Максим *******
В соответствии с законом всемирного тяготения, вытекающим из третьего закона Ньютона —
сила взаимодействия между телами F = G*m1*m2/R^2,
где G = 6,67*10^-11 (Н*м^2/кг^2) — гравитационная постоянная.
Из приведенной формулы можно вычислить R — расстояние междку телами как квадратный корень
R = sqrt (G*m1*m2/F)
Вот и все. «Любые две материальные точки притягиваются с силами, прямо пропорциональными произведению их масс и обратнопропорциональными квадрату расстояния между ними»(направлены силы по центру материальных точек) .
Успехов в учебе !
Закон всемирного тяготения. Калькулятор силы притяжения, массы и расстояния онлайн.
Онлайн калькулятор закона всемирного тяготения (гравитации) вычислит силу притяжения двух материальных точек, массу и расстояния между ними, а также даст подробное решение.
Калькулятор содержит:
Калькулятор вычисления силы притяжения.
Калькулятор вычисления расстояния через массы и силу притяжения между двумя материальными точками.
Калькулятор вычисления массы материальной точки через массу второй материальной точки, силу и расстояние.
Калькулятор вычисления силы притяжения
Сила притяжения между любыми двумя материальными точками m1 и m2 прямо пропорциональна произведению масс этих точек и обратна пропорциональна квадрату расстояния между ними.
Гравитационная постоянная G численно равна силе гравитационного притяжения между двумя телами, масса каждого тела равна 1 кг, находящимися на расстоянии 1 метра друг от друга.
G = 6.67 × 10-11 Н × м2 / кг2
Единицей измерения силы — Ньютон (Н, N)
Масса m1 =
Масса m2 =
Расстояние r =
Единица измерения силы F
Калькулятор вычисления расстояния через массы и силу притяжения между двумя материальными точками
По закону всемирного тяготения расстояние между двумя материальными точками равно квадратному корню из частного, в котором числителем выступает гравитационная постоянная G и произведение масс материальных точек, а знаменатель выражен силой притяжения между данными точками.
Гравитационная постоянная G численно равна силе гравитационного притяжения между двумя телами, масса каждого тела равна 1 кг, находящимися на расстоянии 1 метра друг от друга.
G = 6.67 × 10-11 Н × м2 / кг2
Единица измерения расстояния — Метр (м, m).
Масса m1 =
Масса m2 =
Сила F =
Единица измерения расстояния r
Калькулятор вычисления массы материальной точки через массу второй материальной точки, силу и расстояние.
По закону всемирного тяготения масса m1 одной из материальных точек, между которыми действует сила притяжения определяется как отношение произведения силы и квадрата расстояния на произведение гравитационной постоянной и массу m2 второй материальной точки.
Гравитационная постоянная G численно равна силе гравитационного притяжения между двумя телами, масса каждого тела равна 1 кг, находящимися на расстоянии 1 метра друг от друга.
G = 6.67 × 10-11 Н × м2 / кг2
Единица массы — килограмм, но также можно использовать и другие единицы, например грамм, тонна, миллиграмм и т.д.
Сила F =
Расстояние r =
Масса m2 =
Единица измерения массы m1
Вам могут также быть полезны следующие сервисы |
Калькуляторы (физика) |
Механика |
Калькулятор вычисления скорости, времени и расстояния |
Калькулятор вычисления ускорения, скорости и перемещения |
Калькулятор вычисления времени движения |
Калькулятор времени |
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения. |
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния. |
Импульс тела. Калькулятор вычисления импульса, массы и скорости |
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы. |
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения |
Оптика |
Калькулятор отражения и преломления света |
Электричество и магнетизм |
Калькулятор Закона Ома |
Калькулятор Закона Кулона |
Калькулятор напряженности E электрического поля |
Калькулятор нахождения точечного электрического заряда Q |
Калькулятор нахождения силы F действующей на заряд q |
Калькулятор вычисления расстояния r от заряда q |
Калькулятор вычисления потенциальной энергии W заряда q |
Калькулятор вычисления потенциала φ электростатического поля |
Калькулятор вычисления электроемкости C проводника и сферы |
Конденсаторы |
Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе |
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе |
Калькулятор вычисления энергии W заряженного конденсатора |
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов |
Калькуляторы по астрономии |
Вес тела на других планетах |
Ускорение свободного падения на планетах Солнечной системы и их спутниках |
Конвертеры величин |
Конвертер единиц длины |
Конвертер единиц скорости |
Конвертер единиц ускорения |
Цифры в текст |
Калькуляторы (Теория чисел) |
Калькулятор выражений |
Калькулятор упрощения выражений |
Калькулятор со скобками |
Калькулятор уравнений |
Калькулятор суммы |
Калькулятор пределов функций |
Калькулятор разложения числа на простые множители |
Калькулятор НОД и НОК |
Калькулятор НОД и НОК по алгоритму Евклида |
Калькулятор НОД и НОК для любого количества чисел |
Калькулятор делителей числа |
Представление многозначных чисел в виде суммы разрядных слагаемых |
Калькулятор деления числа в данном отношении |
Калькулятор процентов |
Калькулятор перевода числа с Е в десятичное |
Калькулятор экспоненциальной записи чисел |
Калькулятор нахождения факториала числа |
Калькулятор нахождения логарифма числа |
Калькулятор квадратных уравнений |
Калькулятор остатка от деления |
Калькулятор корней с решением |
Калькулятор нахождения периода десятичной дроби |
Калькулятор больших чисел |
Калькулятор округления числа |
Калькулятор свойств корней и степеней |
Калькулятор комплексных чисел |
Калькулятор среднего арифметического |
Калькулятор арифметической прогрессии |
Калькулятор геометрической прогрессии |
Калькулятор модуля числа |
Калькулятор абсолютной погрешности приближения |
Калькулятор абсолютной погрешности |
Калькулятор относительной погрешности |
Дроби |
Калькулятор интервальных повторений |
Учим дроби наглядно |
Калькулятор сокращения дробей |
Калькулятор преобразования неправильной дроби в смешанную |
Калькулятор преобразования смешанной дроби в неправильную |
Калькулятор сложения, вычитания, умножения и деления дробей |
Калькулятор возведения дроби в степень |
Калькулятор перевода десятичной дроби в обыкновенную |
Калькулятор перевода обыкновенной дроби в десятичную |
Калькулятор сравнения дробей |
Калькулятор приведения дробей к общему знаменателю |
Калькуляторы (тригонометрия) |
Калькулятор синуса угла |
Калькулятор косинуса угла |
Калькулятор тангенса угла |
Калькулятор котангенса угла |
Калькулятор секанса угла |
Калькулятор косеканса угла |
Калькулятор арксинуса угла |
Калькулятор арккосинуса угла |
Калькулятор арктангенса угла |
Калькулятор арккотангенса угла |
Калькулятор арксеканса угла |
Калькулятор арккосеканса угла |
Калькулятор нахождения наименьшего угла |
Калькулятор определения вида угла |
Калькулятор смежных углов |
Калькуляторы систем счисления |
Калькулятор перевода чисел из арабских в римские и из римских в арабские |
Калькулятор перевода чисел в различные системы счисления |
Калькулятор сложения, вычитания, умножения и деления двоичных чисел |
Системы счисления теория |
N2 | Двоичная система счисления |
N3 | Троичная система счисления |
N4 | Четырехичная система счисления |
N5 | Пятеричная система счисления |
N6 | Шестеричная система счисления |
N7 | Семеричная система счисления |
N8 | Восьмеричная система счисления |
N9 | Девятеричная система счисления |
N11 | Одиннадцатиричная система счисления |
N12 | Двенадцатеричная система счисления |
N13 | Тринадцатеричная система счисления |
N14 | Четырнадцатеричная система счисления |
N15 | Пятнадцатеричная система счисления |
N16 | Шестнадцатеричная система счисления |
N17 | Семнадцатеричная система счисления |
N18 | Восемнадцатеричная система счисления |
N19 | Девятнадцатеричная система счисления |
N20 | Двадцатеричная система счисления |
N21 | Двадцатиодноричная система счисления |
N22 | Двадцатидвухричная система счисления |
N23 | Двадцатитрехричная система счисления |
N24 | Двадцатичетырехричная система счисления |
N25 | Двадцатипятеричная система счисления |
N26 | Двадцатишестеричная система счисления |
N27 | Двадцатисемеричная система счисления |
N28 | Двадцативосьмеричная система счисления |
N29 | Двадцатидевятиричная система счисления |
N30 | Тридцатиричная система счисления |
N31 | Тридцатиодноричная система счисления |
N32 | Тридцатидвухричная система счисления |
N33 | Тридцатитрехричная система счисления |
N34 | Тридцатичетырехричная система счисления |
N35 | Тридцатипятиричная система счисления |
N36 | Тридцатишестиричная система счисления |
Калькуляторы площади геометрических фигур |
Площадь квадрата |
Площадь прямоугольника |
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ |
Калькуляторы (Комбинаторика) |
Калькулятор нахождения числа перестановок из n элементов |
Калькулятор нахождения числа сочетаний из n элементов |
Калькулятор нахождения числа размещений из n элементов |
Калькуляторы линейная алгебра и аналитическая геометрия |
Калькулятор сложения и вычитания матриц |
Калькулятор умножения матриц |
Калькулятор транспонирование матрицы |
Калькулятор нахождения определителя (детерминанта) матрицы |
Калькулятор нахождения обратной матрицы |
Длина отрезка. Онлайн калькулятор расстояния между точками |
Онлайн калькулятор нахождения координат вектора по двум точкам |
Калькулятор нахождения модуля (длины) вектора |
Калькулятор сложения и вычитания векторов |
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами |
Калькулятор скалярного произведения векторов через координаты |
Калькулятор векторного произведения векторов через координаты |
Калькулятор смешанного произведения векторов |
Калькулятор умножения вектора на число |
Калькулятор нахождения угла между векторами |
Калькулятор проверки коллинеарности векторов |
Калькулятор проверки компланарности векторов |
Генератор Pdf с примерами |
Тренажёры решения примеров |
Тренажер по математике |
Тренажёр таблицы умножения |
Тренажер счета для дошкольников |
Тренажер счета на внимательность для дошкольников |
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. |
Тренажер решения примеров с разными действиями |
Тренажёры решения столбиком |
Тренажёр сложения столбиком |
Тренажёр вычитания столбиком |
Тренажёр умножения столбиком |
Тренажёр деления столбиком с остатком |
Калькуляторы решения столбиком |
Калькулятор сложения, вычитания, умножения и деления столбиком |
Калькулятор деления столбиком с остатком |
Генераторы |
Генератор примеров по математике |
Генератор случайных чисел |
Генератор паролей |
Главная
Учёба
Калькулятор расчётов по закону всемирного тяготения Ньютона
Калькулятор расчётов по закону всемирного тяготения Ньютона
Условные обозначения формулы: F — сила гравитации, m1,m2 — масса двух тел, G — гравитационная константа, приблизительно 6.67384 (80) x10^-11, R — расстояние между телами.
Формула расчёта силы гравитации: F=G*m1*m2/R2. Гравитационная константа, умноженная на массы двух тел и разделённая на расстояние в квадрате.
Формула расчёта массы одного из тел: m1=(F*R2*10^11)/(G/m2). Силу гравитации, умножаем на расстояние, в квадрате, на 10 в 11 степени, и делим на гравитационную константу умноженную на массу другого тела.
Формула расчёта расстояния между телами: R=[квадратный корень][(G*m1*m2)/(F*10^11)]. Гравитационную константу умноженную на массы тел, делим на силу гравитации, умноженную на 10 в 11 степени и извлекаем квадратный корень.
Понравилась страница? Поделитесь ссылкой в социальных сетях. Поддержите проект!
Нет комментариев.
Привет.
Я Настя из ИвГУ (это город Иваново).
«Сегодня от своего лица хочу поблагодарить этот сайт за помощь мне с учебой. Здесь я пользовалась не только материалами, но и нашла преподавателей которые решали мне задачи.
Если тебе нужно что-то сделать в универе, я сама рекомендую. А также пользуйся моей ссылкой и получай 300 руб. на счёт при регистрации.»
Пунктуация и орфография автора сохранены
Получить 300 руб. от Насти
Webmath — преподаватель со стажем более 5 лет выполнит учебную работу за вас
Договор
Строго соблюдаем условия договора от заказа до защиты
Наши авторы
10 000+ преподавателей и научных сотрудников
Гарантии
Точное соответствие ТЗ с бесплатными доработками
АкцияСкидка 25% на вашу работу + речь в подарок. Дарим вам 100₽ на первый заказ!
Все тела в природе притягиваются, это свойство тел, имеющих массу. Сила, с которой тела притягиваются, называется силой гравитации (силой притяжения).
Формула закона всемирного тяготения с объяснениями
Зная массы двух тел и расстояние между ними, можно рассчитать силу их взаимного притяжения с помощью такой формулы:
[ large boxed { F = G cdot frac{m_{1} cdot m_{2}}{R^{2}} } ]
(F left( text{Н} right)) (Ньютоны) — сила, с которой два шарообразных тела притягиваются
( m_{1} left( mbox{кг} right) ) (килограммы) — масса первого тела
( m_{2} left( text{кг} right) ) (килограммы) — масса второго тела
( R left( text{м} right) ) (метры) — расстояние между центрами тел
(G = 6{,}67 cdot 10^{-11} left( text{Н} cdot frac{text{м}^2}{text{кг}^2} right)) — гравитационная постоянная
Примечания:
- формула позволяет точно рассчитать притяжение между двумя однородными шарами;
- если тела не шарообразные, или не однородные, то силу притяжения получим с погрешностью;
- чем больше расстояние между телами, тем меньше будет погрешность;
Словесная формулировка закона всемирного тяготения
Закон всемирного тяготения словами можно сформулировать так:
Два тела притягиваются с силой
прямо пропорциональной
массам этих тел
и обратно пропорциональной
квадрату расстояния между телами.
Пояснения к закону всемирного тяготения
Сила прямо пропорциональна массам тел. Математики прямую пропорциональность записывают так:
[ F sim m_{1} cdot m_{2} ]
Прямая пропорциональность означает: чем больше массы, тем больше сила притяжения.
Сила обратно пропорциональна расстоянию в квадрате. Математики обратную пропорциональность записывают с помощью дроби. В знаменателе этой дроби находится величина, обратно пропорциональная величине, находящейся в левой части выражения:
[ F sim frac{1}{R^{2}} ]
Обратная пропорциональность означает: чем больше расстояние между телами, тем меньше сила притяжения.
Что такое гравитационная постоянная
Физики часто употребляют термин: «Физический смысл». Физический смысл для чего-то – это ответ на вопрос: Что это такое с точки зрения физики?
Физический смысл гравитационной постоянной:
Гравитационная постоянная — это сила, с которой притягиваются два однородных шара, по 1-му килограмму каждый, когда они находятся на расстоянии 1-го метра один от другого.
(G = 6{,}67 cdot 10^{-11} left( text{Н} cdot frac{text{м}^2}{text{кг}^2} right)) — гравитационная постоянная
Как видно, это очень незначительная сила, поэтому в повседневной жизни мы ее не замечаем.
Куда направлена сила притяжения
Соединим прямой линией центы притягивающихся тел. Вдоль этой линии и будут направлены силы, с которыми тела притягиваются. Физики часто заменяют фразу «действие одного тела на другое» словом «взаимодействие».
Рис.1. Направление сил взаимодействия двух шаров.
( F_{1} ) – это сила, с которой большой шар притягивается к маленькому шарику;
( F_{2} ) – это сила, с которой маленький шарик притягивается к большому шару;
Из третьего закона Ньютона известно, что тела взаимодействуют с одинаковыми по модулю силами. Это значит, что ( | F_{1} | = | F_{2} | ). То есть, силы равны.
У физиков есть такой шуточный вопрос: «Что сильнее притягивает – Луна Землю, или Земля Луну?». Правильный ответ: «Они притягиваются с одинаковыми силами».
Как правильно выбирать расстояние для подстановки в формулу
Центр масс тела — это точка, которой мы заменяем тело для упрощения задачи.
Если тело однородное и шарообразное, то центр масс — это точка, расположенная в центре шара.
Расстояние между телами — это расстояние между центрами масс.
Рассмотрим несколько поясняющих примеров:
Пример 1. Притяжение между планетой и звездой
Рис.2. Звезда и планета притягиваются
( R = left( r_{1} + h + r_{2} right) )
Складываем радиусы шаров и расстояние между их поверхностями, получаем расстояние между центрами тел. Это расстояние и подставляем в знаменатель формулы.
Пример 2. Два шарообразных тела соприкасаются
Рис. 3. Два шара соприкасаются
( R = left( r_{1} + r_{2} right) )
В формулу нужно подставить расстояние между центрами масс шаров. Складываем радиусы шаров и результат подставляем в формулу вместо R.
Пример 3. Малое тело покоится на поверхности планеты
Рис. 4. Камень находится на поверхности планеты.
( R = r )
Расстояние между телами — это радиус планеты. Радиус камня очень мал по сравнению с радиусом планеты, поэтому, мы радиус камня не учитываем.
Пример 4. Малое тело находится на некотором расстоянии от планеты
Рис. 5. Искусственный спутник находится на некотором расстоянии от планеты
( R = left( r + h right) )
Складываем радиус планеты и расстояние от спутника до поверхности планеты. Полученное число является расстоянием между телами. Размеры спутника не учитываем, так как они очень малы по сравнению с радиусом планеты.
Вам будет интересно почитать:
Первая космическая скорость
Движение по окружности, центростремительная сила и центростремительное ускорение
Ускорение свободного падения