязь этих характеристик соблюдается весьма строго: самую высокую светимость имеют наиболее горячие звёзды, а по мере уменьшения температуры светимость падает. Красные звёзды малой светимости получили название красных карликов. Вместе с тем на диаграмме существуют и другие последовательности, где подобная закономерность не соблюдается. Особенно заметно это среди более холодных (красных) звёзд: помимо звёзд, принадлежащих главной последовательности и потому имеющих малую светимость, на диаграмме представлены звёзды высокой светимости, которая практически не меняется при изменении их температуры. Такие звёзды принадлежат двум последовательностям (гиганты и сверхгиганты), получившим эти названия вследствие своей светимости, которая значительно превосходит светимость Солнца. Особое место на диаграмме занимают горячие звёзды малой светимости — белые карлики.

Рис. 5.15. Диаграмма «спектр — светимость»

Лишь к концу XX в., когда объём знаний о физических процессах, происходящих в звёздах, существенно увеличился и стали понятными пути их эволюции, удалось найти теоретическое обоснование тем эмпирическим закономерностям, которые отражает диаграмма «спектр — светимость».

Какова светимость звезды ξ Скорпиона, если её звёздная величина 3m, а расстояние до неё 7500 св. лет?

Дано:

m = 3m

D = 7500 св. лет

Решение:

lg L = 0,4(5 – M).

M = m + 5 – 5 lg D, где D = 7500 : 3,26 = 2300 пк.

Тогда M = 3 + 5 – 5 lg 2300 = –8,8.

lg L = 0,4[5 – (–8,8)] = 5,52.

L — ?

Отсюда L = 330 000.

Ответ: L = 330 000.

Вопросы1. Как определяют расстояния до звёзд? 2. От чего зависит цвет звезды? 3. В чём главная причина различия спектров звёзд? 4. От чего зависит светимость звезды?

Упражнение 181. Во сколько раз Сириус ярче, чем Альдебаран; Солнце ярче, чем Сириус? 2. Одна звезда ярче другой в 16 раз. Чему равна разность их звёздных величин? 3. Параллакс Веги 0,11ʺ. Сколько времени идёт свет от неё до Земли? 4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе? 5. Во сколько раз звезда 3,4 звёздной величины слабее, чем Сириус, имеющий звёздную величину –1,6? Чему равны абсолютные величины этих звёзд, если расстояние до каждой составляет 3 пк?

Наше Солнце справедливо называют типичной звездой. Но среди
большого и разнообразного числа звёзд есть немало таких, которые значительно
отличаются от него по своим физическим характеристикам и химическому составу.
Поэтому полное представление о звёздах даст такое определение:

Звезда — это массивный газовый шар, излучающий свет и
удерживаемый в состоянии равновесия силами собственной гравитации и внутренним
давлением, в недрах которого происходят (или происходили ранее) реакции
термоядерного синтеза.

Мысли о том, что звёзды — это далёкие солнца, высказывались
ещё в глубокой древности. Но из-за колоссальных расстояний до них диски звёзд
не видны даже в самые мощные телескопы. Поэтому, чтобы найти возможность
сравнивать звёзды между собой и с Солнцем, необходимо было придумать способы
определения расстояний до них.

Ещё Аристотель предполагал, что если Земля движется вокруг
Солнца, то, наблюдая за звездой из двух диаметрально противоположных точек
земной орбиты, можно заметить изменение направления на звезду — её параллактическое
(то есть кажущееся) смещение.

Такая же идея измерения расстояний была предложена и Николаем
Коперником после опубликования им гелиоцентрической системы мироустройства.
Однако ни Копернику, ни тем более Аристотелю не удалось обнаружить это
смещение.

Лишь к середине XIX века, когда на телескопы стали ставить оборудование для
точного измерения углов, удалось измерить такое смещение у ближайших звёзд. Как
удалось установить, кажущееся перемещение более близкой звезды на фоне очень
далёких звёзд происходит по эллипсу с периодом в один год и отражает движение
наблюдателя вместе с Землёй вокруг Солнца. Этот небольшой эллипс, который
описывает звезда, называется параллактическим эллипсом.

В угловой мере его большая полуось равна величине угла, под
которым со звезды видна большая полуось земной орбиты, перпендикулярная
направлению на звезду. Этот угол называется годичным параллаксом и
обозначается греческой буквой π или латинской буквой р.

Зная годичное параллактическое смещение звезды, можно легко
определить расстояние до неё:

В записанной формуле а — это
средний радиус земной орбиты.

Если учесть, что годичные параллаксы звёзд измеряются десятитысячными
долями секунды, а большая полуось земной орбиты равна одной астрономической
единице, то можно получить формулу для вычисления расстояния до звезды в
астрономических единицах:

Первые надёжные измерения годичного параллакса были
осуществлены почти одновременно в Германии, России и Англии в 1837 году.

В России первые измерения годичного параллакса были проведены
Василием Яковлевичем Струве для яркой звезды Северного полушария Веги. Давайте
по его данным определим расстояние до этой звезды.

Согласитесь, что для измерения расстояний до звёзд
астрономическая единица слишком мала. Даже ближайшая к нам звезда —
альфа-Центавра — расположена более чем в 273,5 тысячах а. е. Поэтому для
удобства определения расстояний до звёзд в астрономии применяется специальная
единица длины — парсек (сокращённо пк), название
которой происходит от двух слов — «параллакс» и «секунда».

Парсек — это расстояние, с которого средний радиус
земной орбиты, перпендикулярный лучу зрения, виден под углом в одну угловую
секунду:

1 пк
= 206 265 а. е. =30,8586 трлн км.

Исходя из определения, расстояние в парсеках равно обратной
величине годичного параллакса:

Вернёмся к нашей задаче и определим расстояние до Веги в
парсеках, воспользовавшись полученным нами уравнением.

Также, помимо парсека, в астрономии используется ещё одна
внесистемная единица измерения расстояний — световой год.

Световой год — это расстояние, которое свет,
распространяясь в вакууме, проходит за один год:

1 пк
= 3,26 св. г. = 206 265 а. е. = 3 ∙ 1013 км.

В 1989 году Европейским космическим агентством был запущен
спутник «Гиппаркос». За 37 месяцев своей работы ему удалось
измерить годичные параллаксы более чем миллиона звёзд. При этом точность
измерений для более ста тысяч из них составила одну угловую миллисекунду.

Однако после того, как астрономы научились определять
расстояния до звёзд, возникла ещё одна проблема. Оказалось, что звёзды,
находящиеся примерно на одинаковом расстоянии от Земли, могут отличаться друг
от друга по видимой яркости (блеску). При этом видимый блеск не характеризует
реального излучения звезды. Например, Солнце нам кажется самым ярким объектом
на небе лишь потому, что оно находится гораздо ближе к Земле, чем остальные
звёзды. Поэтому для сравнения истинного блеска звёзд необходимо было определять
их звёздную величину на определённом одинаковом расстоянии от Земли. За такое
одинаковое (или стандартное) расстояние принято 10 пк. Видимая звёздная величина, которую
имела бы звезда, если бы находилась от нас на расстоянии 10 пк,
называется абсолютной звёздной величиной.

Почему в качестве эталонного расстояния было выбрано 10
парсек? Да для простоты расчётов. Итак, предположим, что видимая звёздная
величина звезды на некотором расстоянии D равна т а её блеск — I.

Напомним, что блеск двух источников, звёздные величины
которых отличаются на единицу, отличаются в 2,512 раза. То есть для двух звёзд,
звёздные величины которых равны т1 и т2
соответственно, отношение их блесков выражается соотношением:

Тогда по определению видимая звёздная величина звезды с
расстояния в 10 пк будет равна абсолютной звёздной
величине М. Если обозначить блеск звезды на этом расстоянии через I0, то для
видимой и абсолютной звёздных величин одной и той же звезды предыдущее
уравнение будет выглядеть так:

В тоже время из физики известно, что блеск меняется обратно
пропорционально квадрату расстояния:

Подставим данное выражение в предыдущее уравнение, при этом
учтём, что :

Теперь прологарифмируем полученное выражение:

И упростим его:

Если учесть, что расстояние до звезды обратно пропорционально
её годичному параллаксу, то получим формулу, по которой можно вычислить
абсолютную звёздную величину близко расположенных к нам звёзд

Теперь давайте по полученной формуле рассчитаем абсолютную
звёздную величину нашего Солнца. Для этого учтём, что его видимая звёздная
величина равна–26,8т, а среднее расстояние до него составляет
одну астрономическую единицу

То есть наше Солнце выглядит слабой звёздочкой почти пятой
звёздной величины.

Зная абсолютную звёздную величину звезды, можно вычислить её
действительное общее излучение или светимость.

Светимостью называют полную энергию, излучаемую
звездой за единицу времени. Светимость звезды можно выразить в ваттах, но чаще
её выражают в светимостях Солнца.

Используя формулу Погсона, можно записать соотношение между светимостями
и абсолютными звёздными величинами какой-либо звезды и Солнца:

Данную формулу можно переписать, если учесть, что светимость
Солнца принята за единицу, а его абсолютна звёздная величина равна 4,8m:

По светимости (то есть мощности излучения) звёзды значительно
отличаются друг от друга. Так мощность излучения некоторых звёзд-сверхгигантов
больше мощности излучения Солнца в 330 тыс. А некоторые звёзды-карлики,
обладающие наименьшей светимостью, излучают свет в 480 тыс. раз слабее нашего
Солнца.

Расстояния звезд

Рис. 1. Определение параллаксов звезд (размеры орбиты Земли сильно преувеличены).

Рис. 2. Темная туманность.

Рис. З. Участок Млечного Пути.

Рис. 4. Схема строения нашей звездной системы (Галактики).

Рис.5. Туманность в созвездии Андромеды — далекая звездная система.

Рис. 6. Зависимость между наблюдаемыми скоростями удаления внегалактических туманностей и их расстояниями.

Тот способ, которым определяются расстояния до Луны, Солнца и других тел солнечной системы (см. «Наука и жизнь» № 6, 1938) совершенно неприменим для измерения расстояний до звезд. Звезды настолько далеки от нас, что направления к какой-нибудь из них с двух противоположных точек земного шара практически параллельны между собою, и самыми точными инструментами нельзя установить, где эти направления пересекаются. Все базисы, доступные нам на Земле, слишком малы для измерения звездных расстояний, — для этой цели необходимо иметь базис гораздо большей длины. Действительно, снимки одного и того же участка неба, сделанные на двух возможно более далеких друг от друга обсерваториях, оказываются совершенно тождественными.

Но, двигаясь вокруг Солнца, Земля проходит большой путь в пространстве; летом она находится в противоположной стороне от Солнца по отношению к тому месту, где она была зимой. В июне и декабре мы смотрим на небо с двух точек, лежащих на расстоянии в 300 млн. км одна от другой.

Смотря из окна движущегося поезда, мы видим, что далекие предметы как бы стоят на месте, а близкие «бегут» в направлении, противоположном движению поезда. Видимые движения должны наблюдаться и у звезд; вследствие движения Земли каждая звезда должна описывать в течение года маленький эллипс (тем больший, чем меньше расстояние до нее). Однако таких движений звезд не наблюдалось, и еще Коперник, излагая свою теорию строения мира, указывал, что мы не замечаем их из-за больших расстояний звезд.

Астрономы последующих поколений искали видимые движения звезд; телескопы совершенствовались, но все попытки определить расстояния звезд от нас оставались безуспешными.

Около 1725 г. английский астроном Брадлей укрепил неподвижно в стене дома телескоп так, что ежедневно через поле зрения последнего проходила звезда гамма Дракона. Брадлей очень точно определял положение звезды и вскоре заметил видимые смещения ее. Но Дальнейшие наблюдения принесли разочарование: Брадлей открыл не параллакс звезды, а совершенно другое явление — аберрацию света, т. е. видимое отклонение светового луча, происходящее вследствие сложения скорости движения Земли со скоростью света. Было найдено физическое доказательство движения Земли, но расстояния звезд оставались неизвестными.

Очевидно, что гораздо легче заметить смещение звезды, если вблизи нее видна другая звезда, значительно более далекая. Пусть (рис. 1) звезда S1 значительно ближе к нам, чем звезда S2. Когда Земля находится в точке Т1, мы будем видеть обе звезды в одном направлении. Но через полгода Земля перейдет в Т2, на расстояние 300 млн. км от Т1, и звезды S1 и S2 как бы разойдутся. Измерив видимое расстояние между звездами, т. е. угол S1T2S2, и считая, что звезда S2 очень далека и не испытывает видимого смещения, можно найти угол, под которым с звезды S1 виден радиус орбиты Земли (параллакс звезды), а по нему и расстояние звезды от Земли (напомним, что для Солнца, Луны и планет параллаксом назывался угол, под которым с небесного тела виден радиус земного шара). По такому пути и пошли в дальнейшем астрономы: они стали искать относительное смещение двух звезд, одну из которых по тем или иным соображениям можно было считать близкой к Солнцу.

Сто лет назад работы астрономов, наконец, увенчались успехом: впервые удалось измерить расстояния до звезд. Почти одновременно 3 астронома — Бессель, Гендерсон и В. Струве (первый директор Пулковской обсерватории) — опубликовали найденные ими параллаксы звезд. Наибольший параллакс был найден Гендерсоном для звезды альфа Центавра (находящейся в южном полушарии неба), которая и до сих пор считается ближайшей к нам звездой. Но и ее параллакс равен всего 0″,76; видимое смещение ее за полгода равно 1»,52 или углу, под которым шарик диаметром в 1 мм виден с расстояния около 140 м. Параллаксы других звезд еще меньше. Становится понятным, почему так долго их не могли обнаружить.

Параллаксу в 0″,76 соответствует расстояние, в 270 тыс. раз большее расстояния от Земли до Солнца, или примерно 4 • 1013 км. Выражать такие расстояния в километрах уже неудобно, слишком мала и «астрономическая единица» — среднее расстояние от Земли до Солнца; пришлось вводить новые единицы. Одна из них «парсек» (от слов «параллакс-секунда») есть расстояние, соответствующее параллаксу в 1″. Парсек равен примерно 3,1 • 1013 км.

Свет проходит в секунду 300 тыс. км, следовательно, за год он пройдет 9,5 • 1012 км.

Расстояние это тоже принято за единицу измерения и названо «световым годом». Мы можем сказать, что ближайшая к нам звезда — альфа Центавра — находится на расстоянии 1,3 парсека, или 4,3 световых года. Наблюдая эту звезду, мы видим ее такой, какой она была 4 с лишним года назад.

За первыми определениями параллаксов звезд последовали все новые и новые; особенно успешно пошло дело после развития звездной фотографии. Сейчас звездные параллаксы определяются исключительно фотографическим методом.

Казалось бы, что достаточно сделать два снимка звезды, которую есть основание считать близкой к нам, с интервалом в полгода, определить ее положение относительно слабых, значительно более далеких звезд, чтобы, сравнив эти два снимка, найти параллакс. Однако дело обстоит более сложно. Звезды, которые мы называли неподвижными, несутся в пространстве с большими скоростями, и движение их незаметно нам лишь потому, что они очень далеки от нас. Далее, Земля, кроме вращения вокруг Солнца, движется вместе с ним в пространстве, что также вызывает видимое смещение близких звезд. Для выделения параллактического смещения звезды необходимы по меньшей мере три снимка, сделанные через полгода один после другого. На практике же в течение года делается не три, а больше снимков, с помощью которых и находится параллакс звезды.

В настоящее время удалось определить расстояния примерно 4000 звезд. Чем дальше звезда, чем меньше ее параллакс, тем менее точно удается измерить ее расстояние. Современные методы дают возможность определять параллаксы вплоть до 0″,005;
меньшие величины уже нельзя считать реальными, они меньше возможных ошибок наблюдения. Параллаксу 0″,005 соответствует расстояние в 200 парсек или 650 световых лет; свет, дошедший до нас в 1938 г., вышел от такой звезды в 1288 г.

Но это только самые близкие к нам звезды, наши «соседи». Огромное большинство звезд несравненно более далеки. Как же измерили расстояния до них, если обычный, так называемый тригонометрический метод уже не в состоянии дать ответ?

Определение расстояний по яркости звезд

Освещение уменьшается пропорционально квадрату расстояния от источника света: лампа в 1000 свечей на расстоянии в 10 м освещает так же, как лампа в 10 свечей на расстоянии 1 м. Пользуясь этим законом, мы можем найти действительную яркость звезд, если известно их расстояние до нас. Условились принимать за меру яркости звезды ту видимую яркость, которую звезда имела бы при наблюдении ее с расстояния в 10 парсек, или 32,6 световых лет. Яркость эту называют «абсолютной величиной»1 звезды. Так, «абсолютная величина» нашего Солнца 4,85 звездной величины, т. е. при удалении от него на 10 парсек оно будет видно как слабая звездочка 4,85 величины (самые слабые, еще видимые глазом звезды — 6-й величины). Если бы мы знали абсолютные величины звезд, мы могли бы по их видимым яркостям определять расстояния.

Оказалось, что такая задача разрешима. Для всех звезд, параллаксы которых измерены, можно найти абсолютные величины. Было сделано сопоставление абсолютных величин звезд и их спектров; установлено, что интенсивность некоторых фраунгоферовых линий в спектре зависит от абсолютной величины звезды. Астрономы получили в свои руки могучее орудие; сфотографировав спектр звезды, можно найти ее абсолютную величину, а сравнив эту последнюю с видимой, — найти расстояние звезды.

Например, из измерения спектра и яркости звезды получается, что ее яркость в миллион раз слабее той, которую она имела бы, если бы находилась на расстоянии 10 парсек. Отсюда легко найти расстояние звезды: оно равно 10 • √1 000 000 = 10 000 парсек, или 32 600 световых лет. Параллакс ее равен 0″,0001 (величина, которая непосредственно не может быть измерена). Такой способ, способ «спектроскопических параллаксов», годен для измерения каких угодно больших расстояний, лишь бы силы света звезды хватило для получения достаточно хорошего снимка спектра, пригодного для определения ее абсолютной яркости. Современные большие телескопы позволяют фотографировать очень слабые звезды.

Способ «спектроскопических параллаксов» хорош еще тем, что ошибка, полученная при определении расстояния, всегда около 20% и не зависит от самого расстояния, между тем как тригонометрические параллаксы определяются тем хуже, чем дальше звезда: при параллаксе 0″,5 ошибка в расстоянии будет порядка 2—5%, при параллаксе 0″,01 она может быть в 200%.

В настоящее время известны спектроскопические параллаксы многих тысяч звезд, на основании их сделан ряд весьма существенных выводов о строении нашего звездного мира.

Но работы последнего десятилетия принесли некоторое разочарование и заставили относиться к спектроскопическим параллаксам с большей осторожностью. Дело в том, что закон ослабления света пропорционально квадрату расстояния от его источника справедлив лишь в том случае, если пространство совершенно прозрачно и свет в нем не поглощается. Давно было известно существование областей, занятых темной, несветящейся материей, видимых на фоне более далеких звезд. Это так называемые темные туманности (рис. 2). Сейчас установлено, что темная материя имеется и во всем пространстве, и она ослабляет свет, доходящий к нам от звезд. Очень трудно учесть, насколько ослаблен свет звезды поглощением в темной материи, и всегда есть опасность недооценить или переоценить расстояние до нее. Поэтому при определении расстояний по абсолютной яркости всегда нужно тщательно учесть возможное влияние поглощения света.

Наша звездная система

Остановимся очень кратко на главных результатах, полученных из исследования расстояний до звезд.

Все знают полосу Млечного Пути — слабое сияние, пересекающее небо и особенно хорошо видимое у нас в ясные осенние и зимние вечера. Если навести на Млечный Путь телескоп, то можно убедиться, что это слабое сияние — свет многих миллионов звезд, расположенных настолько тесно, что для глаза они сливаются в общую массу (рис. 3).

Уже из одного вида Млечного Пути можно заключить, что звезды расположены в пространстве не равномерно и не беспорядочно, а по какому-то определенному закону.

Определение расстояний до звезд, с учетом межзвездного поглощения света и с применением статистических методов исследования, дало возможность построить картину окружающей нас звездной вселенной.

Несколько миллиардов звезд, в число которых входит и наше Солнце, образуют в пространстве как бы «чечевицу», диаметр которой раз в 5 больше ее толщины (рис. 4). Размеры чечевицы огромны, — диаметр ее около 30 000 парсек; иными словами, свет идет от одного ее края до другого примерно 100 000 лет. Смотря по направлению плоскости чечевицы, мы видим значительно больше звезд, чем в перпендикулярном направлении, — этим и объясняется полоса Млечного Пути. Солнце лежит не в центре системы, а примерно на 2/3 ее радиуса.

Центр системы расположен в направлении к созвездию Стрельца, там, где видны наиболее яркие «звездные облака» Млечного Пути. Кроме звезд, имеется много облаков темной несветящейся материи, видимой как темные туманности. Но если вблизи такого скопления материи расположена достаточно яркая звезда, — материя отражает ее свет или начинает светиться сама, и вместо темной туманности будет видна светлая. Такова, например, хорошо известная туманность в созвездии Ориона.

Коперник 400 лет назад доказал, что наша Земля лишь одна из планет; теперь мы знаем, что Солнце — одна из многих миллиардов звезд. Естественно возникает вопрос: существует ли только одна наша звездная система или есть много других таких же звездных групп.

Уже давно были известны небесные объекты, сходные по форме с Млечным Путем (как мы его себе представляем), — так называемые спиральные туманности. Самая большая и яркая из них находится в созвездии Андромеды (рис. 5). Смотря на Млечный Путь извне и издалека, мы видели бы его похожим на туманность Андромеды. Но не случайное ли это сходство? Подобна ли туманность Андромеды Млечному Пути?

Еще лет 20 назад такой вопрос вызывал большие споры. Чтобы ответить на него, надо знать размеры туманности Андромеды, что требует знания расстояния до нее.

Сильные телескопы показывают, что туманность Андромеды состоит из звезд, как
и многие другие подобные ей по виду туманности. Но быть может это тесные группы звезд, входящие в нашу звездную систему?

Звездные маяки

Давно известны звезды, меняющие свою яркость; такие звезды называются переменными. Причины изменения яркости переменных звезд различны. Среди них есть группа звезд, меняющих яркость строго периодически; причина этого связана с изменениями температуры и радиуса звезды; такие звезды названы цефеидами. Они-то и оказались теми «маяками», с помощью которых удалось определить расстояние до туманности Андромеды.

30 лет назад на Гарвардской обсерватории в Америке было сделано очень важное открытие: было установлено, что между периодом изменения яркости цефеид и их абсолютными яркостями существует определенная зависимость.

Наблюдая цефеиду, легко можно установить период изменения ее блеска и по нему найти ее абсолютную яркость. Сравнивая абсолютную величину с видимой, можно найти расстояние до звезды. Этот способ может быть применен и к слабым звездам, получить спектры которых для определения по ним абсолютных величин уже нельзя.

Среди звезд, видимых в туманности Андромеды и в других наиболее ярких туманностях, нашлось довольно много цефеид. Сравнение их с цефеидами в нашей звездной системе показало, что расстояние до туманности Андромеды около 700 000 световых лет. И отсюда определилась и ее величина: диаметр туманности Андромеды того же порядка, что и нашего Млечного Пути, она должна включать в себя миллиарды звезд.

Другие спиральные туманности находятся от нас дальше, размеры их того же порядка. Следовательно, наша звездная система не одна, есть очень много таких же звездных систем, расположенных далеко от нас.

Нашу звездную систему, систему Млечного Пути, часто называют Галактикой, от греческого слова галактос—молоко. Поэтому далекие звездные системы получили название «внегалактических туманностей», т. е. туманностей, лежащих за пределами нашей звездной системы. Часто называют их далекими галактиками.

Но цефеиды найдены далеко не во всех спиральных туманностях, зато во многих из них были замечены вспышки «новых» звезд. «Новая» звезда — вспышка слабой звездочки, происходящая от каких-то неизвестных пока причин. Вспыхнув, звезда светит ярко довольно короткое время, а затем ее свет снова ослабевает. Исследования «новых» звезд, вспыхивающих в нашей звездной системе, показали, что наибольшая абсолютная яркость их всегда примерно одинакова; такую же абсолютную яркость имели и «новые» звезды, вспыхивавшие в туманности Андромеды. Мы имеем право считать, что все процессы происходят так же и в других туманностях, следовательно, «новые» звезды в момент вспышки должны иметь ту же абсолютную яркость. «Новые» звезды тоже дают способ измерения расстояний далеких звездных систем; результаты определений расстояний по цефеидам и «новым» звездам сходятся достаточно хорошо.

Есть и еще одна возможность оценки расстояний. Самые яркие звезды в нашей и других системах должны быть примерно одинаковы. Следовательно, сравнив самые яркие звезды в двух туманностях, можно сказать, которая из них дальше и во сколько раз; обычно, во избежание ошибок берется 5—10 наиболее ярких звезд туманности, и оценка расстояния делается по ним. Так удалось узнать расстояния до других звездных систем и выяснить их природу и строение. Оказалось, что они тоже весьма сходны с системой Млечного Пути.

Все три описанных метода таят в себе, однако, некоторую опасность. Пространство между звездными системами света не поглощает, но внутри других звездных систем есть такая же темная материя, как и в нашей системе; свет цефеиды или «новой звезды» может быть из-за этого ослаблен, что приведет к преувеличенной оценке расстояния.

Статистические методы

К сожалению, выделить отдельные звезды можно лишь примерно в 10 самых близких туманностях, остальные же туманности, которых известно сейчас много тысяч, слишком далеки. Для определения их расстояний приходится пользоваться значительно менее точными статистическими методами.

По исследованию более близких туманностей установлено, что размеры их и полная абсолютная яркость колеблются сравнительно немного. Считая, что наблюдаемая туманность имеет средние размеры и среднюю яркость, можно по ее видимым размерам и яркости оценить расстояние.

Оценка расстояния по видимым размерам туманности менее точная, чем по видимой яркости; границы туманностей весьма неопределенны. Для более близких туманностей все же пользуются для контроля обоими способами. Расстояния очень далеких туманностей могут быть оценены лишь по видимой яркости этих туманностей.

Нельзя считать, что все внегалактические туманности построены совершенно одинаково, — и размеры и видимая яркость отдельной туманности могут отличаться от средних величин. Оценка расстояния до отдельной туманности может быть в значительной степени ошибочна, но средний результат для большого числа объектов будет близок к истине. В данное время приходится для далеких звездных систем удовольствоваться этим.

«Красное смещение»

Спектр звезды содержит многочисленные темные линии, называемые фраунгоферовыми, которые указывают на присутствие в атмосфере звезды известных химических элементов.

Каждая линия занимает в спектре определенное место, зависящее от длины ее волны. Но место линии может меняться под влиянием разных обстоятельств, из которых наиболее известное и хорошо изученное есть движение звезды по лучу зрения — к нам или от нас. По закону Допплера-Физо линии, соответствующие отдельным химическим элементам, сместятся к фиолетовому концу спектра, если звезда движется к нам, и к красному — при удалении от нас. По величине смещения можно найти скорость звезды относительно наблюдателя.

Спектр внегалактической туманности представляет собой сумму спектров входящих в нее звезд; движение, определенное по спектру туманности, будет движением системы как целого, движением ее центра тяжести. Исследование спектров туманностей показало удивительную вещь: линии в них всегда сильно смещены к красному концу, и если считать, что это смещение вызвано движением, то все внегалактические туманности удаляются от нас c большими скоростями.

В 1929 г. астроном Геббл обнаружил еще более удивительное обстоятельство: смещение линий каждой туманности пропорционально ее расстоянию от нас, далекие туманности имеют бо́льшие (рис. 6) смещения. Таким образом, определив смещение линий в спектре туманности, можно, воспользовавшись результатом Геббла, вычислить ее расстояние. В настоящее время известны у туманностей смещения, соответствующие расстояниям примерно в 100 и 200 млн. световых лет.

Чем вызывается это «красное смещение», пока еще не решено наукой. Несомненно, что здесь, кроме движения, замешаны еще другие влияния, — быть может свойства самого пространства. Но если только для очень далеких внегалактических туманностей пропорциональность наблюдаемого смещения расстоянию не нарушается, явление «красного смещения» дает средство для измерения расстояний предельно далеких звездных систем, свет от которых идет до нас сотни миллионов лет. Световой луч, давший на фотопластинке изображение самой далекой из исследованных внегалактической туманности в 1938 г., вышел из нее тогда, когда на Земле еще не существовало человека.

Комментарии к статье

1 Под «величиной» звезды в астрономии понимается ее яркость, а не линейные размеры.

Понравилась статья? Поделить с друзьями:
  • Как найти бокс от наушников аирподс
  • Как найти номер блютуз
  • Сухая солярка как исправить
  • Как найти плейлист в вк по песням
  • Сталкер тень чернобыля как найти экзоскелет