Как найти расстояние зная радиус планеты

Представление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

Считается, что первое достаточно точное определение размеров Земли провёл греческий учёный Эратосфен (276—194 до н. э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет. Получив эти данные, можно вычислить длину дуги в 1°, а затем длину окружности и величину её радиуса, т. е. радиуса земного шара. Очевидно, что длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: ϕB – ϕA.

Рис. 3.8. Способ Эратосфена

Для того чтобы определить эту разность, Эратосфен сравнил полуденную высоту Солнца в один и тот же день в двух городах, находящихся на одном меридиане. Измерив высоту Солнца hB (рис. 3.8) в полдень 22 июня в Александрии, где он жил, Эратосфен установил, что Солнце отстоит от зенита на 7,2°. В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените (hA = 90°). Следовательно, длина дуги составляет 7,2°. Расстояние между Сиеной (A) и Александрией (B) около 5000 греческих стадий — l.

Стадией в Древней Греции считалось расстояние, которое проходит легко вооружённый греческий воин за тот промежуток времени, в течение которого Солнце, коснувшееся горизонта своим нижним краем, целиком скроется за горизонт.

Несмотря на кажущееся неудобство такой единицы и достаточную громоздкость словесного определения, её введение выглядело вполне оправданным, учитывая, что строгая периодичность небесных явлений позволяла использовать их движение для счёта времени.

Обозначив длину окружности земного шара через L, получим такое выражение:

= ,

откуда следует, что длина окружности земного шара равняется 250 тыс. стадий.

Точная величина стадии в современных единицах неизвестна, но, зная, что расстояние между Александрией и Асуаном составляет 800 км, можно полагать, что 1 стадия = 160 м. Результат, полученный Эратосфеном, практически не отличается от современных данных, согласно которым длина окружности Земли составляет 40 тыс. км.

Эратосфен ввёл в практику использование терминов «широта» и «долгота». Видимо, появление этих терминов связано с особенностями формы карт того времени: они повторяли по очертаниям побережье Средиземного моря, которое длиннее по направлению запад—восток (по долготе), чем с севера на юг (по широте).

Рис. 3.9. Параллактическое смещение

Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними. Зачастую непосредственное измерение кратчайшего расстояния между этими пунктами оказывается невозможным из-за различных естественных препятствий (гор, рек и т. п.). Поэтому применяется способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса — BC) и двух углов B и C в треугольнике ABC (рис. 3.9).

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.

Чем дальше расположен предмет, тем меньше его параллактическое смещение, и чем больше перемещение наблюдателя (базис измерения), тем больше параллактическое смещение.

Рис. 3.10. Схема триангуляции

Для определения длины дуги используется система треугольников — способ триангуляции, который впервые был применён ещё в 1615 г. Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30—40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других. Основой для вычисления длин сторон во всех этих треугольниках является размер базиса AC (рис. 3.10). Точность измерения базиса длиной в 10 км составляет около 1 мм. Во всех пунктах устанавливают геодезические сигналы — вышки высотой в несколько десятков метров. С вершины сигнала с помощью угломерного инструмента (теодолита) измеряют углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон. Проводя затем измерение углов из пунктов, расстояние между которыми вычислено, можно узнать длину двух очередных сторон в треугольнике. Зная длину сторон этих треугольников, можно определить длину дуги AB.

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в. Для уточнения формы Земли Французская академия наук снарядила сразу две экспедиции. Одна из них работала в экваториальных широтах Южной Америки в Перу, другая — вблизи Северного полярного круга на территории Финляндии и Швеции. Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора. Последующие исследования подтвердили, что длина дуги одного градуса меридиана увеличивается с возрастанием географической широты. Это означало, что форма Земли — не идеальный шар: она сплюснута у полюсов. Её полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1 : 50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.

Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием. По современным данным, оно составляет , или 0,0034. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения.

В XX в. благодаря измерениям, точность которых составила 15 м, выяснилось, что земной экватор также нельзя считать окружностью. Сплюснутость экватора составляет всего (в 100 раз меньше сплюснутости меридиана). Более точно форму нашей планеты передаёт фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

В настоящее время форму Земли принято характеризовать следующими величинами:

сжатие эллипсоида — 1 : 298,25;

средний радиус — 6371,032 км;

длина окружности экватора — 40075,696 км.

Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Горизонтальным параллаксом (    p) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11).

Рис. 3.11. Горизонтальный параллакс светила

Из треугольника OAS можно выразить величину — расстояние OS = D:

D = ,

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57ʹ. Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8ʺ. Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin p p, если угол p выражен в радианах. В одном радиане содержится 206 265ʺ. Тогда, заменяя sin p на p и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:

D = R,

или (с достаточной точностью)

D = R.

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации. Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9ʺ?

Дано:

p1 = 0,9ʺ

D = 1 а. е.

p = 8,8ʺ

Решение:

Известно, что параллакс Солнца на расстоянии в 1 а. е. равен 8,8ʺ.

Тогда, написав формулы для расстояния до Солнца и до Сатурна и поделив их одна на другую, получим:

D1 — ?

= .

Откуда

D1 = = = 9,8 а. е.

Ответ: D1 = 9,8 а. е.

Рис. 3.12. Угловые размеры светила

Зная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12). Формула, связывающая эти величины, аналогична формуле для определения параллакса:

D = .

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30ʹ, а все планеты видны невооружённым глазом как точки, можно воспользоваться соотношением: sin ρ ρ. Тогда:

D = и D = .

Следовательно,

r = R.

Если расстояние D известно, то

r = Dρ,

где величина ρ выражена в радианах.

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30ʹ?

Дано:

D = 400 000 км

ρ = 30ʹ

Решение:

Если ρ выразить в радианах, то

d = Dρ.

Следовательно,

d — ?

d = = 3490 км.

Ответ: d = 3490 км.

Вопросы1. Какие измерения, выполненные на Земле, свидетельствуют о её сжатии? 2. Меняется ли и по какой причине горизонтальный параллакс Солнца в течение года? 3. Каким методом определяется расстояние до ближайших планет в настоящее время?

Упражнение 111. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля? 2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удалённой (апогее) — 405 000 км. Определите горизонтальный параллакс Луны в этих положениях. 3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8ʺ и 57ʹ соответственно? 4. Чему равен угловой диаметр Солнца, видимого с Нептуна?

 1. Форма и размеры Земли

Эратосфе́н Кире́нский

(др.-греч. Ἐρατοσθένης ὁ Κυρηναῖος; 276 год до н. э.—194 год до н. э.)

 греческий математик, астроном, географ, филолог и поэт. Ученик Каллимаха, с 235 г. до н. э. — глава Александрийской библиотеки.

Первый известный учёный, вычисливший размеры Земли.

Aristotel1

22 июня Солнце в Сиене стояло в зените, а в Александрии отклонилось от зенита на 7,2о. Значит разность широт между Сиеной и Александрией составляет 7,2 о

Расстояние от Сиены до Александрии  (l) составляет около 5000 греческих стадий. 

ajhvekf

Таким образом длина окружности земного шара составляет примерно 250000 стадий. 

1 стадия ≈ 160м 

Длина окружности земного шара составляет  ≈40000 км. 

Современные данные:

Земля имеет форму эллипсоида (слегка сжата у полюсов)

  • Сжатие эллипсоида — 1:298,25
  • Средний радиус — 6371,032 км
  • Длина окружности экватора — 40075,696 км.

2. Определение расстояний до тел Солнечной системы.

Горизонтальным параллаксом (р) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения 

Из треугольника OAS, где радиус земли OA = R можно выразить величину — расстояние OS = D:

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Для малых углов sin р ≈ р, если угол р выражен в радианах. В одном радиане содержится 206 265″. Тогда, заменяя sin р на р и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:

Горизонтальные параллаксы отдельных небесных тел
Луна  57′
Марс 24″
Солнце 8,8″

Расстояние от земли до Солнца составляет от147,09 до 152,1 млн км.

Среднее расстояние : 150 000 000 км или 1 астрономическая единица (а.е.)

3. Пример решения задачи:

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9″?

4. Определение размеров светил

21.1

Для малых углов sin ρ ≈ ρ

21.3

21.4

Если расстояние D известно, то

r = Dρ,

5. Пример решения задачи

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30′?

 21.5 1


Домашнее задание.

§ 13 (Читать онлайн);

Практические задания.

Имя: Фамилия: Класс:

Адрес электронной почты для обратной связи:


1.Первое измерение расстояния до Луны с помощью лазерного импульса было осуществлено в1963 г. учеными из СССР. При этом лазерные им-пульсы возвратились через 2,4354567 с. Определите расстояние между отражателем, находящимся на Луне, и те лескопом, расположенным на Земле.

Ответ:

2. Рассчитайте наименьшее расстояние от Земли до Марса, если наибольший горизонтальный параллакс Марса составляет 23.

Ответ:

3. Определите линейный радиус Марса, если известно, что во время великого противостояния его угловой радиус составляет 12,5″, а горизонтальный параллакс равен 23,4″.

Ответ:

4*. В один из дней Венера оказалась в наибольшей восточной элонгации при наблюдении с Земли и в наибольшей западной элонгации при наблюдении с Марса. Найдите видимый угловой диаметр Марса при наблюдении с Земли в этот день. Орбиты всех планет считать круговыми.

Ответ:(если не решали, написать»Решения нет»)

_____________

*- Задача повышенной трудности. Выполняется по желанию. Оценивается отдельно. Решение должно быть подробно записано в тетрадь со схемой взаимного расположения небесных объектов. 


Темы проектов

1. Современные методы геодезических измерений.
2. Изучение формы Земли.

Наименование разделов и тем

Содержание учебного материала, лабораторные  работы и практические занятия, самостоятельная работа обучающихся

Объем часов

Уровень освоения

Законы движения небесных тел.

Определение расстояний и размеров тел в Солнечной системе.

Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. 

Формулирование законов Кеплера. Воспроизведение формул для определения расстояний и размеров тел в Солнечной системе. Воспроизведение определений терминов и понятий (паралактическое смещение, горизонтальный параллакс). Применение полученных знаний для решения задач на законы Кеплера, на определение расстояний и линейных размеров тел.

2

2

Тема 3.2. Законы движения небесных тел. Определение расстояний и размеров тел в Солнечной системе.

3.2.1. Законы движения небесных тел.

Важную роль в формировании представлений о строении Солнечной системы сыграли также законы движения планет, которые были открыты Иоганном Кеплером (1571—1630) и стали первыми естественнонаучными законами в их современном понимании. Работы Кеплера создали возможность для обобщения знаний по механике той эпохи в виде законов динамики и закона всемирного тяготения, сформулированных позднее Исааком Ньютоном. Многие ученые вплоть до начала XVII в. считали, что движение небесных тел должно быть равномерным и происходить по «самой совершенной» кривой— окружности. Лишь Кеплеру удалось преодолеть этот предрассудок и установить действительную форму планетных орбит, а также закономерность изменения скорости движения планет при их обращении вокруг Солнца.

В своих поисках Кеплер исходил из убеждения, что «в мире правит число», высказанного еще Пифагором. Он искал соотношения между различными величинами, характеризующими движение планет, — размеры орбит, период обращения, скорость. Кеплер действовал фактически вслепую, чисто эмпирически. Он пытался сопоставить характеристики движения планет с закономерностями музыкальной гаммы, длиной сторон описанных и вписанных в орбиты планет многоугольников Иоганн Кеплер и т. д.

Кеплеру необходимо было построить орбиты планет, перейти от экваториальной системы координат, указывающих положение планеты на небесной сфере, к системе координат, указывающих ее положение в плоскости орбиты. Он воспользовался при этом собственными наблюдениями планеты Марс, а также многолетними определениями координат и конфигураций этой планеты, проведенными его учителем Тихо Браге.Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Для того чтобы построить орбиту Марса, он применил способ, который показан на рисунке 3.5.

Пусть нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты — его прямое восхождение  α1, которое выражается углом Т1М1 где Т1 — положение Земли на орбите в этот момент, а М— положение Марса. Очевидно, что спустя 687 суток (таков звездный период обращения Марса) планета придет в ту же точку своей орбиты. Если определить прямое восхождение Марса на эту дату, то, как видно из рисунка 3.5, можно указать положение планеты в пространстве, точнее, в плоскости ее орбиты. Земля в этот момент находится в точке Т2и, следовательно, угол T2Mесть не что иное, как прямое восхождение Марса — α2. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил еще целый ряд точек и, проведя по ним плавную кривую, построил орбиту этой планеты.

Изучив расположение полученных точек, он обнаружил, что скорость движения планеты по орбите меняется, но при этомрадиус-вектор планеты за равные промежуткивремени описывает равные площади.Впоследствии эта закономерность получила название второго закона Кеплера.

Этот закон, который часто называют законом площадей, иллюстрируется рисунком 3.6. Радиус-вектором называют в данном случае переменный по своей величине отрезок, соединяющий Солнце и ту точку орбиты, в которой находится планета. АА1 ВВ1 и СС1 — дуги, которые проходит планета за равные промежутки времени. Площади заштрихованных фигур равны между собой.

Согласно закону сохранения энергии, полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остается неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна во всех точках орбиты и равна полной энергии. По мере приближения планеты к Солнцу возрастает ее скорость — увеличивается кинетическая энергия, но вследствие уменьшения расстояния до Солнца уменьшается энергия потенциальная.

Установив закономерность изменения скорости движения планет, Кеплер задался целью определить, по какой кривой происходит их обращение вокруг Солнца. Он был поставлен перед необходимостью сделать выбор одного из двух возможных решений:     1) считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с наблюдениями (из-за ошибок наблюдений) на 8′; 2) считать, что наблюдения таких ошибок не содержат, а орбита не является окружностью. Будучи уверенным в точности наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с кривой, которая называется эллипсом, при этом Солнце не располагается в центре эллипса. В результате был сформулирован закон, который называется первым законом Кеплера.

Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Первый закон Кеплера

Как известно, эллипсом называется кривая, у которой сумма расстояний от любой точки Р до его фокусов есть величина постоянная. На рисунке 3.6 обозначены: О — центр эллипса; F и F1 — фокусы эллипса; АВ — его большая ось. Половина этой величины (а), которую обычно называют большой полуосью, характеризует размер орбиты планеты. Ближайшая к Солнцу точка А называется перигелий, а наиболее удаленная от него точка В — афелий. Отличие эллипса от окружности характеризуется величиной его эксцентриситета: е = OS/OA. В том случае, когда эксцентриситет равен О, фокусы и центр сливаются в одну точку — эллипс превращается в окружность.

Примечательно, что книга, в которой в1609 г. Кеплер опубликовал первые два открытых им закона, называлась «Новая астрономия, или Физика небес, изложенная в исследованиях движения планеты Марс…».

Оба этих закона, опубликованные в 1609 г., раскрывают характер движения каждой планеты в отдельности, что не удовлетворило Кеплера. Он продолжил поиски «гармонии» в движении всех планет, и спустя 10 лет ему удалось сформулировать третий закон Кеплера.

Квадраты звездных периодов обращения планет относятся между собой, как кубы больших полуосей их орбит.

Формула, выражающая третий закон Кеплера, такова:

где Т1 и Т2 — периоды обращения двух планет; аи а большие полуоси их орбит.

Вот что писал Кеплер после открытия этого закона: «То, что 16 лет тому назад я решил искать, <…> наконец найдено, и это открытие превзошло все мои самые смелые ожидания…»

Действительно, третий закон заслуживает самой высокой оценки. Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя при этом уже известные периоды их обращения вокруг Солнца. Не нужно определять расстояние от Солнца каждой из них, достаточно измерить расстояние от Солнца хотя бы одной планеты. Величина большой полуоси земной орбиты — астрономическая единица (а. е.) — стала основой для вычисления всех остальных расстояний в Солнечной системе.

Пример решения задач

Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось ее орбиты?

3.2.2. Определение расстояний и размеров тел в Солнечной системе.

Представление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

Считается, что первое достаточно точное определение размеров Земли провел греческий ученый Эратосфен (276— 194 до н. э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет. Получив эти данные, можно вычислить длину дуги в 1°, а затем длину окружности и величину ее радиуса, т. е. радиуса земного шара. Очевидно, что длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: φB – φA.

Для того чтобы определить эту разность, Эратосфен сравнил полуденную высоту Солнца в них в один и тот же день. Измерив высоту Солнца hB(рис. 3.8) в полдень 22 июня в Александрии, где он жил, Эратосфен установил, что Солнце отстоит от зенита на 7,2°. В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените hA.

Следовательно, длина дуги составляет 7,2°. Расстояние между Сиеной (А) и Александрией (В) около 5000 греческих стадий — l.

Стадией в Древней Греции считалось расстояние, которое проходит легко вооруженный греческий воин за тот промежуток времени, в течение которого Солнце, коснувшееся горизонта своим нижним краем, целиком скроется за горизонт.

Несмотря на кажущееся неудобство такой единицы и достаточную громоздкость словесного определения, ее введение выглядело вполне оправданным, учитывая, что строгая периодичность небесных явлений позволяла использовать их движение для счета времени.

Обозначив длину окружности земного шара через Lполучим такое выражение: 

откуда следует, что длина окружности земного шара равняется 250 000 стадий.

Точная величина стадии в современных единицах неизвестна, но, зная, что расстояние между Александрией и Асуаном составляет 800 км, можно полагать, что 1 стадия = 160 м. Это означает, что результат, полученный Эратосфеном, практически не отличается от современных данных, согласно которым длина окружности Земли составляет 40 000 км.

Эратосфен ввел в практику использование терминов «широта» и «долгота». Видимо, появление этих терминов связано с особенностями формы карт того времени: они повторяли по очертаниям побережье Средиземного моря, которое длиннее по направлению запад-восток (по долготе), чем с севера на юг (по широте).

Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними. Зачастую непосредственное измерение кратчайшего расстояния между этими пунктами оказывается невозможным из-за различных естественных препятствий (гор, рек и т. п.). Поэтому применяется способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса — ВС) и двух углов В и С в треугольнике ABC(рис. 3.9).

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.

Чем дальше расположен предмет, тем меньше его параллактическое смещение, и чем больше перемещение наблюдателя (базис измерения), тем больше параллактическое смещение.

Для определения длины дуги используется система треугольников — способ триангуляции, который впервые был применен еще в 1615 г. Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30 — 40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других. Основой для вычисления длин сторон во всех этих треугольниках является размер базиса АС (рис. 3.10). Точность измерения базиса длиной в 10 км составляет около 1 мм. Во всех пунктах устанавливают геодезические сигналы — вышки высотой в несколько десятков метров. С вершины сигнала с помощью угломерного инструмента (теодолита) измеряют углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон. Проводя затем измерение углов из пунктов, расстояние между которыми вычислено, можно узнать длину двух очередных сторон в треугольнике. Зная длину сторон этих треугольников, можно определить длину дуги АВ.

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в. Для уточнения формы Земли Французская академия наук снарядила сразу две экспедиции. Одна из них работала в экваториальных широтах Южной Америки в Перу, другая — вблизи Северного полярного круга на территории Финляндии и Швеции. Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора. Последующие исследования подтвердили, что длина дуги одного градуса меридиана увеличивается с возрастанием географической широты. Это означало, что форма Земли — не идеальный шар: она сплюснута у полюсов. Ее полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1:50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.

Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием. По современным данным оно составляет 1/298 или 0,0034. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения.

В XX в. благодаря измерениям, точность которых составила 15 м, выяснилось, что земной экватор также нельзя считать окружностью. Сплюснутость экватора составляет всего 1/30 000 (в 100 раз меньше сплюснутости меридиана). Более точно форму нашей планеты передает фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

В настоящее время форму Земли принято характеризовать следующими величинами:

  • экваториальный радиус — 6378,160 км;
  • полярный радиус — 6356,777 км;
  • сжатие эллипсоида — 1 : 298,25;
  • средний радиус — 6371,032 км;
  • длина окружности экватора — 40075,696 км.

13.2 Определение расстояний в Солнечной системе.

Горизонтальный параллакс

Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определен горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является ее радиус.

Горизонтальным параллаксом (р) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11).

Из треугольника OASможно выразить величину — расстояние OS = D:

,

где R— радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57′. Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца 8,8Ѕ. Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 000 000 км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin p ≈ p, если угол р выражен в радианах. В одном радиане содержится 206 265Ѕ. Тогда, заменяя sin р на р и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:

или (с достаточной точностью)

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации. Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчетов траекторий полета космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

Пример решения задач.

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9″?

13.4. Определение размеров светил

Зная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12).

Формула, связывающая эти величины, аналогична формуле для определения параллакса:

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30′, а все планеты видны невооруженному глазу как точки, можно воспользоваться соотношением: sin ρ ≈ ρ. Тогда:

 и .

Следовательно,

.

Если расстояние Dизвестно, то

где величина ρ выражена в радианах.

Пример  решения задач

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30′?

Определение расстояний и размеров тел в Солнечной системе

1) Определение расстояний до небесных тел.

В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а. е.).

1-й способ: (известен) По третьему закону Кеплера можно определить расстояние до тел СС, зная периоды обращений и одно из расстояний.

Приближённый метод.

2-й способ: Определение расстояний до Меркурия и Венеры в моменты элонгации (из прямоугольного треугольника по углу элонгации).

3-й способ: Геометрический (параллактический).

Пример: Найти неизвестное расстояние АС. [АВ] – Базис — основное известное расстояние, т. к. углы САВ и СВА – известны, то по формулам тригонометрии (теорема синусов) можно в ∆ найти неизвестную сторону, т. е. [CА]. Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя. Параллакс- угол (АСВ), под которым из недоступного места виден базис (АВ — известный отрезок). В пределах СС за базис берут экваториальный радиус Земли R=6378км.

Пусть К — местонахождение наблюдателя, из которого светило видно на горизонте. Из рисунка видно, что из прямоугольного треугольника гипотенуза, расстояние D равно: , так как при малом значении угла если выражать величину угла в радианах и учитывать, что угол выражен в секундах дуги, а 1рад =57,30=3438’=206265″, то и получается вторая формула.

Угол (ρ) под которым со светила, находящегося на горизонте (┴ R — перпендикулярно лучу зрения) был бы виден экваториальный радиус Земли называется горизонтальным экваториальным параллаксом светила.

Т.к. со светила никто наблюдать не будет в силу объективных причин, то горизонтальный параллакс определяют так: измеряем высоту светила в момент верхней кульминации из двух точек земной поверхности, находящихся на одном географическом меридиане и имеющем известные географические широты. Из полученного четырехугольника вычисляют все углы (в т. ч. параллакс).

Из истории: Первое измерение параллакса (параллакса Луны) сделано в 129г до НЭ Гиппархом (180-125, Др. Греция).

Впервые расстояния до небесных тел (Луны, Солнца, планет) оценивает Аристотель (384-322, Др. Греция) в 360г до НЭ в книге «О небе» →слишком не точно, например радиус Земли в 10000 км.

В 265г до НЭ Аристарх Самосский (310-230, Др. Греция) в работе «О величине и расстоянии Солнца и Луны» определяет расстояние через лунные фазы. Так расстояния у него до Солнца (по фазе Луны в 1 четверти из прямоугольного треугольника, т. е. впервые использует базисный метод: ЗС=ЗЛ/cos 87º≈19*ЗЛ). Радиус Луны определил в 7/19 радиуса Земли, а Солнца в 6,3 радиусов Земли (на самом деле в 109 раз). На самом деле угол не 87º а 89º52′ и поэтому Солнце дальше Луны в 400 раз. Предложенные расстояния использовались многие столетия астрономами.

В 240г до НЭ ЭРАТОСФЕН (276-194, Египет) произведя измерения 22 июня в Александрии угла между вертикалью и направлением на Солнце в полдень (считал, что раз Солнце очень далеко, то лучи параллельны) и используя записи наблюдений в тот же день падения лучей света в глубокий колодец в Сиене (Асуан) (в 5000 стадий = 1/50 доли земной окружности (около 800км) т. е. Солнце находилось в зените) получает разность углов в 7º12′ и определяет размер земного шара, получив длину окружности шара 39690 км (радиус=6311км). Так была решена задача определения размера Земли, используя астрогеодезический способ. Результат не был произведён до 17 века, лишь астрономы Багдадской обсерватории в 827г немного поправили его ошибку.

В 125г до НЭ Гиппарх довольно точно определяет (в радиусах Земли) радиус Луны (3/11 R) и расстояние до Луны (59 R).

Точно определил расстояние до планет, приняв расстояние от Земли до Солнца за 1а.е., Н. Коперник.

Наибольший горизонтальный параллакс имеет ближайшее тело к Земле — Луна. Р=57’02«; а для Солнца Р¤=8,794«

Задача 1. Найти расстояние от Земли до Луны, зная параллакс Луны и радиус Земли.

Задача 2. На каком расстоянии от Земли находится Сатурн, если его параллакс 0,9″. [из формулы D=(206265/0,9)*6378= 1461731300км = 1461731300/149600000≈9,77а.е.]

4-й способ Радиолокационный: импульс→объект →отраженный сигнал→время. Предложен советскими физиками Л.И. Мандельштамом и Н.Д. Папалекси. Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946г была произведена первая радиолокация Луны Баем в Венгрии и в США, а в 1957-1963гг — радиолокация Солнца (исследования солнечной короны проводятся с 1959г), Меркурия (с 1962г на ll= 3.8, 12, 43 и 70 см), Венеры, Марса и Юпитера (в 1964 г. на волнах l = 12 и 70 см), Сатурн (в 1973 г. на волне l = 12.5 см) в Великобритании, СССР и США. Первые эхо-сигналы от солнечной короны были получены в 1959 (США), а от Венеры в 1961 (СССР, США, Великобритания). По скорости распространения радиоволн с = 3 × 105 км/с и по промежутку времени t (с) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела. VЭМВ=С=299792458м/с≈3*108 м/с. Основная трудность в исследовании небесных тел методами радиолокации связана с тем, что интенсивность радиоволн при радиолокации ослабляется обратно пропорционально четвертой степени расстояния до исследуемого объекта. Поэтому радиолокаторы, используемые для исследования небесных тел, имеют антенны больших размеров и мощные передатчики. Например, радиолокационная установка центра дальней космической связи в Крыму имеет антенну с диаметром главного зеркала 70 м и оборудована передатчиком мощностью несколько сотен кВт на волне 39 см. Энергия, направляемая к цели, концентрируется в луче с углом раскрыва 25′.

Из радиолокации Венеры, уточнено значение астрономической единицы: 1 а. е.=149 597 870 691 ± 6м ≈149,6 млн.км., что соответствует Р¤=8,7940″. Так проведенная в Советском Союзе обработка данных радиолокационных измерений расстояния до Венеры в 1962-75гг (один из первых удачных экспериментов по радиолокации Венеры провели сотрудники Института радиотехники и электроники АН СССР в апреле 1961г антенной дальней космической связи в Крыму, l= 39 см) дала значение 1 а.е. =149597867,9 ±0,9 км. XVI Генеральная ассамблея Международного астрономического союза приняла в 1976г значение 1 а.е.=149597870±2 км. Путем радиолокации с КА определяется рельеф поверхности планет и их спутников, составляются их карты.

Основные антенны, используемые для радиолокации планет:

= Евпатория, Крым, диаметр 70 м, l= 39 см;

= Аресибо, Пуэрто Рико, диаметр 305 м, l= 12.6 см;

= Голдстоун, Калифорния, диаметр 64 м, l = 3.5 и 12.6 см, в бистатическом режиме прием осуществляется на системе апертурного синтеза VLA.

С изобретением Квантовых генераторов (лазера) в 1969г произведена первая лазерная локация Луны (зеркало для отражения лазерного луча на Луне установили астронавты США «Ароllо — 11» 20.07.69г), точность измерения составили ±30 см. На рисунке показано расположение лазерных уголковых отражателей на Луне, установленных при полете КА «Луна-17, 21» и «Аполлон — 11, 14, 15». Все, за исключением отражателя Лунохода-1 (L1), работают и сейчас. Лазерная (оптическая) локация нужна для: -решение задач космических исследований. -решение задач космической геодезии. -выяснения вопроса о движении земных материков и т.д. 2) Определение размеров небесных тел.

а) Определение радиуса Земли.

АОВ=n=φА-φВ(разность географических широт)

е=АВ — длина дуги вдоль меридиана

т.к. е10=е/n=2πR/3600 ,то

R ± = 180ºl / πn

Аналогичным способом в 240г до НЭ (рисунок выше) определяет радиус Земли географ Эратосфен. L/800=3600/7,20

б) Определение размера небесных тел.

p-параллакс. ρ — угловой радиус светила Из прямоугольных треугольников дважды используя формулу R=r. sin ρ (чертёж) получимR=D sin ρ

  1. Задача 3. Во сколько раз линейный радиус Солнца превышает радиус земли, если угловой радиус Солнца 16′?

  2. CD- «Red Shift 5.1» — Определить на данный момент удаленность нижних (планет земной группы, верхних планет, планет гигантов) от Земли и Солнца в а.е.

  3. Угловой радиус Марса 9,6″, а горизонтальный параллакс 18″. Чему равен линейный радиус Марса?

  4. Каково расстояние между лазерным отражателем на Луне и телескопом на Земле, если импульс возвратился через 2,43545с?

  5. Расстояние от Земли до Луны в перигее 363000км, а в апогее 405000км. Определите горизонтальный параллакс Луны в этих положениях.

  6. Тест. Определение расстояний

  7. Дополнительно, для тех кто сделал — кроссворд.

  1. Планета СС

  2. Ближайшая к Земле точка орбиты ИСЗ

  3. Ученый, создатель гелиоцентрической системы мира

  4. Угол под которым со светила виден R Земли

  5. Ученый, направивший первым в 1609г телескоп на небо

  6. Сторона горизонта

Итог:

1) Что такое параллакс?

2) Какими способами можно определить расстояние до тел СС?

3) Что такое базис? Что принимается за базис для определения расстояния до тел СС?

4) Как зависит параллакс от удаленности небесного тела?

5) Как зависит размер тела от угла?

Домашнее задание: §13; вопросы и задания стр. 64-71 упр.11, стр. 71

Практическая работа «Определение размера Луны».

В период полнолуния, используя две соединенные под прямым углом линейки, определяются видимые размеры лунного диска: поскольку треугольники KCD и КАВ подобны, из теоремы о подобии треугольников следует, что: АВ/СD=KB/KD. Диаметр Луны АВ = (CD.KB)/KD. Расстояние от Земли до Луны берёте из справочных таблиц (но лучше, если сумеете вычислить его сами).

Вы уже знаете, что ещё в Древней Греции учёными и мыслителями
было установлено, что наша планета не является плоской, а имеет шарообразную
форму. Представление о Земле как о шаре, который свободно, без всякой опоры
находится в космическом пространстве, является одним из величайших достижений
древнего мира.

Первый известный науке метод определения размеров Земли
применил греческий учёный Эратосфен, живший в Египте. Его идея была достаточно
проста. Итак, Эратосфен выбрал два города — Александрию и Сиену (ныне Асуан) —
расположенных на одном земном меридиане.

Далее он обозначил длину дуги меридиана между двумя городами
через l, а её
угловое значение в градусах как п.

Тогда длина дуги в 1о выбранного меридиана равна

А длина всей окружности меридиана: L = 360ol0.

С другой стороны, он знал, что длина окружности равна: L =
R.

Приравняв правые части последних двух уравнений, легко
получить искомый радиус земного шара:

Теперь было необходимо определить длину дуги меридиана в градусной
мере. Очевидно, что она равна разности географических широт Александрии и
Сиены. Так вот, чтобы определить эту разность Эратосфен придумал хитрый способ.
Он знал, что в полдень дня летнего Солнцестояния в Сиене Солнце находится в
зените и освещает дно самых глубоких колодцев. А в Александрии Солнце до зенита
не доходит. Поэтому шест, вбитый вертикально в землю должен отбрасывать тень.
Измерив длину этой тени можно легко определить искомую длину дуги меридиана,
которая у Эратосфена оказалась равной 7,2о.

Ну а расстояние между Александрией и Сиеной ему было хорошо
известно: оно составляло пять тысяч греческих стадий.

Подставив все данные в формулу для длины окружности
меридиана, Эратосфен получил значение в 250 000 стадий.

Стадий — это весьма неоднозначная единица измерения
расстояния. Но, как правило, за стадий принимали расстояние, которое проходит
легковооружённый воин за промежуток времени от появления первого луча солнца
при его восходе до того момента, когда весь солнечный диск окажется над горизонтом.

Однако если учесть, что расстояние между Александрией и
Асуаном по прямой примерно равно 844 километрам, то можно полагать, что одна
стадия примерно равна 169 метрам.

Тогда искомая длина всей окружности меридиана равна
42 250 километрам, что совсем не плохо для того времени.

Современная наука располагает более точными способами
измерения расстояний на земной поверхности. Одним из них является метод
триангуляций, основанный на явлении параллактического смещения.

Параллактическое смещение — это изменение направления
на предмет при перемещении наблюдателя. С его помощью можно измерить расстояние
на основе измерения длины одной из сторон (базиса) и двух прилегающих к
ней углов в треугольнике.

Суть метода триангуляций состоит в следующем. По обе стороны
дуги, длину которой нужно измерить, выбирается несколько точек на расстоянии не
более 50 километров друг от друга, на которых устанавливаются геодезические
вышки. При этом из каждой точки должны быть видны по крайней мере две другие
точки. Далее тщательным образом измеряется длина базиса (с точностью до одного
миллиметра). После этого с вершины вышки при помощи теодолита измеряются углы
между направлениями на два-три соседних пункта. Измерив углы в треугольнике,
одной из сторон которого является базис, геодезисты получают возможность
вычислить длину двух других его сторон по известным тригонометрическим
формулам. Проводя затем измерение углов из пунктов, расстояние между которыми
уже вычислено, можно узнать длину очередных двух сторон и так далее. Затем, по
вычисленным сторонам, определяется искомая длина дуги.

В XVIII веке использование триангуляционных измерений в
экваториальных широтах и вблизи северного полярного круга, показало, что длина
дуги в 1о меридиана не одинакова и увеличивается к полюсам. Из этого
следовало, что наша планета не является идеальным шаром и её полярный радиус
почти на 21 километр короче экваториального. Поэтому в геодезии и форму Земли
считают геоидом, то есть телом с поверхностью, близкой к поверхности спокойного
океана и продолженной под материками.

В настоящее время форму Земли принято характеризовать
следующими физическими характеристиками:

·                   полярное сжатие — 0,0033528;

·                   экваториальный радиус — 6378,1 км;

·                   полярный радиус — 6356,8 км;

·                   средний радиус — 6371,0 км;

·                  
и длина окружности экватора — 40 075,017 км.

Долгое время загадкой для многих астрономов являлось истинное
расстояние от Земли до Солнца. Измерить его смогли лишь во второй половине XVIII века,
когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при
этом измеряется параллактическое смещение объекта, находящегося за пределами
Земли, а базисом является её радиус.

Горизонтальным параллаксом называется угол, под
которым со светила виден радиус Земли, перпендикулярный лучу зрения.

Зная горизонтальный параллакс светила, можно, по известным
тригонометрическим соотношениям, определить его расстояние от центра Земли:

Очевидно, что чем дальше расположено светило, те меньше его
горизонтальный параллакс. Например, наибольший параллакс, в среднем 57ʹ,
имеет спутник Земли — Луна. У Солнца он значительно меньше и примерно
составляет 8,794ʹʹ. Такому параллаксу соответствует среднее
расстояние от Земли до Солнца, примерно равное 149,6 миллиона километров.

На одном из прошлых уроков мы говорили о том, что это
расстояние в астрономии принимается за одну астрономическую единицу. С её
помощью удобно измерять расстояния между телами в Солнечной системе.

Но вернёмся к нашей формуле. Итак, из геометрии вам должно
быть известно, что при малых значениях угла его синус примерно равен самому углу,
выраженному в радианах. Если учесть, что в одном радиане содержится 206
265ʹʹ, то легко можно получить формулу, удобную для вычислений:

Для примера, давайте с вами определим расстояние от Земли до
Юпитера в момент противостояния, если его горизонтальный параллакс был равен
2,2ʹʹ. Радиус Земли примем равным 6371 километру.

Эту же задачу можно было решить несколько иначе.

В настоящее время для более точного определения расстояний до
тел в Солнечной системе применяется более точный метод измерений — радиолокационный.
Измерив время, необходимое для того, чтобы радиолокационный импульс достиг
небесного тела, отразился и вернулся на Землю, вычисляют расстояние до этого
тела по формуле:

где с — это скорость света в вакууме.

С разработкой методов определения расстояний до тел в
Солнечной системе учёным не составило большого труда придумать и способ
определения их размеров. В частности, при наблюдениях небесного тела Солнечной
системы с Земли можно измерить угол, под которым оно видно наблюдателю, то есть
его угловой размер (или угловой диаметр), а, следовательно, и угловой радиус.

А зная угловой радиус и расстояние до светила, можно
вычислить его линейный радиус:

.

Только в этой формуле угловой радиус должен быть выражен в
радианах.

Если в записанное уравнение подставить формулу для
определения расстояний методом горизонтального параллакса и упростить её,
используя тот факт, что значения углов ρ и р малы, то получим
формулу, по которой можно определять линейные размеры небесных тел:

Но помните, пользоваться ей можно тогда, когда видны диски
светил.

Для примера давайте решим с вами такую задачу. При наблюдении
прохождения Меркурия по диску Солнца определили, что его угловой радиус равен
5,5’’, а горизонтальный параллакс — 14,4’’. Чему равен линейный радиус
Меркурия?

Понравилась статья? Поделить с друзьями:
  • Как найти все решения слу
  • Как найди воду для колодца
  • После высыхания обоев видны стыки как исправить
  • Как найти наибольшее произведение дробей
  • Как убили президента найти