Как найти расстояние между зарядами
Под точечными зарядами понимают тела, имеющие электрический заряд, линейными размерами которых можно пренебречь. Расстояние между ними можно измерить измерять непосредственно с помощью линейки, штангенциркули или микрометра. Но сделать это практически очень сложно. Поэтому можно воспользуйтесь законом Кулона.
Вам понадобится
- — чувствительный динамометр;
- — калькулятор;
- — таблица диэлектрической проницаемости веществ.
Инструкция
Присоедините известные заряды к рычагам чувствительного динамометра. Используйте крутильный динамометр, который измеряет силу в зависимости от поворота проволоки, на которой подвешено одно из тел. При размещении зарядов избегайте из прикосновения, иначе величина электрического заряда перераспределится, сила взаимодействия изменится, и измерение будет не верным.
При измерении силы взаимодействия обязательно учитывайте полярность зарядов, поскольку одноименные заряды отталкиваются, а разноименные притягиваются. Поэтому весы могут вращаться в разные стороны. При определении расстояния между разноименными зарядами, воспрепятствуйте их соприкосновению.
Измерьте силу взаимодействия зарядов в Ньютонах. Чтобы определить расстояние между двумя зарядами r, найдите произведение модулей величин этих зарядов q1 и q2, умножьте получившееся число на коэффициент 9•10^9, результат поделите на модуль силы, измеренной динамометром F. Из получившегося результата извлеките квадратный корень r=√((9•10^9•q1•q2)/F). Результат получите в метрах.
Если взаимодействие зарядов осуществляется не в вакууме или воздухе, учитывайте диэлектрическую проницаемость среды, где происходит взаимодействие. Найдите ее значение в специальной тематической таблице. Например, если заряда находятся в керосине, то учитывайте, что его диэлектрическая проницаемость ε=2. Диэлектрическая проницаемость вакуума и воздуха равна ε=2.
При расчете расстояния между зарядами, которые находятся в веществе, диэлектрическая проницаемость которого отличается от 1, перед извлечением квадратного корня поделите результат вычисления для расстояния между двумя зарядами на диэлектрическую проницаемость ε. В этом случае формула для расчета расстояния между двумя точечными зарядами примет вид r=√((9•10^9•q1•q2)/ε•F).
Видео по теме
Источники:
- как необходимо изменить расстояние между двумя зарядами
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Закон Кулона. Калькулятор онлайн.
Онлайн калькулятор Закона Кулона с решением позволит вычислить силу взаимодействия двух зарядов, электрический заряд, а так же расстояние между зарядами, единицы измерения которых, могут включать любые приставки Си. Калькулятор автоматически переведет одни единицы в другие и даст подробное решение.
Калькулятор вычислит:
Силу взаимодействия двух точечных зарядов.
Точечный электрический заряд.
Расстояние между зарядами.
Сила взаимодействия двух точечных зарядов F
Сила взаимодействия двух точечных неподвижных зарядов в вакууме направлена вдоль прямой, соединяющий эти заряды, прямо пропорциональна произведению модулей этих зарядов и обратно пропорциональна квадрату расстояния между ними. Коэффициент пропорциональности k = 8.9875517873681764 × 109
Единицей измерения силы в СИ является Ньютон (Н). Международное обозначение: N
Первый заряд q1 =
Второй заряд q2 =
Расстояние r =
Единица измерения силы F
Точечный электрический заряд Q
Заряд, равный одному кулону, характеризуется как заряд, проходящий через поперечное сечение проводника, по которому идет постоянный ток силы 1 Ампер за одну секунду. Заряд 1 кулон — это заряд , который в вакууме воздействует на такой же равный ему заряд, находящийся на расстоянии 1 метр с силой 8.9875517873681764 × 109 ньютонов.
Сила F =
Второй заряд q2 =
Расстояние r =
Единица измерения заряда q1
Расстояние между зарядами R
Исходя из закона Кулона расстояние между зарядами, можно выразить как корень квадратный из частного, где числителем
выступает Коэффициент пропорциональности k = 8.9875517873681764 × 109 умноженный на произведение первого и второго зарядов, а знаменатель равен силе F взаимодействия двух зарядов.
Первый заряд q1 =
Второй заряд q2 =
Сила F =
Единица измерения расстояния r
Вам могут также быть полезны следующие сервисы |
Калькуляторы (физика) |
Механика |
Калькулятор вычисления скорости, времени и расстояния |
Калькулятор вычисления ускорения, скорости и перемещения |
Калькулятор вычисления времени движения |
Калькулятор времени |
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения. |
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния. |
Импульс тела. Калькулятор вычисления импульса, массы и скорости |
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы. |
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения |
Оптика |
Калькулятор отражения и преломления света |
Электричество и магнетизм |
Калькулятор Закона Ома |
Калькулятор Закона Кулона |
Калькулятор напряженности E электрического поля |
Калькулятор нахождения точечного электрического заряда Q |
Калькулятор нахождения силы F действующей на заряд q |
Калькулятор вычисления расстояния r от заряда q |
Калькулятор вычисления потенциальной энергии W заряда q |
Калькулятор вычисления потенциала φ электростатического поля |
Калькулятор вычисления электроемкости C проводника и сферы |
Конденсаторы |
Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе |
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе |
Калькулятор вычисления энергии W заряженного конденсатора |
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов |
Калькуляторы по астрономии |
Вес тела на других планетах |
Ускорение свободного падения на планетах Солнечной системы и их спутниках |
Конвертеры величин |
Конвертер единиц длины |
Конвертер единиц скорости |
Конвертер единиц ускорения |
Цифры в текст |
Калькуляторы (Теория чисел) |
Калькулятор выражений |
Калькулятор упрощения выражений |
Калькулятор со скобками |
Калькулятор уравнений |
Калькулятор суммы |
Калькулятор пределов функций |
Калькулятор разложения числа на простые множители |
Калькулятор НОД и НОК |
Калькулятор НОД и НОК по алгоритму Евклида |
Калькулятор НОД и НОК для любого количества чисел |
Калькулятор делителей числа |
Представление многозначных чисел в виде суммы разрядных слагаемых |
Калькулятор деления числа в данном отношении |
Калькулятор процентов |
Калькулятор перевода числа с Е в десятичное |
Калькулятор экспоненциальной записи чисел |
Калькулятор нахождения факториала числа |
Калькулятор нахождения логарифма числа |
Калькулятор квадратных уравнений |
Калькулятор остатка от деления |
Калькулятор корней с решением |
Калькулятор нахождения периода десятичной дроби |
Калькулятор больших чисел |
Калькулятор округления числа |
Калькулятор свойств корней и степеней |
Калькулятор комплексных чисел |
Калькулятор среднего арифметического |
Калькулятор арифметической прогрессии |
Калькулятор геометрической прогрессии |
Калькулятор модуля числа |
Калькулятор абсолютной погрешности приближения |
Калькулятор абсолютной погрешности |
Калькулятор относительной погрешности |
Дроби |
Калькулятор интервальных повторений |
Учим дроби наглядно |
Калькулятор сокращения дробей |
Калькулятор преобразования неправильной дроби в смешанную |
Калькулятор преобразования смешанной дроби в неправильную |
Калькулятор сложения, вычитания, умножения и деления дробей |
Калькулятор возведения дроби в степень |
Калькулятор перевода десятичной дроби в обыкновенную |
Калькулятор перевода обыкновенной дроби в десятичную |
Калькулятор сравнения дробей |
Калькулятор приведения дробей к общему знаменателю |
Калькуляторы (тригонометрия) |
Калькулятор синуса угла |
Калькулятор косинуса угла |
Калькулятор тангенса угла |
Калькулятор котангенса угла |
Калькулятор секанса угла |
Калькулятор косеканса угла |
Калькулятор арксинуса угла |
Калькулятор арккосинуса угла |
Калькулятор арктангенса угла |
Калькулятор арккотангенса угла |
Калькулятор арксеканса угла |
Калькулятор арккосеканса угла |
Калькулятор нахождения наименьшего угла |
Калькулятор определения вида угла |
Калькулятор смежных углов |
Калькуляторы систем счисления |
Калькулятор перевода чисел из арабских в римские и из римских в арабские |
Калькулятор перевода чисел в различные системы счисления |
Калькулятор сложения, вычитания, умножения и деления двоичных чисел |
Системы счисления теория |
N2 | Двоичная система счисления |
N3 | Троичная система счисления |
N4 | Четырехичная система счисления |
N5 | Пятеричная система счисления |
N6 | Шестеричная система счисления |
N7 | Семеричная система счисления |
N8 | Восьмеричная система счисления |
N9 | Девятеричная система счисления |
N11 | Одиннадцатиричная система счисления |
N12 | Двенадцатеричная система счисления |
N13 | Тринадцатеричная система счисления |
N14 | Четырнадцатеричная система счисления |
N15 | Пятнадцатеричная система счисления |
N16 | Шестнадцатеричная система счисления |
N17 | Семнадцатеричная система счисления |
N18 | Восемнадцатеричная система счисления |
N19 | Девятнадцатеричная система счисления |
N20 | Двадцатеричная система счисления |
N21 | Двадцатиодноричная система счисления |
N22 | Двадцатидвухричная система счисления |
N23 | Двадцатитрехричная система счисления |
N24 | Двадцатичетырехричная система счисления |
N25 | Двадцатипятеричная система счисления |
N26 | Двадцатишестеричная система счисления |
N27 | Двадцатисемеричная система счисления |
N28 | Двадцативосьмеричная система счисления |
N29 | Двадцатидевятиричная система счисления |
N30 | Тридцатиричная система счисления |
N31 | Тридцатиодноричная система счисления |
N32 | Тридцатидвухричная система счисления |
N33 | Тридцатитрехричная система счисления |
N34 | Тридцатичетырехричная система счисления |
N35 | Тридцатипятиричная система счисления |
N36 | Тридцатишестиричная система счисления |
Калькуляторы площади геометрических фигур |
Площадь квадрата |
Площадь прямоугольника |
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ |
Калькуляторы (Комбинаторика) |
Калькулятор нахождения числа перестановок из n элементов |
Калькулятор нахождения числа сочетаний из n элементов |
Калькулятор нахождения числа размещений из n элементов |
Калькуляторы линейная алгебра и аналитическая геометрия |
Калькулятор сложения и вычитания матриц |
Калькулятор умножения матриц |
Калькулятор транспонирование матрицы |
Калькулятор нахождения определителя (детерминанта) матрицы |
Калькулятор нахождения обратной матрицы |
Длина отрезка. Онлайн калькулятор расстояния между точками |
Онлайн калькулятор нахождения координат вектора по двум точкам |
Калькулятор нахождения модуля (длины) вектора |
Калькулятор сложения и вычитания векторов |
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами |
Калькулятор скалярного произведения векторов через координаты |
Калькулятор векторного произведения векторов через координаты |
Калькулятор смешанного произведения векторов |
Калькулятор умножения вектора на число |
Калькулятор нахождения угла между векторами |
Калькулятор проверки коллинеарности векторов |
Калькулятор проверки компланарности векторов |
Генератор Pdf с примерами |
Тренажёры решения примеров |
Тренажер по математике |
Тренажёр таблицы умножения |
Тренажер счета для дошкольников |
Тренажер счета на внимательность для дошкольников |
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. |
Тренажер решения примеров с разными действиями |
Тренажёры решения столбиком |
Тренажёр сложения столбиком |
Тренажёр вычитания столбиком |
Тренажёр умножения столбиком |
Тренажёр деления столбиком с остатком |
Калькуляторы решения столбиком |
Калькулятор сложения, вычитания, умножения и деления столбиком |
Калькулятор деления столбиком с остатком |
Генераторы |
Генератор примеров по математике |
Генератор случайных чисел |
Генератор паролей |
Введение
Тема урока: «Закон Кулона». Закон Кулона количественно описывает взаимодействие точечных неподвижных зарядов – то есть зарядов, которые находятся в статичном положении друг относительно друга. Такое взаимодействие называется электростатическим или электрическим и является частью электромагнитного взаимодействия.
Электромагнитное взаимодействие
Конечно, если заряды находятся в движении – они тоже взаимодействуют. Такое взаимодействие называется магнитным и описывается в разделе физики, который носит название «Магнетизм».
Стоит понимать, что «электростатика» и «магнетизм» – это физические модели, и вместе они описывают взаимодействие как подвижных, так и неподвижных друг относительно друга зарядов. И всё вместе это называется электромагнитным взаимодействием.
Электромагнитное взаимодействие – это одно из четырех фундаментальных взаимодействий, существующих в природе.
Электрический заряд
Что же такое электрический заряд? Определения в учебниках и Интернете говорят нам, что заряд – это скалярная величина, характеризующая интенсивность электромагнитного взаимодействия тел. То есть электромагнитное взаимодействие – это взаимодействие зарядов, а заряд – это величина, характеризующая электромагнитное взаимодействие. Звучит запутанно – два понятия определяются друг через друга. Разберемся!
Существование электромагнитного взаимодействия – это природный факт, что-то вроде аксиомы в математике. Люди его заметили и научились описывать. Для этого они ввели удобные величины, которые это явление характеризуют (в том числе электрический заряд) и построили математические модели (формулы, законы и т. д.), которые это взаимодействие описывают.
Закон Кулона
Выглядит закон Кулона следующим образом:
Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.
Коэффициент k в законе Кулона численно равен:
Аналогия с гравитационным взаимодействием
Закон всемирного тяготения гласит: все тела, обладающие массой, притягиваются друг к другу. Такое взаимодействие называется гравитационным. Например, сила тяжести, с которой мы притягиваемся к Земле, – это частный случай именно гравитационного взаимодействия. Ведь и мы, и Земля обладаем массой. Сила гравитационного взаимодействия прямо пропорциональна произведению масс взаимодействующих тел и обратно пропорциональна квадрату расстояния между ними.
Коэффициент γ называется гравитационной постоянной.
Численно он равен: .
Как видите, вид выражений, количественно описывающих гравитационное и электростатическое взаимодействия, очень похож.
В числителях обоих выражений – произведение единиц, характеризующих данный тип взаимодействия. Для гравитационного – это массы, для электромагнитного – заряды. В знаменателях обоих выражений – квадрат расстояния между объектами взаимодействия.
Обратная зависимость от квадрата расстояния часто встречается во многих физических законах. Это позволяет говорить об общей закономерности, связывающей величину эффекта с квадратом расстояния между объектами взаимодействия.
Эта пропорциональность справедлива для гравитационного, электрического, магнитного взаимодействий, силы звука, света, радиации и т. д.
Объясняется это тем, что площадь поверхности сферы распространения эффекта увеличивается пропорционально квадрату радиуса (см. рис. 1).
Рис. 1. Увеличение площади поверхности сфер
Это будет выглядеть естественным, если вспомнить, что площадь сферы пропорциональна квадрату радиуса:
Физически это означает, что сила взаимодействия двух точечных неподвижных зарядов в 1 Кл, находящихся на расстоянии 1 м друг от друга в вакууме, будет равна 9·109 Н (см. рис. 2).
Рис. 2. Сила взаимодействия двух точечных зарядов в 1 Кл
Казалось бы, эта сила огромна. Но стоит понимать, что ее порядок связан с еще одной характеристикой – величиной заряда 1 Кл. На практике заряженные тела, с которыми мы взаимодействуем в повседневной жизни, имеют заряд порядка микро- или даже нанокулонов.
Коэффициент и электрическая постоянная
Иногда вместо коэффициента используется другая постоянная, характеризующая электростатическое взаимодействие, которая так и называется – «электрическая постоянная». Обозначается она . С коэффициентом она связана следующим образом:
Выполнив несложные математические преобразования можно ее выразить и вычислить:
Обе константы, конечно, присутствуют в таблицах задачников. Закон Кулона тогда примет такой вид:
Обратим внимание на несколько тонких моментов.
Важно понимать, что речь идет именно о взаимодействии. То есть если мы возьмем два заряда, то каждый из них будет действовать на другой с силой, по модулю равной. Эти силы будут направлены в противоположные стороны вдоль прямой, соединяющей точечные заряды.
Заряды будут отталкиваться, если они имеют один знак (оба положительные или оба отрицательные (см. рис. 3)), и притягиваться, если имеют разные знаки (один отрицательный, другой положительный (см. рис. 4)).
Рис. 3. Взаимодействие одноименных зарядов
Рис. 4. Взаимодействие разноименных зарядов
Точечный заряд
В формулировке закона Кулона присутствует термин «точечный заряд». Что это означает? Вспомним механику. Исследуя, например, движение поезда между городами, мы пренебрегали его размерами. Ведь размеры поезда в сотни или тысячи раз меньше расстояния между городами (см. рис. 5). В такой задаче мы считали поезд «материальной точкой» – телом, размерами которого в рамках решения некоторой задачи мы можем пренебречь.
Рис. 5. Размерами поезда в данном случае пренебрегаем
Так вот, точечные заряды – это материальные точки, обладающие зарядом. На практике, используя закон Кулона, мы пренебрегаем размерами заряженных тел в сравнении с расстояниями между ними. Если же размеры заряженных тел сопоставимы с расстоянием между ними, то из-за перераспределения заряда внутри тел электростатическое взаимодействие будет носить более сложный характер.
Задача 1
В вершинах правильного шестиугольника со стороной помещены друг за другом заряды . Найдите силу, действующую на заряд , расположенный в центре шестиугольника (см. рис. 6).
Рис. 6. Рисунок к условию задачи 1
Порассуждаем: заряд, находящийся в центре шестиугольника, будет взаимодействовать с каждым из зарядов, находящихся в вершинах шестиугольника. В зависимости от знаков это будет сила притяжения или сила отталкивания. С зарядами 1, 2 и 3, которые являются положительными, заряд, находящийся в центре, будет испытывать электростатическое отталкивание (см. рис. 7).
Рис. 7. Электростатическое отталкивание
А с зарядами 4, 5 и 6 (отрицательными) заряд в центре будет иметь электростатическое притяжение (см. рис. 8).
Рис. 8. Электростатическое притяжение
Суммарная сила, действующая на заряд, находящийся в центре шестиугольника, будет равнодействующей сил ,,,, и, модуль каждой из которых можно найти с помощью закона Кулона. Приступим к решению задачи.
Решение
Силы взаимодействия заряда, который находится в центре, с каждым из зарядов в вершинах зависит от модулей самих зарядов и расстояния между ними. Расстояние от вершин к центру правильного шестиугольника одинаковое, модули у взаимодействующих зарядов в нашем случае тоже равны (см. рис. 9).
Рис. 9. Расстояния от вершин до центра в правильном шестиугольнике равны
А значит, все силы взаимодействия заряда в центре шестиугольника с зарядами в вершинах будут равны по модулю. Воспользовавшись законом Кулона, мы можем найти этот модуль:
Расстояние от центра до вершины в правильном шестиугольнике равно длине стороны правильного шестиугольника, которая нам известна из условия, поэтому:
Теперь нам необходимо найти векторную сумму – для этого выберем систему координат: ось вдоль силы , а ось перпендикулярно (см. рис. 10).
Рис. 10. Выбор осей
Найдем суммарные проекции на оси – модуль каждой из них обозначим просто .
Так как силы и сонаправлены с осью , а находятся под углом к оси (см. рис. 11).
Рис. 11. Направление сил относительно оси
Проделаем такие же действия для оси :
Знак «-» – потому что силы и направлены в противоположную сторону оси . То есть проекция суммарной силы на ось , которую мы выбрали, будет равна 0. Получается, что суммарная сила будет действовать только вдоль оси , остается подставить сюда только выражения для модуля сил взаимодействия и и получить ответ. Суммарная сила будет равна:
Задача решена.
Диэлектрическая проницаемость
Еще один тонкий момент заключается вот в чем: в законе Кулона сказано, что заряды находятся в вакууме (см. рис. 12).
Рис. 12. Взаимодействие зарядов в вакууме
Это действительно важное замечание. Потому что в среде, отличной от вакуума, сила электростатического взаимодействия будет ослабляться (см. рис. 13).
Рис. 13. Взаимодействие зарядов в среде, отличной от вакуума
Чтобы учесть этот фактор, в модель электростатики была введена специальная величина, которая позволяет сделать «поправку на среду». Называется она диэлектрической проницаемостью среды. Обозначается, как и электрическая постоянная, греческой буквой «эпсилон», но уже без индекса.
Физический смысл этой величины заключается в следующем.
Сила электростатического взаимодействия двух точечных неподвижных зарядов в среде, отличной от вакуума, будет в ε раз меньше, чем сила взаимодействия таких же зарядов на таком же расстоянии в вакууме.
Таким образом, в среде, отличной от вакуума, сила электростатического взаимодействия двух точечных неподвижных зарядов будет равна:
Значения диэлектрической проницаемости различных веществ давно найдены и собраны в специальных таблицах (см. рис. 14).
Рис. 14. Диэлектрическая проницаемость некоторых веществ
Мы можем свободно использовать табличные значения диэлектрической проницаемости необходимых нам веществ при решении задач.
Важно понимать, что при решении задач сила электростатического взаимодействия рассматривается и описывается в уравнениях динамики как обычная сила. Решим задачу.
Задача 2
Два одинаковых заряженных шарика подвешены в среде с диэлектрической проницаемостью на нитях одинаковой длины , закрепленных в одной точке. Определите модуль заряда шариков, если нити находятся под прямым углом друг к другу (см. рис. 15). Размеры шариков пренебрежимо малы по сравнению с расстоянием между ними. Массы шариков равны .
Рис. 15. Рисунок к условию задачи 2
Порассуждаем: на каждый из шариков будут действовать три силы – сила тяжести ; сила электростатического взаимодействия и сила натяжения нити (см. рис. 16).
Рис. 16. Силы, действующие на шарики
По условию шарики одинаковые, то есть их заряды равны как по модулю, так и по знаку, а значит, сила электростатического взаимодействия в данном случае будет силой отталкивания (на рис. 16 силы электростатического взаимодействия направлены в разные стороны). Так как система находится в равновесии, будем использовать первый закон Ньютона:
Так как в условии сказано, что шарики подвешены в среде с диэлектрической проницаемостью , а размеры шариков пренебрежимо малы по сравнению с расстоянием между ними, то в соответствии с законом Кулона сила, с которой будут отталкиваться шарики, будет равна:
Решение
Распишем первый закон Ньютона в проекциях на оси координат. Ось направим горизонтально, а ось вертикально (см. рис. 17).
Рис. 17. Выбор направления осей координат
Рис. 18. Силы в проекциях на оси координат
Так как на шарики действуют одинаковые силы тяжести и силы электростатического взаимодействия, нити тоже одинаковые – они отклонятся на одинаковые углы (см. рис. 19).
Рис. 19. Углы, на которые отклоняются шарики, одинаковые
В сумме эти углы дают нам , это означает, что:
Тогда из прямоугольного треугольника можно найти углом :
Добавим к двум уравнениям, которые мы записали, выражение для модуля силы электростатического взаимодействия:
Расстояние найдем геометрически – найдем прилежащий к углу катет и умножим его на 2:
Мы получили систему из 4-х уравнений:
Математическое решение можно пронаблюдать в свертке.
Ответ:
Решение системы уравнений
Выразим из второго уравнения силу натяжения нити и подставим в первое:
Отсюда выразим силу электростатического взаимодействия:
Приравняем выражение для силы электростатического взаимодействия, которое мы сейчас выразили с третьим уравнением:
Подставим сюда выражение для
Выразим искомый заряд
Так как угол , то , тогда:
На этом наш урок закончен. Спасибо за внимание.
Список литературы
- Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
- Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: Учеб. для общеобразоват. учреждений. Базовый и профильный уровни. 19-е издание – М.: Просвещение, 2010.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал «physics.ru» (Источник)
- Интернет-портал «Класс!ная физика» (Источник)
Домашнее задание
- Запишите формулу закона Кулона.
- Как взаимодействуют разноименно заряженные тела?
- Решите задачу: два заряда, 10 нКл и -2 нКл, закреплены на расстоянии 10 см друг от друга. Определите силу, с которой они взаимодействуют.
Закон Кулона
Закон сохранения электрического заряда
Напряженность
Принцип суперпозиции
Электрическое поле
Потенциал электростатического поля
Разность потенциалов
Теория
Совсем чуть−чуть.
Закон Кулона — сила, с которой два точечных заряда действуют друг на друга. Она обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их зарядов.
Заряды с одинаковым знаком отталкиваются, с разными — притягиваются. По III з. Ньютона сила действия одного заряда равна силе действия другого:
Наглядно рассказывается об этом в видео.
А напряженность — силовая характеристика электрического поля. По-простому: электрическое поле действует на заряд, и вот сила, с которой поле действует на заряд, и есть напряженность.
Напряженность НЕ зависит от величины заряда, помещенного в поле!
Задачи
Задача 1 Два одинаковых маленьких положительно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F₁. Модули зарядов шариков отличаются в 5 раз. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F₂. Определите отношение F₂ к F₁.
Скажем, что заряд одного шарика q, другого 5q. Тогда сила Кулона между ними:
А если теперь соединить два шарика, то общий заряд разделится пополам (на каждый шарик). Общий заряд 5q + q = 6q, тогда на каждом шарике окажется по 3q. Тогда сила Кулона:
Отношение получится таким:
Ответ: 1,8
Задача 2 Два одинаковых маленьких разноименно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F₁. Модули зарядов шариков отличаются в 4 раза. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F₂. Определите отношение F₁ к F₂.
Та же самая задача? А вот и нет, одно слово другое: разноименно вместо положительных. Это значит, что один шарик будет заряжен положительно, другой отрицательно. По сравнению с первым случаем сила Кулона никак не изменится по модулю (только по нарпавлению).
А вот после соприкосновения изменится. Общий заряд: 5q − q = 4q или q − 5q = − 4q, тогда на каждый шар пойдет по 2q:
Отношение:
Ответ: 0,8
Задача 3 На нерастяжимой нити висит шарик массой 100 г, имеющий заряд 20 мкКл. Как необходимо зарядить второй шарик, который подносят снизу к первому шарику на расстояние 30 см, чтобы сила натяжения: а) увеличилась в 4 раза; б) рассмотреть случай невесомости?
В начальный момент времени на шарик действуют две силы:
а) Чтобы сила натяжения увеличилась в 4 раза, сила Кулона должна быть направлена вниз, значит, нужно поднести отрицательно заряженный шарик. Запишем также уравнение на ось Y:
б) Невесомость возникает, когда сила натяжения равна нулю. Для этого нужно, чтобы сила Кулона была направлена вверх, значит, подносим положительный заряд:
Ответ: −1,5 мкКл, 500 нКл.
Задача 3 Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает с поверхности пластинки электрон, который попадает в электрическое поле с напряженностью 125 В/м. Найти расстояние, которое он пролетит прежде, чем разгонится до скорости, равной 1% от скорости света.
В задаче говорится про электрон, значит, его массу m = 9,1×10⁻³¹ кг и заряд q = 1,6 × 10⁻¹⁹ Кл можно посмотреть в справочных данных.
Найдем ускорение электрона в электрическом поле:
Остается найти пройденный путь в равноускоренном движении при нулевой начальной скорости:
Ответ: 0,2 м
Задача 4 Полый заряженный шарик массой m = 0,4 г. движется в однородном горизонтальном электрическом поле из состояния покоя. Модуль напряженности электрического поля E = 500 кВ/м. Траектория шарика образует с вертикалью угол α = 45°. Чему равен заряд шарика?
Для начала разберемся, какие силы действуют на заряд:
Заряд движется под углом 45 градусов, значит, отношением сил будет тангенс 45°:
Ответ: 8×10⁻⁹ Кл
Задача 5 При нормальных условиях электрический «пробой» сухого воздуха наступает при напряжённости электрического поля 30 кВ/см. В результате «пробоя» молекулы газа, входящие в состав воздуха, ионизируются и появляются свободные электроны. Какую кинетическую энергию приобретёт такой электрон, пройдя в электрическом поле расстояние 10⁻⁵ см? Ответ выразите в электронвольтах. (ЕГЭ)
Задача кажется весьма тяжелой, но это обманчиво. Воспользуемся знакомой формулой напряженности:
Домножим на длину обе части, тогда слева получится работа, а работа — это изменение энергии:
Переводить сантиметры не обязательно, они сократятся. Чтобы перевести джоули в электронвольты, нужно разделить на 1,6 × 10⁻¹⁹
Ответ: 0,3 эВ
Задача 6 В вершинах равностороннего треугольника со стороной «а» находятся заряды +q, +q и -q. Найти напряженность поля Е в центре треугольника.
Покажем, как направлена напряженность: для двух положительных зарядов — от них (красные стрелочки), для отрицательного заряда — к нему (синяя стрелочка).
Угол между синим вектором и красным составляет 60°. Если продлить красный вектор до стороны, получится прямоугольный треугольник. Тогда, чтобы посчитать результирующую напряженность, спроецируем красные векторы на синий:
Остается разобрать на каком расстоянии находятся заряды от центра треугольника. Высоту треугольника можно найти по т. Пифагора, равна она а√3/2. А расстояние тогда составит 2/3 от высоты:
Ответ: 6kq/a²
Задача 6 Два шарика с зарядами Q = –1 нКл и q = 5 нКл соответственно, находятся в однородном электрическом поле с напряженностью Е = 18 В/м, на расстоянии r = 1 м друг от друга. Масса первого шарика равна M = 5 г. Определите, какую массу должен иметь второй шарик, чтобы они двигались с прежним между ними расстоянием и с постоянным по модулю ускорением. (ЕГЭ — 2016)
Направим ось X вправо и покажем, какие силы действуют на каждый заряд.
На положительный заряд электрическая сила действует по линиям напряженности, для отрицательного заряда все наоборот. Силы кулона направлены к зарядам, они разноименные. Составим уравнение для каждого заряда:
Сумма всех сила равна ma, потому что в условии сказано, что шарики двигаются с постоянным ускорением, а чтобы расстояние не менялось, двигаться они должны в одном направлении.
Разделим одно уравнение на другое и выразим массу:
Ответ: 8,3 гр.
Задача 7 Четыре маленьких одинаковых шарика, связанных нерастяжимыми нитями одинаковой длины, заряженызарядами q, q, q и 2q. Сила натяжения нити, связывающей первый и второй шарики, равна T. Найти силу натяжения нити, связывающейвторой и третий шарики. (Росатом)
Покажем, каким силам противодействует сила натяжения Т. Воспользуемся принципом суперпозиции и законом Кулона:
Сила натяжения Т удерживает первый шарик, других сил для него нет, значит, больше ничего для первого случая не требуется.
Как проще это запомнить: проводим линию перпендикулярно той нити, о которой говорим (красная черточка), после записываем только те силы между шариками, которые появляются по разные стороны от проведенной линии:
Теперь также составим уравнения для силы натяжения между вторым и третьим шариком:
Распишим каждое уравнение по закону кулона, скажем, что расстояние между соседними шариками равно «а»:
Второе уравнение с подстановкой выражения из первого:
Ответ: 71T/53
Задача 8 Точечный заряд, расположенный в точке C, создаёт в точках A и B поле с напряжённостью Ea и Eb соответственно (см. рисунок; угол ACB — прямой). Найти напряжённость электрическогополя, создаваемого этим зарядом в точке M, являющейся основанием перпендикуляра, опущенного из точки C на прямую AB. (Росатом)
Запишем, чему равна напряженность в каждой из этих точек, взяв длины отрезков за a; b; h:
Площадь прямоугольного треугольника можно найти как полупроизведение катетов или как полупроизведение высоты и основания:
Возведем в квадрат получившиеся уравнение, а дальше смертельный номер: возводим в −1 степень и домножаем обе части на kq:
Выразим a² и b² через напряженность:
Ответ: Ea+Eb
Задача 9 Частицы с массами M и m, и зарядами q и −q соответственно вращаются с угловой скоростью ω по окружностям вокруг оси, направленной по внешнемуоднородному электрическому полю с напряжённостью E (рис.). Найдите расстояние L между частицами и расстояние H между плоскостями их орбит. (Всеросс. 2008)
Накрест лежащие углы при параллельных прямых (движения частиц) и секущей силы Кулона равны α. Покажем какие силы действуют на каждую частицу:
Запишем уравнения по осям на верхнюю частицу:
На нижнюю частицу:
Построим два треугольника, которые показывают расстояние между частицами и высоту между ними.
Разделим уравнения друг на друга, а также выразим тангенс угла из этих треугольников:
Сложим два уравнения, чтобы найти расстояние между плоскостями:
Пункт «а» решили, теперь с расстоянием разберемся: выразим из ур-ия (1) длину, а дальше из треугольника выразим синус угла альфа:
Вместо Н подставим то, что мы нашли:
Задача 10 В точке O к стержню привязана непроводящая нить длиной R c зарядом q на конце. Известный эталонный заряд Q₂ и измеряемый заряд Q₁ установлены на расстояниях L₂ и L₁ от точки O. Все заряды одногознака и могут считаться точечными. Найдите величину заряда Q₁, если в состоянии равновесия нить отклонена на угол β от отрезка, соединяющегозаряды Q₂ и Q₁. (Всеросс. 2018)
Проведем оси, подпишем расстояние от Q₁ до q и от Q₂ до q. Запишем ур-ия сил на каждую ось:
Не хочется мучиться с силой натяжения нити, поэтому займемся ур-ем на ось Y:
Из прямоугольных треугольников можно получить такие соотношения, а также из теоремы косинусов выразить S₁ и S₂:
Подставим в ур-ие (1):
В качестве закрепления материала решите несколько похожих задач с ответами.
Будь в курсе новых статеек, видео и легкого технического юмора.
Закон Кулона .
Заряды одного знака отталкиваются, а заряды разных знаков притягиваются
Положительный заряд ( q_1=5 нКл ) и отрицательный заряд (q_2=-2 мкКл ) будут притягиваться
В формуле заряды ( q_1 и q_2 ) заключены в модули
(F=kdfrac{left | q_1 right | left | q_2 right | }{R^2} )
Если заряды одного знака, то формулу можно записать без модулей:
(F=kdfrac{q_1q_2}{R^2} )
(k ) — коэффициент пропорциональности
( k=9 cdot 10^{9} ;; dfrac {Нcdot м^2}{Кл^2} )
(q_1 ) — первый заряд
(q_2 ) — второй заряд
(R ) — расстояние между зарядами
Задача 1.
Найти силу с которой отталкиваются друг от друга два точечных заряда ( q_1=10^{-6} Кл ; и ; q_2=10^{-7} Кл ,)
если расстояние между зарядами (R=1м .)
( k=9 cdot 10^{9} ;; dfrac {Нcdot м^2}{Кл^2} )
Показать ответ
Показать решение
Видеорешение
Задача 2.
Найти силу с которой отталкиваются друг от друга два точечных заряда ( q_1=1 нКл ; и ; q_2=5 нКл ,)
если расстояние между зарядами (R=1 см .)
( k=9 cdot 10^{9} ;; dfrac {Нcdot м^2}{Кл^2} )
Показать ответ
Показать решение
Видеорешение
Задача 3.
Два точечных заряда отталкиваются друг от друга с силой (F=7,2 cdot 10^{-5} Н ) и находятся на расстоянии (R=10 см ) друг от друга
Первый заряд (q_1= 8 нКл . )
Найти заряд (q_2 . )
( k=9 cdot 10^{9} ;; dfrac {Нcdot м^2}{Кл^2} )
Дать ответ в нанокулонах.
Показать ответ
Показать решение
Видеорешение
Задача 4.
На каком расстоянии находятся друг от друга точечные заряды (q_1=5 мкКл ; и ; q_2=2 мкКл , ) если
они взаимодействуюм друг с другом с силой (F=0,09 Н )
( k=9 cdot 10^{9} ;; dfrac {Нcdot м^2}{Кл^2} )
Показать ответ
Показать решение
Видеорешение
Задача 7.
Заряды (q_1=5 мкКл,q_2=2 мкКл ;и;q_3=40 нКл ) расположены как показано на рисунке.
(R_1= 60см, R_2=40см. )
Какая сила будет действовать на третий заряд со стороны первого и второго зарядов?
( k=9 cdot 10^{9} ;; dfrac {Нcdot м^2}{Кл^2} )
Показать ответ
Показать решение
Видеорешение
Задача 8.
Заряды (q_1=50 мкКл,q_2=225 мкКл ;и;q_3=125 мкКл ) расположены как показано на рисунке.
(R_1= 150см, R_2=100см. )
Какая сила будет действовать на первый заряд со стороны второго и третьего зарядов?
( k=9 cdot 10^{9} ;; dfrac {Нcdot м^2}{Кл^2} )
Показать ответ
Показать решение
Видеорешение
Задача 9.
Заряды (q_1=1 мкКл,q_2=3 мкКл ;и;q_3=8,1 мкКл ) расположены как показано на рисунке.
(R_1= 100см, R_2=90см. )
Какая сила будет действовать на второй заряд со стороны первого и третьего зарядов?
Куда направлена эта сила?
( k=9 cdot 10^{9} ;; dfrac {Нcdot м^2}{Кл^2} )
Показать ответ
Показать решение
Видеорешение
Задача 10.
Заряды (q_1=1 мкКл,q_2=3 мкКл ;и;q_3=-8,1 мкКл ) расположены как показано на рисунке.
(R_1= 100см, R_2=90см. )
Какая сила будет действовать на третий заряд со стороны первого и второго зарядов?
Куда направлена эта сила?
( k=9 cdot 10^{9} ;; dfrac {Нcdot м^2}{Кл^2} )
Показать ответ
Показать решение
Видеорешение