Как найти растворимость вещества в растворе

Растворимость. Произведение растворимости

Растворение
вещества в заданном количестве
растворителя происходит до состояния
насыщения.
Насыщенный раствор


раствор, находящийся в динамическом
равновесии с растворяющимся веществом.
Молярная концентрация растворенного
вещества в насыщенном растворе называется
растворимостью

этого вещества при данной температуре
Р(х) = См(х).
При растворении электролита, например,
соли, в раствор переходят не молекулы,
а ионы. В этом случае в насыщенном
растворе равновесие устанавливается
между солью в кристаллическом состоянии
и ионами, перешедшими в раствор:

СаСО3(кр)
=
Ca2++
СО32-.

Константа равновесия
этого процесса:

Крав.
=
[Ca2+]

[СО32-]/
[СаСО3(кр)]

Концентрация
СаСО3(кр)
является величиной постоянной, тогда

Крав.
• [СаСО3(кр)]
=
[Ca2+]

[СО32-]
=
ПР или ПР
=
(P(x))2.

ПР — называется
произведением растворимости
труднорастворимого электролита (ТРЭ).

При постоянной
температуре в насыщенном растворе
электролита произведение концентраций
ионов с учетом стехиометрических
коэффициентов в уравнении диссоциации
есть величина постоянная при. Значения
ПР для известных ТРЭ помещены в справочник.

Для
ТРЭ типа А2В3
=
+3
+
2-
выражение для произведения растворимости
имеет вид:

ПР
=
а+]2

в-]3
=
[2Р(х)]2

[3Р(х)]3
= 108
Р(х)5.

Исходя из значений
ПР можно количественно оценить условия
образования и растворения осадков,
рассчитать растворимость Р(х) и молярную
концентрацию ионов электролита в его
насыщенном растворе (см. таблицу ниже).

При увеличении
концентрации одного из ионов ТРЭ в его
насыщенном растворе (например, путем
введения хорошо растворимого электролита,
содержащего тот же ион) произведение
концентраций ионов электролита (ПК)
становится больше ПР. При этом равновесие
между твердой фазой и раствором смещается
в сторону образования осадка.

Условием
образования осадка является превышение
произведения концентраций ионов
малорастворимого

электролита
над его произведением растворимости,
т.е.

ПК

> ПР
.

Например,
если в насыщенный раствор AgCI
добавить сильный
электролит KCI,
то
появление в растворе одноименного иона
(CI)
приводит к смещению равновесия в сторону
образования
осадка (←).
Когда устанавится
новое равновесие, при котором произведение
концентраций ионов электролита вновь
становится равным ПР, то в растворе
появится осадок,
концентрация ионов Ag+
будет меньше, а концентрация ионов CI
— больше, чем было до добавления KCI.

AgCI↓
<=> AgCI <=> Ag+
+ CI

Осадок нас.р-р
раствор

Напротив, если в
насыщенном растворе электролита
уменьшить концентрацию одного из ионов
(например, связав его каким-либо другим
ионом), произведение концентраций ионов
будет меньше значения ПР, раствор станет
ненасыщенным, а равновесие между жидкой
фазой и осадком сместится в сторону
растворения осадка (→).

Условием
растворения
осадка малорастворимого электролита
является недонасыщение раствора, т.е
при условии, когда произведение
концентраций его ионов меньше значения

ПР
т.е.
ПК
< ПР
.

Пример
1
.
Растворимость Аg3РО4
в воде при
20°C равна
0.0065 г/л.
Рассчитайте значение ПР (Аg3РО4).

Решение.
Растворимость Аg3РО4
или молярная концентрация соли в
насыщенном
растворе, равна:

т
(Аg3РО4)
0.0065

Р
(Аg3РО4)
= ——————————— = ——————
=
l,6
•l0-5
моль/л

М
(Аg3РО4)
• V(z)
418,58 • 1

Диссоциации
фосфата серебра идет по уравнению:
Аg3РО4
=
3Ag+
+
РО43.
Видно,
что из
1
моля соли образуется
3
моля ионов
Ag+
и
1
моль ионов
Р043,
поэтому [Р043]
=
P(x), a [Ag+]
=
3Р(х).
Отсюда находим ПР:

ПР
=
[Ag+]3

[РО43]
=
(3Р)3

Р
= (4,8 •10-5)
3

•l,6•105
=
1,77
•1018.

Пример
2.

Произведение растворимости йодида
свинца при 20°С равно
8•109.
Вычислить
растворимость соли (в моль/л и в г/л) при
указанной
температуре.

Решение.
Обозначим искомую растворимость через
Р
(моль/л). Тогда в насыщенном растворе
РbI2
содержится
Р
моль/л ионов Рb2+
и

моль/ л ионов
I.Отсюда

ПР(РbI2)
=
[Рb2+]
[I]2
= Р(2Р)2
=
4 Р3
и

Р
= (
ПР(РbI2)/4
)1/3
=
(
8

10-9/
4)1/3
= 1,3
10-3
моль/л.

Молярная
масса РbI2
равна
461
г/моль, поэтому растворимость РbI2,
выраженная в г/л, составит 1,3
10-3
моль/ л • 461 г/ моль = 0,6
г/л.

Пример
3.

Во сколько раз растворимость оксалата
кальция СаС2О4
в
0,1
М
растворе оксалата аммония
(NH4)2С2О4
меньше, чем в воде? Диссоциацию оксалата
аммония на ионы считать полной.

Решение.
Вычислим сначала растворимость оксалата
кальция в воде. Обозначив концентрацию
соли в насыщенном растворе через
Р
(моль/ л), можем записать:

ПР(СаС2О4)
=
[Са2+]
2О42-]
= Р2
.

Отсюда,
используя значение ПР(СаС2О4)=
2 10-9,

Р
=

(ПР(СаС2О4)1/2
=
( 2
10-9
)1/2
=
4,5 •
10-5
моль/л.

Теперь
найдем растворимость той же соли в
0,1
М раствора (NH4)2С2О4;
обозначим ее через
Р‘.
Концентрация ионов Са2+
в насыщенном растворе тоже будет равна
Р’,
а концентрация ионов С2О42-составит
(0,1 + Р’).
Поскольку
Р‘<<0,1,
то
величиной
Р’
по сравнению с
0,1М
можно пренебречь и считать, что [С2О42-]
= 0,1
моль/л. Тогда можно записать:

ПР(СаС2О4)
= 2
•10-9
= Р’

0,1

и
Р’
= 2 •
10-9/
0,1
=

2 •
10-8
моль/л.

Таким
образом, в присутствии (NH4)2С2О4
растворимость СаС2О4
уменьшилась в
4,5•10-5
/
(2•10-8)
раз,т. е. приблизительно в
2200
раз.

Пример
4.
Смешаны равные объемы
0,01
М. растворов хлорида кальция и сульфата
натрия. Образуется ли осадок сульфата
кальция?

Решение.
Найдем произведение концентраций ионов
Са2+
и
SO42-
и сравним его с произведением растворимости
сульфата кальция. Исходные молярные
концентрации растворов
CaCl2
и
Na2S04
одинаковы и равны
0,01
моль/л. Поскольку при смешении исходных
растворов общий объем раствора вдвое
возрастет, то концентрации ионов [Са2+]
и
[SО42-]

вдвое уменьшатся по сравнению с исходными.

Таким
образом, [Са2+]
=
[SО42-]
=
0,005 = 5 •
103
моль/л.

Находим
произведение концентраций ионов ПК
= [Са2+]
[SО42-]
=
(5 •
103)2
= 2,5 •
105.

ПР(CaSO4)
=
1,3•104.
Найденное значение произведения
концентрации ионов меньше этой величины;
следовательно, раствор
будет
ненасыщенным относительно сульфата
кальция, и осадок не образуется.

Для решения
задач на ПР , ПК, растворимость можно
воспользоваться таблицей, приведенной
ниже.

Параметры
насыщенно-

го раствора

Тип электролита
и уравнение диссоциации электролита

АВ
А+В

А2В
2А+В
(АВ2)

А3В
3А+В
(АВ3)

А2В32А+3В
3В2)

См (эл-та), моль/л

Р

Р

Р

Р

См (А), моль/л

Р

2 Р

3 Р

2 Р

См (В), моль/л

Р

Р

Р

3 Р

Масса эл-та, г/л

М(АВ) Р

М(А2В)
Р

М(А3В)
Р

М(А2В3)
Р

Масса (А)эл-та,
г/л

М(А) Р

2М(А) Р

3М(А) Р

2М(А) Р

Масса (В), г/л

М(В) Р

М(В) Р

М(В) Р

3М(В) Р

ПР электролита

Из справочника

Из справочника

Из справочника

Из справочника

ПР электролита
(расч)

Р2

3

27Р4

108Р5

Р
= СМ
(нас),
моль/л

(ПР)1/2

(ПР/4)1/3

(ПР/27)1/4

(ПР/108)1/5

ЗАДАЧИ

  1. Вычислить
    произведение растворимости РbВr2
    при 25°С,
    если
    растворимость соли при этой температуре
    равна 1,32

    10-2
    моль/л.

  2. В
    500
    мл воды при 18°С растворяется
    0,0166
    г
    Ag2CrО4
    .Чему
    равно произведение растворимости этой
    соли?

  3. Для
    растворения
    1,16
    г РbI2
    потребовалось
    2
    л воды. Найти
    произведение
    растворимости соли.

  4. Исходя
    из произведения растворимости карбоната
    кальция,
    найти
    массу СаСО3,
    которая содержится в
    100
    мл его насыщенного
    раствора.

  5. Вычислить
    объем воды, необходимый для растворения
    при
    25°С
    1
    г
    BaSО4.

  6. Рассчитайте
    молярную концентрацию ионов свинца
    (Pb2+)
    в
    насыщенном
    растворе иодида свинца. ПР
    (PbJ2)
    = 10-8.

  7. Рассчитайте
    ПР соли
    NiC2O4,
    если в
    100
    мл насыщенного раствора этой соли
    содержится
    0,001174
    г ионов никеля.

  8. Для
    растворения
    0,72
    г карбоната кальция потребовалось
    15
    л
    воды.
    Вычислите ПР карбоната кальция, считая,
    что объем раствора равен
    объему
    растворителя.

  9. Рассчитайте,
    в каком объеме насыщенного раствора
    хлорида
    свинца
    (II)
    содержится
    0,1
    г ионов свинца, ПР
    (PbCl2)
    = l,6•10-5.

  10. Рассчитайте
    массу кальция в виде ионов Са+2
    которая находится
    в
    500
    мл насыщенного раствора сульфата
    кальция, ПР (СаSО4)
    = 1,3 •
    10-4.

  11. Рассчитайте
    массу кальция в виде ионов Са+2
    которая находится
    в
    500
    мл насыщенного раствора сульфата
    кальция, ПР (СаSО4)
    = 1,3 •
    10-4.

  12. Сколько
    литров воды потребуется для растворения
    0,1
    г хлорида
    серебра
    для получения насыщенного раствора,
    ПР
    (AgCl) = 1

    1010
    .

  13. Выпадет
    ли осадок сульфата кальция, если к
    200
    мл
    0,002
    молярного раствора хлорида кальция
    добавить
    2000
    мл
    0,00001
    молярного
    раствора
    сульфата калия, ПР(СаSО4)
    =
    104.

  14. 14.
    Рассчитайте, в каком объеме насыщенного
    раствора содержится
    0.1
    г иодида серебра,
    ПP(AgI)=8,3•10-17.

  15. 15.В
    насыщенном растворе хромата серебра
    молярная концентрация
    иона
    СrО-2
    равна
    0.0001
    моль/л. Рассчитайте ПР хромата серебра
    и молярную концентрацию иона серебра
    в этом растворе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понятие растворимости, растворения. Процесс растворения. Факторы, влияющие на процесс растворения

Время на прочтение
6 мин

Количество просмотров 15K

В данной статье мы постараемся не только максимально раскрыть теорию растворения, но и обобщить, систематизировать сведения из различных источников о процессе растворения и влиянии внешних факторов на растворимость. Но главная цель статьи — вывести уравнение зависимости растворимости твердых веществ в воде и других жидких растворителях от температуры. Или другими словами, вывести уравнение температурного фактора растворимости твердых веществ.

Процесс растворения — сложный физико-химический процесс, при котором образуется гомогенная термодинамически устойчивая система, называемая раствором. Вещество, в котором растворяется другое вещество или несколько веществ называется растворителем.

Существует множество различных видов и классификаций видов растворов — жидкие, твердые, газообразные, истинные (ионно-молекулярные), коллоидно-дисперсные [5]. Растворяемыми веществами могут быть газы, жидкости и твердые вещества.

В данной статье мы немного сузим задачу — рассмотрим проблему растворимости твердых веществ в жидких растворителях, а также очень поверхностно затронем тему растворимости газов.

Растворимость — способность вещества растворяться в растворителе. Существуют различные меры растворимости. Две наиболее распространенные меры растворимости: по количеству грамм растворенного вещества к количеству грамм растворителя г/100 г. растворителя (m растворяемого/m растворителя); но более удобная — молярная — по количеству вещества в объеме раствора, моль/литр (n растворяемого вещества/V раствора). Однако обе из этих классификации часто используются в литературе.

При растворении твердых веществ в жидкостях протекают следующие процессы:

  1. Разрушение кристаллической решетки твердого вещества. Для разрушения кристаллической решетки твердого вещества необходимы затраты энергии. Данный процесс является эндотермическим, для его осуществления необходим приток тепла извне.

  2. Диффузия молекул жидкости и молекул твердого вещества. Скорость диффузии определяется скоростью движения молекул, то есть скорость диффузии прямо зависит от температуры. Чем она выше, тем скорее протекает данная стадия [5]:

  3. Сольватация — процесс взаимодействия молекул жидкости и молекул твердого вещества (если растворитель — вода, данный процесс называется гидратацией).

    Процесс сольватации может быть как эндо-, так и экзотермическим. То есть при взаимодействии молекул растворителя и твердого вещества может как выделяться теплота, так и поглощаться. Следовательно, повышение температуры может как замедлить, так и укорить данную стадию. В данном случае все зависит только от природы молекул растворителя и растворяемого вещества.

В соответствии с источником [2] растворимость твердых веществ определяется следующими факторами:

  1. Природа растворителя и природа растворенного вещества. Здесь необходимо отметить, что существуют растворители полярные (вода) и неполярные (бензол). Полярные вещества (например соли минеральных кислот) как правило лучше растворяются в полярных растворителях, неполярные (к примеру гексан, толуол) — в неполярных.

  2. На растворимость твердых веществ давление существенно не влияет. Однако растворимость газа напрямую зависит от давления. Согласно закону Генри, растворимость газа прямо пропорциональна давлению газа над жидкостью: [4]:

    c = kp, или с ~ p , где

    c — молярная концентрация растворенного газа в объеме раствора (моль/литр); p — давление газа над жидкостью (Па); k — константа растворимости газа. Данная константа может зависеть от других факторов, таких как например температура, но не зависит от давления газа над раствором, объема раствора и количества вещества растворенного или растворяемого газа.

    В дифференциальной форме уравнение закона Генри выглядит следующим образом:

    dc = kdp

  3. Температурный фактор. Для большинства твердых веществ растворимость увеличивается с ростом температуры. Исключение могут составить некоторые кристаллогидраты, так как растворение самих кристаллогидратов сопровождается поглощением тепла (эндотермический процесс), но после «освобождения» молекул соли от молекул воды в кристаллогидрате безводные молекулы при гидратации (сольватации) сами могут выделять тепло (экзотермический процесс), тем самым нагревание может тормозить процесс растворения. Яркий тому пример – процесс растворения в воде глауберовой соли Na2SO4·10H2O. Существуют и другие исключения из этого правила. Наша цель — вывести эту зависимость, описав ее математически.

    На растворимости газов в воде повышение температуры сказывается негативно. При повышении температуры растворимость газа резко падает. При кипячении из воды выходит весь газ.

Стоит также отметить, что согласно работе [3] на растворение добавок в полиэтилене влияет наличие других добавок — продуктов окисления полиэтилена. То есть на растворимость вещества в растворителе могут влиять и другие примеси. Стоит отметить, что полиэтилен не жидкость, и не твердое кристаллическое вещество, а аморфное. Поэтому его раствор в таком случае сложно назвать жидким или твердым.

Здесь также необходимо отметить, что если речь идет о коллоидном растворе, а не об истинном растворе, то добавление особых примесей — коагулянтов, влечет к выпадению в осадок дисперсной фазы из дисперсной среды — процессу коагуляции [1]. Таким образом, примеси могут влиять на растворимость как положительно, так и отрицательно.

Вывод уравнения(-ий) зависимости растворимости твердых веществ в жидких растворителях от температуры.

Итак, выведем зависимость или зависимости растворимости твердых веществ от температуры. Мы уже знаем, что на растворимость твердых веществ в жидкостях влияет температура. Рассмотрим график из учебного пособия [4].

Как видно из графика, зависимость растворимости нитрата свинца от температуры практически линейная. Так при 20 °С в 100 г воды растворяется около 50 г нитрата свинца. При 40 °С около 70 г, а при 60 °С чуть менее 90 г. Данная зависимость практически линейна:

m = kt + const, при t > 0, где:

m — масса растворяемого вещества, k — коэффициент пропорциональности, t — температура (в градусах Цельсия), const — константа, масса растворяемого вещества, способная раствориться в 100 грамм воды при 0 °С.

Из уравнения мы можем определить коэффициент k, определив его, мы можем выяснить, верно ли предположение о том, что зависимость практически линейная. Кроме того мы сможем оценочно определить массу растворяемого вещества при любой температуре.

m = kt + const

kt = m — const

k = (m — const)/t

Исходя из данных графика видно, что const приблизительно равно 30, при температуре 20 °С масса растворенного в воде нитрата свинца равна примерно 50 г, тогда константа k:

k = (m — const)/t ≈ (50 — 30)/20 ≈ 1

Теперь определим, сколько граммов нитрата свинца может раствориться при температуре 40 °С:

m ≈ kt + const ≈ 1×40 + 30 ≈ 70 г

И действительно, в соответствии с графиком в 100 г воды при температуре 40 °С растворяется около 70 г нитрата свинца. Таким образом, зависимость верна.

Похожая картина и с хлоридом натрия, так как его график так же похож на «прямую».

У нитрата калия график более похож на ветвь параболы:

m = kt2 + const, при t > 0.

Причем const ≈ 15 (приблизительно), а t > 0.

Рассчитаем коэффициент k. При температуре 20 °С в 100 г воды растворяется примерно 30 г нитрата калия:

m = kt2 + const

kt2 = m — const

k = (m — const)/t2 ≈ (30 — 15)/202 ≈ 0,0375

Теперь рассчитаем сколько граммов нитрата может раствориться в 100 г воды при температуре 40 °С, после чего сверим с графиком:

m = kt2 + const = 0,0375×402 + 15 ≈ 75 г

На графике видим, что при 40 °С в 100 г воды растворяется 70-75 г нитрата калия. Таким образом, предположение о правильности зависимости растворения практически верно.

Также очевидно, что размерность коэффициента может различной, для разных графиков. В случае нитрата свинца или хлорида натрия:

k = 1 грамм/°С

В случае же нитрата калия:

k = 1 грамм/°С2

Конечно, для вывода общей закономерности это недостаточно. К примеру, бихромат калия и хлорид ртути на данном графике представляют собой более сложные функции. Поэтому, наиболее обобщенно можно сказать, что:

dm = kdt, при t > 0

То есть, растворимость твердого вещества прямо пропорциональна температуре. Или, дифференциал массы растворяемого вещества есть ничто иное как, произведение коэффициента пропорциональности на дифференциал температуры. Важно учесть, что температура всегда положительная (по Цельсию): t > 0.

Если мы проинтегрируем левую и правую часть выражения dm = kdt, мы получим:

m = kt + const

Мы пришли к примеру, аналогичному зависимости растворимости нитрата свинца. Однако в случае, например с хлоридом ртути, выражение типа m = kt + const будет справедливо только при небольшом интервале температур, к примеру от 20 °С до 40 °С. Для выражения зависимости растворимости хлорида ртути на всех температурных интервалах правильнее будет использовать выражение типа dm = kdt. Само собой разумеется, что речь идет о температурах выше нуля по Цельсию.

Если речь идет не о массе растворенного вещества, а о его молярной концентрации, то уравнение dm = kdt примет вид:

dc = kdt, где:

с — молярная концентрация растворенного вещества (моль/литр). Коэффициент в таком случае будет иметь размерность

k = 1 моль/(литр×°С)

Все остальные операции с молярной концентрацией c аналогичны операциям с массой m, как в уравнениях выше.

Таким образом, зависимость растворимости твердых веществ в воде и в других жидких растворителях прямо пропорциональна температуре (в большинстве случаев), и в общем случае может описываться уравнениями:

dm = kdt

Или

dc = kdt

Литература:

  1. Балезин С. А. Основы физической и коллоидной химии / С. А. Балезин, Б. В. Ерофеев, Н. И. Подобаев – М.: Просвещение, 1975. – 398 с.

  2. Болдырев А. И. Физическая и коллоидная химия / А. И. Болдырев – М.: Высшая Школа, 1974. – 504 с.

  3. Монахова Т. В. Растворимость добавок в полиэтилене и алифатических полиамидах/ Т. В. Монахова, А. П. Марьин, Ю. А. Шляпников // Высокомолекулярные соединения – 1991. — № 11. – С.1306-1310

  4. Стась Н.Ф. Химия растворов / Н.Ф. Стась, Л.Д. Свинцова – Томск: Издательство ТПУ, 2006. – 155 с.

  5. Телесин Р. В. Молекулярная физика / Р. В. Телесин – М.: Высшая школа, 1965. – 360 с.

Автор статьи: Кошелев Георгий Геннадьевич, учитель химии и физики г.о.г. Выкса.

Редактор статьи: Доронин Дмитрий Олегович, учитель физики, информатики и астрономии г.о.г. Выкса.

По всем вопросам, в том числе вопросам сотрудничества, писать сюда: diomidius89@gmail.com

«Методика решения задач на растворимость и
массовую долю вещества в растворе».

Выполнена учителем химии МБОУ СОШ № 18 г.
Ногинска Московской области Ломать Светланой Петровной.

1.      Растворимость
– это способность вещества растворяться в воде или
другом растворителе. Количественно растворимость определяют коэффициентом
растворимости
 или просто растворимостью вещества.

Растворимость вещества X
(
s)
– это масса вещества, которая может раствориться при данных условиях в 100г
растворителя с образованием насыщенного раствора:

S=
m(x)
/
m(H2O)
× 100 (г).

Массовая доля безводного
вещества Х в насыщенном растворе связана с его растворимостью соотношением:

W(X)
=
s / s
+100

Для вычисления массы безводного
вещества в определенной массе насыщенного раствора можно вывести формулу:

W(x) = m(x) / m(рра)
=> m(x) / m(
рра)=
s / s + 100 ;
откуда

m (x) = (s / s + 100 ) ∙
m(
рра).

Пример 1. Определите,
какая масса нитрата бария может раствориться в воде объемом 500 мл при 300С.
Растворимость нитрата бария при данной температуре составляет 14,2 г.

                                         
Решение:

Плотность воды составляет
1 г/мл, поэтому

m2О)
= 500 ∙ 1 = 500 г.

Определяем массу нитрата
бария.

По формуле:   
s = m(Ba(NO3)2) / m(H2O) ∙ 100  =>

ð  m(Ba(NO3)2)
= s ∙ m(H2O) / 100 = 14,2 ∙ 500 / 100 = 71
г.

Ответ:
m(Ba(NO3)2)
=71 г.

            Пример 2.  Массовая
доля хлорида аммония в насыщенном растворе при 300С                           
.           равна 29,5%. Определите растворимость
NH4Cl
при данной температуре.

                                                    
Решение:

1.      Вычисляем
массу соли в растворе массой 100г:

m(NH4Cl)
=
m(р-ра)
w(NH4Cl)
= 100 ∙ 0,295 = 29,5 г.

2.     
Находим массу воды в растворе массой 100
г:

m(H2O)
=
m(р-ра)
m(NH4Cl)
= 100 -29,5 =70,5 г

3.     
Определяем растворимость NH4Cl.

S30
= m(NH4Cl) / m(H2O) ∙ 100 = 29,5 / 70,5 ∙ 100 = 41,84
г.

Ответ:
S30
= 41,84 г.

            Пример 3. Вычислите,
какая масса нитрата калия выпадет в осадок, если 100
г                                    .            насыщенного при температуре
700С раствора
KNO3
охладить до температуры 00С.                           .          
Растворимость нитрата калия составляет 138г при
t0=700
и 13,3г при
t0
ρ=00
C.

                                             
Решение:

1.      Находим
массу соли в насыщенном растворе массой 100 г при 700С.

По формуле:  s70
=
m70(KNO3)
/
m(H2O)
∙ 100 =
m70(KNO3)
/ (
m(р-ра)
m70(KNO3))
∙100 => 
m70(KNO3)
= (
s70
∙ (
m(р-ра)
m70(KNO3))
/ 100 = 138 ∙ ( 100 –
m70(KNO3))
/ 100 ; отсюда
m70(KNO3)
= 57, 98 г.

2.      Находим
массу воды в насыщенном растворе массой 100 г:

m(H2O)
=
m(р-ра)
m70(KNO3)
= 100 – 57,98 = 42,02 г.

3.      Находим
массу соли, выпавшей в осадок:

m(
осадка
KNO3)
=
m70(KNO3)
m0(KNO3)
= 57,98 – 5,59 = 52,39 г.

Ответ: m(осадка
KNO3)
= 52,39 г.

2.      Массовая
доля растворенного вещества
– это отношение массы
растворенного вещества к общей массе раствора:

W(раств.в-ва)
=
m(раств.в-ва)
/
m(р-ра)
( в долях единицы), откуда

m(раств.в-ва)
=
m(р-ра)
w(раств.в-ва);

W(раств.в-ва)
=
m(раств.в-ва)
/
m(р-ра)
∙ 100% ( в процентах).

Эта формула указывает
массу безводного вещества, содержащегося в 100 г раствора. Раствор состоит из
растворенного вещества и растворителя.

m(р-ра)
=
m(раств.в-ва)
+
m(H2O)

W(раств.в-ва)
=
m(раств.в-ва)
/ (
m(раств.в-ва)
+
m(H2O))/

Массу раствора можно
выразить через объем раствора (
V
его плотность (ρ):
m(р-ра) = V ∙ ρ. Откуда:     

W(раств.в-ва)
=
m(раств.в-ва)
/
V ∙ ρ ;

m(раств.в-ва)
=
V
∙ ρ ∙
w(раств.в-ва).

Пример 1. Определите
массовую долю (%) соли в растворе, полученном при растворении 50 г соли в 200 г
воды.

                                         Решение:

W(соли)
=
m(соли)
/ (
m(соли)
+
m(H2O)
= 50 / (50+ 200) = 0,2 или 20%

Ответ: W(соли)
=0,2 или 20%.

Пример 2. Вычислите
массу гидроксида калия в растворе объемом 600 мл и плотностью 1,082 г/мл, если
массовая доля гидроксида калия составляет 10% .

                                      
 Решение:

W(KOH)
=
m(KOH)
/
V
ρ;

m(KOH)
=
w(KOH)
V
ρ
= 0,1 ∙ 600 ∙ 1,082 = 64,92 (г).

Ответ:
m(KOH)
= 64,92 (г).

Пример 3. Какую
массу воды надо прибавить к раствору гидроксида натрия массой 150 г с массовой
долей 10%, чтобы получить раствор с массовой долей 2%?

                                                       
 Решение:

m2(р-ра)
=
m1(р-ра)
+
m
(воды)     

w2(NaOH)
=
m(NaOH)
/
m2
(р-ра) =
m1(р-ра)
w1(NaOH)
/ (
m1(р-ра)
+
m(H2O));

0,02 = 150 ∙ 0,1 / (150 +
m(H2O); 
m(H2O)
= 600г.

    Ответ:
m2О)
=600 г.

    Пример 4. Какую
массу раствора с массовой долей уксусной кислоты 40% надо прибавить к 500 г
воды для получения раствора с массовой долей уксусной кислоты 15%?

                                                              
 Решение:

W2(CH3COOH)
=
m(р-ра)
m1(CH3COOH)
/ (
m(р-ра)
+ 500;

0,15 = m(р-ра)
∙ 0,4 / (
m(р-ра) +500 ;

m(р-ра)
= 300 г.

    Ответ:
m(р-ра)
= 300 г.

    Пример 5. Какой
объем раствора с массовой долей гидроксида калия 50% ( плотностью 1,538 г/ мл)
требуется для приготовления 3 л раствора гидроксида калия с массовой долей 6% (
плотностью 1,048 г/мл)?

                                                              
Решение:

W2
(
KOH)
=
V1
ρ1
w1(KOH)
/
V2
∙ ρ2 ;

0,06 = 0,5 ∙ 1,538 ∙ V1
/ 3000 ∙ 1,048;

0,06 ∙ 3000 ∙ 1,048 = 0,5
∙ 1,538 ∙
V1
;

V1
= 245,3 мл.

    Ответ:
V1
= 245,3 мл.

Example of a dissolved solid (left)

Formation of crystals in a 4.2 M ammonium sulfate solution. The solution was initially prepared at 20 °C and then stored for 2 days at 4 °C.

In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.

The extent of the solubility of a substance in a specific solvent is generally measured as the concentration of the solute in a saturated solution, one in which no more solute can be dissolved.[1] At this point, the two substances are said to be at the solubility equilibrium. For some solutes and solvents, there may be no such limit, in which case the two substances are said to be «miscible in all proportions» (or just «miscible»).[2]

The solute can be a solid, a liquid, or a gas, while the solvent is usually solid or liquid. Both may be pure substances, or may themselves be solutions. Gases are always miscible in all proportions, except in very extreme situations,[3] and a solid or liquid can be «dissolved» in a gas only by passing into the gaseous state first.

The solubility mainly depends on the composition of solute and solvent (including their pH and the presence of other dissolved substances) as well as on temperature and pressure. The dependency can often be explained in terms of interactions between the particles (atoms, molecules, or ions) of the two substances, and of thermodynamic concepts such as enthalpy and entropy.

Under certain conditions, the concentration of the solute can exceed its usual solubility limit. The result is a supersaturated solution, which is metastable and will rapidly exclude the excess solute if a suitable nucleation site appears.[4]

The concept of solubility does not apply when there is an irreversible chemical reaction between the two substances, such as the reaction of calcium hydroxide with hydrochloric acid; even though one might say, informally, that one «dissolved» the other. The solubility is also not the same as the rate of solution, which is how fast a solid solute dissolves in a liquid solvent. This property depends on many other variables, such as the physical form of the two substances and the manner and intensity of mixing.

The concept and measure of solubility are extremely important in many sciences besides chemistry, such as geology, biology, physics, and oceanography, as well as in engineering, medicine, agriculture, and even in non-technical activities like painting, cleaning, cooking, and brewing. Most chemical reactions of scientific, industrial, or practical interest only happen after the reagents have been dissolved in a suitable solvent. Water is by far the most common such solvent.

The term «soluble» is sometimes used for materials that can form colloidal suspensions of very fine solid particles in a liquid.[5] The quantitative solubility of such substances is generally not well-defined, however.

Quantification of solubility

The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two.[1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.

Per quantity of solvent

In particular, chemical handbooks often express the solubility as grams of solute per 100 millilitres of solvent (g/(100 mL)), or as grams of solute per decilitre of solvent (g/dL); or, less commonly, as grams of solute per litre of solvent (g/L). The quantity of solvent can instead be expressed in mass, as grams of solute per 100 grams of solvent (g/(100 g)), or as grams of solute per kilogram of solvent (g/kg). The number may be expressed as a percentage in this case, and the abbreviation «w/w» may be used to indicate «weight per weight».[6] (The values in g/L and g/kg are similar for water, but that may not be the case for other solvents.)

Alternatively, the solubility of a solute can be expressed in moles instead of mass. For example, if the quantity of solvent is given in kilograms, the value is the molality of the solution (mol/kg).

Per quantity of solution

The solubility of a substance in a liquid may also be expressed as the quantity of solute per quantity of solution, rather than of solvent. For example, following the common practice in titration, it may be expressed as moles of solute per litre of solution (mol/L), the molarity of the latter.

In more specialized contexts the solubility may be given by the mole fraction (moles of solute per total moles of solute plus solvent) or by the mass fraction at equilibrium (mass of solute per mass of solute plus solvent). Both are dimensionless numbers between 0 and 1 which may be expressed as percentages (%).

Liquid and gaseous solutes

For solutions of liquids or gases in liquids, the quantities of both substances may be given volume rather than mass or mole amount; such as litre of solute per litre of solvent, or litre of solute per litre of solution. The value may be given as a percentage, and the abbreviation «v/v» for «volume per volume» may be used to indicate this choice.

Conversion of solubility values

Conversion between these various ways of measuring solubility may not be trivial, since it may require knowing the density of the solution — which is often not measured, and cannot be predicted. While the total mass is conserved by dissolution, the final volume may be different from both the volume of the solvent and the sum of the two volumes.[7]

Moreover, many solids (such as acids and salts) will dissociate in non-trivial ways when dissolved; conversely, the solvent may form coordination complexes with the molecules or ions of the solute. In those cases, the sum of the moles of molecules of solute and solvent is not really the total moles of independent particles solution. To sidestep that problem, the solubility per mole of solution is usually computed and quoted as if the solute does not dissociate or form complexes — that is, by pretending that the mole amount of solution is the sum of the mole amounts of the two substances.

Qualifiers used to describe extent of solubility

The extent of solubility ranges widely, from infinitely soluble (without limit, i. e. miscible[2]) such as ethanol in water, to essentially insoluble, such as titanium dioxide in water. A number of other descriptive terms are also used to qualify the extent of solubility for a given application. For example, U.S. Pharmacopoeia gives the following terms, according to the mass msv of solvent required to dissolve one unit of mass msu of solute:[8] (The solubilities of the examples are approximate, for water at 20-25 °C.)

Term range[clarification needed] Example g/dL msv/msu
Very soluble <1 calcium nitrate 158.7 0.63
Freely soluble 1 to 10 calcium chloride 65 1.54
Soluble 10 to 30 sodium oxalate 3.9 26
Sparingly soluble 30 to 100
Slightly soluble 100 to 1000 calcium sulfate 0.21 490
Very slightly soluble 1000 to 10,000 dicalcium phosphate 0.02 5000
Practically insoluble or insoluble ≥ 10,000 barium sulfate 0.000245 409000

The thresholds to describe something as insoluble, or similar terms, may depend on the application. For example, one source states that substances are described as «insoluble» when their solubility is less than 0.1 g per 100 mL of solvent.[9]

Molecular view

Solubility occurs under dynamic equilibrium, which means that solubility results from the simultaneous and opposing processes of dissolution and phase joining (e.g. precipitation of solids). The solubility equilibrium occurs when the two processes proceed at equal and opposite rates.

The term solubility is also used in some fields where the solute is altered by solvolysis. For example, many metals and their oxides are said to be «soluble in hydrochloric acid», although in fact the aqueous acid irreversibly degrades the solid to give soluble products. It is also true that most ionic solids are dissolved by polar solvents, but such processes are reversible. In those cases where the solute is not recovered upon evaporation of the solvent, the process is referred to as solvolysis. The thermodynamic concept of solubility does not apply straightforwardly to solvolysis.

When a solute dissolves, it may form several species in the solution. For example, an aqueous suspension of ferrous hydroxide, Fe(OH)
2
, will contain the series [Fe(H2O)x(OH)x](2x)+ as well as other species. Furthermore, the solubility of ferrous hydroxide and the composition of its soluble components depend on pH. In general, solubility in the solvent phase can be given only for a specific solute that is thermodynamically stable, and the value of the solubility will include all the species in the solution (in the example above, all the iron-containing complexes).

Factors affecting solubility

Solubility is defined for specific phases. For example, the solubility of aragonite and calcite in water are expected to differ, even though they are both polymorphs of calcium carbonate and have the same chemical formula.

The solubility of one substance in another is determined by the balance of intermolecular forces between the solvent and solute, and the entropy change that accompanies the solvation. Factors such as temperature and pressure will alter this balance, thus changing the solubility.

Solubility may also strongly depend on the presence of other species dissolved in the solvent, for example, complex-forming anions (ligands) in liquids. Solubility will also depend on the excess or deficiency of a common ion in the solution, a phenomenon known as the common-ion effect. To a lesser extent, solubility will depend on the ionic strength of solutions. The last two effects can be quantified using the equation for solubility equilibrium.

For a solid that dissolves in a redox reaction, solubility is expected to depend on the potential (within the range of potentials under which the solid remains the thermodynamically stable phase). For example, solubility of gold in high-temperature water is observed to be almost an order of magnitude higher (i.e. about ten times higher) when the redox potential is controlled using a highly oxidizing Fe3O4-Fe2O3 redox buffer than with a moderately oxidizing Ni-NiO buffer.[10]

SolubilityVsTemperature.png

Solubility (metastable, at concentrations approaching saturation) also depends on the physical size of the crystal or droplet of solute (or, strictly speaking, on the specific surface area or molar surface area of the solute).[11] For quantification, see the equation in the article on solubility equilibrium. For highly defective crystals, solubility may increase with the increasing degree of disorder. Both of these effects occur because of the dependence of solubility constant on the Gibbs energy of the crystal. The last two effects, although often difficult to measure, are of practical importance.[citation needed] For example, they provide the driving force for precipitate aging (the crystal size spontaneously increasing with time).

Temperature

The solubility of a given solute in a given solvent is function of temperature. Depending on the change in enthalpy (ΔH) of the dissolution reaction, i.e., on the endothermic (ΔH > 0) or exothermic (ΔH < 0) character of the dissolution reaction, the solubility of a given compound may increase or decrease with temperature. The van ‘t Hoff equation relates the change of solubility equilibrium constant (Ksp) to temperature change and to reaction enthalpy change. For most solids and liquids, their solubility increases with temperature because their dissolution reaction is endothermic (ΔH > 0).[12] In liquid water at high temperatures, (e.g. that approaching the critical temperature), the solubility of ionic solutes tends to decrease due to the change of properties and structure of liquid water; the lower dielectric constant results in a less polar solvent and in a change of hydration energy affecting the ΔG of the dissolution reaction.

Gaseous solutes exhibit more complex behavior with temperature. As the temperature is raised, gases usually become less soluble in water (exothermic dissolution reaction related to their hydration) (to a minimum, which is below 120 °C for most permanent gases[13]), but more soluble in organic solvents (endothermic dissolution reaction related to their solvation).[12]

The chart shows solubility curves for some typical solid inorganic salts in liquid water (temperature is in degrees Celsius, i.e. kelvins minus 273.15).[14] Many salts behave like barium nitrate and disodium hydrogen arsenate, and show a large increase in solubility with temperature (ΔH > 0). Some solutes (e.g. sodium chloride in water) exhibit solubility that is fairly independent of temperature (ΔH ≈ 0). A few, such as calcium sulfate (gypsum) and cerium(III) sulfate, become less soluble in water as temperature increases (ΔH < 0).[15] This is also the case for calcium hydroxide (portlandite), whose solubility at 70 °C is about half of its value at 25 °C. The dissolution of calcium hydroxide in water is also an exothermic process (ΔH < 0) and obeys the van ‘t Hoff equation and Le Chatelier’s principle. A lowering of temperature favors the removal of dissolution heat from the system and thus favors dissolution of Ca(OH)2: so portlandite solubility increases at low temperature. This temperature dependence is sometimes referred to as «retrograde» or «inverse» solubility. Occasionally, a more complex pattern is observed, as with sodium sulfate, where the less soluble decahydrate crystal (mirabilite) loses water of crystallization at 32 °C to form a more soluble anhydrous phase (thenardite) with a smaller change in Gibbs free energy (ΔG) in the dissolution reaction.[citation needed]

Temperature dependence solublity of solid in liquid water high temperature.svg

The solubility of organic compounds nearly always increases with temperature. The technique of recrystallization, used for purification of solids, depends on a solute’s different solubilities in hot and cold solvent. A few exceptions exist, such as certain cyclodextrins.[16]

Pressure

For condensed phases (solids and liquids), the pressure dependence of solubility is typically weak and usually neglected in practice. Assuming an ideal solution, the dependence can be quantified as:

left({frac {partial ln N_{i}}{partial P}}right)_{T}=-{frac {V_{i,aq}-V_{i,cr}}{RT}}

where the index i iterates the components, N_{i} is the mole fraction of the i-th component in the solution, P is the pressure, the index T refers to constant temperature, {displaystyle V_{i,aq}} is the partial molar volume of the i-th component in the solution, {displaystyle V_{i,cr}} is the partial molar volume of the i-th component in the dissolving solid, and R is the universal gas constant.[17]

The pressure dependence of solubility does occasionally have practical significance. For example, precipitation fouling of oil fields and wells by calcium sulfate (which decreases its solubility with decreasing pressure) can result in decreased productivity with time.

Solubility of gases

Henry’s law is used to quantify the solubility of gases in solvents. The solubility of a gas in a solvent is directly proportional to the partial pressure of that gas above the solvent. This relationship is similar to Raoult’s law and can be written as:

 p = k_{rm H}, c

where {displaystyle k_{rm {H}}} is a temperature-dependent constant (for example, 769.2 L·atm/mol for dioxygen (O2) in water at 298 K), p is the partial pressure (in atm), and c is the concentration of the dissolved gas in the liquid (in mol/L).

The solubility of gases is sometimes also quantified using Bunsen solubility coefficient.

In the presence of small bubbles, the solubility of the gas does not depend on the bubble radius in any other way than through the effect of the radius on pressure (i.e. the solubility of gas in the liquid in contact with small bubbles is increased due to pressure increase by Δp = 2γ/r; see Young–Laplace equation).[18]

Henry’s law is valid for gases that do not undergo change of chemical speciation on dissolution. Sieverts’ law shows a case when this assumption does not hold.

The carbon dioxide solubility in seawater is also affected by temperature, pH of the solution, and by the carbonate buffer. The decrease of solubility of carbon dioxide in seawater when temperature increases is also an important retroaction factor (positive feedback) exacerbating past and future climate changes as observed in ice cores from the Vostok site in Antarctica. At the geological time scale, because of the Milankovich cycles, when the astronomical parameters of the Earth orbit and its rotation axis progressively change and modify the solar irradiance at the Earth surface, temperature starts to increase. When a deglaciation period is initiated, the progressive warming of the oceans releases CO2 into the atmosphere because of its lower solubility in warmer sea water. In turn, higher levels of CO2 in the atmosphere increase the greenhouse effect and carbon dioxide acts as an amplifier of the general warming.

Polarity

A popular aphorism used for predicting solubility is «like dissolves like» also expressed in the Latin language as «Similia similibus solventur«.[19] This statement indicates that a solute will dissolve best in a solvent that has a similar chemical structure to itself, based on favorable entropy of mixing. This view is simplistic, but it is a useful rule of thumb. The overall solvation capacity of a solvent depends primarily on its polarity.[a] For example, a very polar (hydrophilic) solute such as urea is very soluble in highly polar water, less soluble in fairly polar methanol, and practically insoluble in non-polar solvents such as benzene. In contrast, a non-polar or lipophilic solute such as naphthalene is insoluble in water, fairly soluble in methanol, and highly soluble in non-polar benzene.[20]

Dissolution of sodium chloride in water

In even more simple terms a simple ionic compound (with positive and negative ions) such as sodium chloride (common salt) is easily soluble in a highly polar solvent (with some separation of positive (δ+) and negative (δ-) charges in the covalent molecule) such as water, as thus the sea is salty as it accumulates dissolved salts since early geological ages.

The solubility is favored by entropy of mixing (ΔS) and depends on enthalpy of dissolution (ΔH) and the hydrophobic effect. The free energy of dissolution (Gibbs energy) depends on temperature and is given by the relationship: ΔG = ΔH – TΔS. Smaller ΔG means greater solubility.

Chemists often exploit differences in solubilities to separate and purify compounds from reaction mixtures, using the technique of liquid-liquid extraction. This applies in vast areas of chemistry from drug synthesis to spent nuclear fuel reprocessing.

Rate of dissolution

Dissolution is not an instantaneous process. The rate of solubilization (in kg/s) is related to the solubility product and the surface area of the material. The speed at which a solid dissolves may depend on its crystallinity or lack thereof in the case of amorphous solids and the surface area (crystallite size) and the presence of polymorphism. Many practical systems illustrate this effect, for example in designing methods for controlled drug delivery. In some cases, solubility equilibria can take a long time to establish (hours, days, months, or many years; depending on the nature of the solute and other factors).

The rate of dissolution can be often expressed by the Noyes–Whitney equation or the Nernst and Brunner equation[21] of the form:

{displaystyle {frac {mathrm {d} m}{mathrm {d} t}}=A{frac {D}{d}}(C_{mathrm {s} }-C_{mathrm {b} })}

where:

For dissolution limited by diffusion (or mass transfer if mixing is present), C_{s} is equal to the solubility of the substance. When the dissolution rate of a pure substance is normalized to the surface area of the solid (which usually changes with time during the dissolution process), then it is expressed in kg/m2s and referred to as «intrinsic dissolution rate». The intrinsic dissolution rate is defined by the United States Pharmacopeia.

Dissolution rates vary by orders of magnitude between different systems. Typically, very low dissolution rates parallel low solubilities, and substances with high solubilities exhibit high dissolution rates, as suggested by the Noyes-Whitney equation.

Theories of solubility

Solubility product

Solubility constants are used to describe saturated solutions of ionic compounds of relatively low solubility (see solubility equilibrium). The solubility constant is a special case of an equilibrium constant. Since it is a product of ion concentrations in equilibrium, it is also known as the solubility product. It describes the balance between dissolved ions from the salt and undissolved salt. The solubility constant is also «applicable» (i.e. useful) to precipitation, the reverse of the dissolving reaction. As with other equilibrium constants, temperature can affect the numerical value of solubility constant. While the solubility constant is not as simple as solubility, the value of this constant is generally independent of the presence of other species in the solvent.

Other theories

The Flory–Huggins solution theory is a theoretical model describing the solubility of polymers. The Hansen solubility parameters and the Hildebrand solubility parameters are empirical methods for the prediction of solubility. It is also possible to predict solubility from other physical constants such as the enthalpy of fusion.

The octanol-water partition coefficient, usually expressed as its logarithm (Log P), is a measure of differential solubility of a compound in a hydrophobic solvent (1-octanol) and a hydrophilic solvent (water). The logarithm of these two values enables compounds to be ranked in terms of hydrophilicity (or hydrophobicity).

The energy change associated with dissolving is usually given per mole of solute as the enthalpy of solution.

Applications

Solubility is of fundamental importance in a large number of scientific disciplines and practical applications, ranging from ore processing and nuclear reprocessing to the use of medicines, and the transport of pollutants.

Solubility is often said to be one of the «characteristic properties of a substance», which means that solubility is commonly used to describe the substance, to indicate a substance’s polarity, to help to distinguish it from other substances, and as a guide to applications of the substance. For example, indigo is described as «insoluble in water, alcohol, or ether but soluble in chloroform, nitrobenzene, or concentrated sulfuric acid».[citation needed]

Solubility of a substance is useful when separating mixtures. For example, a mixture of salt (sodium chloride) and silica may be separated by dissolving the salt in water, and filtering off the undissolved silica. The synthesis of chemical compounds, by the milligram in a laboratory, or by the ton in industry, both make use of the relative solubilities of the desired product, as well as unreacted starting materials, byproducts, and side products to achieve separation.

Another example of this is the synthesis of benzoic acid from phenylmagnesium bromide and dry ice. Benzoic acid is more soluble in an organic solvent such as dichloromethane or diethyl ether, and when shaken with this organic solvent in a separatory funnel, will preferentially dissolve in the organic layer. The other reaction products, including the magnesium bromide, will remain in the aqueous layer, clearly showing that separation based on solubility is achieved. This process, known as liquid–liquid extraction, is an important technique in synthetic chemistry. Recycling is used to ensure maximum extraction.

Differential solubility

In flowing systems, differences in solubility often determine the dissolution-precipitation driven transport of species. This happens when different parts of the system experience different conditions. Even slightly different conditions can result in significant effects, given sufficient time.

For example, relatively low solubility compounds are found to be soluble in more extreme environments, resulting in geochemical and geological effects of the activity of hydrothermal fluids in the Earth’s crust. These are often the source of high quality economic mineral deposits and precious or semi-precious gems. In the same way, compounds with low solubility will dissolve over extended time (geological time), resulting in significant effects such as extensive cave systems or Karstic land surfaces.

Solubility of ionic compounds in water

Some ionic compounds (salts) dissolve in water, which arises because of the attraction between positive and negative charges (see: solvation). For example, the salt’s positive ions (e.g. Ag+) attract the partially negative oxygen atom in H2O. Likewise, the salt’s negative ions (e.g. Cl) attract the partially positive hydrogens in H2O. Note: the oxygen atom is partially negative because it is more electronegative than hydrogen, and vice versa (see: chemical polarity).

AgCl(s) ⇌ Ag+(aq) + Cl(aq)

However, there is a limit to how much salt can be dissolved in a given volume of water. This concentration is the solubility and related to the solubility product, Ksp. This equilibrium constant depends on the type of salt (AgCl vs. NaCl, for example), temperature, and the common ion effect.

One can calculate the amount of AgCl that will dissolve in 1 liter of pure water as follows:

Ksp = [Ag+] × [Cl] / M2 (definition of solubility product; M = mol/L)
Ksp = 1.8 × 10−10 (from a table of solubility products)

[Ag+] = [Cl], in the absence of other silver or chloride salts, so

[Ag+]2 = 1.8 × 10−10 M2
[Ag+] = 1.34 × 10−5 mol/L

The result: 1 liter of water can dissolve 1.34 × 10−5 moles of AgCl at room temperature. Compared with other salts, AgCl is poorly soluble in water. For instance, table salt (NaCl) has a much higher Ksp = 36 and is, therefore, more soluble. The following table gives an overview of solubility rules for various ionic compounds.

Soluble Insoluble[22]
Group I and NH4+ compounds (except lithium phosphate) Carbonates (except Group I, NH4+ and uranyl compounds)
Nitrates Sulfites (except Group I and NH4+ compounds)
Acetates (ethanoates) (except Ag+ compounds) Phosphates (except Group I and NH4+ compounds (excluding Li+))
Chlorides (chlorates and perchlorates), bromides and iodides (except Ag+, Pb2+, Cu+ and Hg22+) Hydroxides and oxides (except Group I, NH4+, Ba2+, Sr2+ and Tl+)
Sulfates (except Ag+, Pb2+, Ba2+, Sr2+ and Ca2+) Sulfides (except Group I, Group II and NH4+ compounds)

Solubility of organic compounds

The principle outlined above under polarity, that like dissolves like, is the usual guide to solubility with organic systems. For example, petroleum jelly will dissolve in gasoline because both petroleum jelly and gasoline are non-polar hydrocarbons. It will not, on the other hand, dissolve in ethyl alcohol or water, since the polarity of these solvents is too high. Sugar will not dissolve in gasoline, since sugar is too polar in comparison with gasoline. A mixture of gasoline and sugar can therefore be separated by filtration or extraction with water.

Solid solution

This term is often used in the field of metallurgy to refer to the extent that an alloying element will dissolve into the base metal without forming a separate phase. The solvus or solubility line (or curve) is the line (or lines) on a phase diagram that give the limits of solute addition. That is, the lines show the maximum amount of a component that can be added to another component and still be in solid solution. In the solid’s crystalline structure, the ‘solute’ element can either take the place of the matrix within the lattice (a substitutional position; for example, chromium in iron) or take a place in a space between the lattice points (an interstitial position; for example, carbon in iron).

In microelectronic fabrication, solid solubility refers to the maximum concentration of impurities one can place into the substrate.

In solid compounds (as opposed to elements), the solubility of a solute element can also depend on the phases separating out in equilibrium. For example, amount of Sn soluble in the ZnSb phase can depend significantly on whether the phases separating out in equilibrium are (Zn4Sb3+Sn(L)) or (ZnSnSb2+Sn(L))[23]. Besides these, the ZnSb compound with Sn as a solute can separate out into other combinations of phases after the solubility limit is reached depending on the initial chemical composition during synthesis. Each combination produces a different solubility of Sn in ZnSb. Hence solubility studies in compounds, concluded upon the first instance of observing secondary phases separating out might underestimate solubility.[24] While the maximum number of phases separating out at once in equilibrium can be determined by the Gibb’s phase rule, for chemical compounds there is no limit on the number of such phase separating combinations itself. Hence, establishing the «maximum solubility» in solid compounds experimentally can be difficult, requiring equilibration of many samples. If the dominant crystallographic defect (mostly interstitial or substitutional point defects) involved in the solid-solution can be chemically intuited beforehand, then using some simple thermodynamic guidelines can considerably reduce the number of samples required to establish maximum solubility. [25]

Incongruent dissolution

Many substances dissolve congruently (i.e. the composition of the solid and the dissolved solute stoichiometrically match). However, some substances may dissolve incongruently, whereby the composition of the solute in solution does not match that of the solid. This solubilization is accompanied by alteration of the «primary solid» and possibly formation of a secondary solid phase. However, in general, some primary solid also remains and a complex solubility equilibrium establishes. For example, dissolution of albite may result in formation of gibbsite.[26]

NaAlSi3O8(s) + H+ + 7H2O ⇌ Na+ + Al(OH)3(s) + 3H4SiO4.

In this case, the solubility of albite is expected to depend on the solid-to-solvent ratio. This kind of solubility is of great importance in geology, where it results in formation of metamorphic rocks.

In principle, both congruent and incongruent dissolution can lead to the formation of secondary solid phases in equilibrium. So, in the field of Materials Science, the solubility for both cases is described more generally on chemical composition phase diagrams.

Solubility prediction

Solubility is a property of interest in many aspects of science, including but not limited to: environmental predictions, biochemistry, pharmacy, drug-design, agrochemical design, and protein ligand binding. Aqueous solubility is of fundamental interest owing to the vital biological and transportation functions played by water.[27][28][29] In addition, to this clear scientific interest in water solubility and solvent effects; accurate predictions of solubility are important industrially. The ability to accurately predict a molecule’s solubility represents potentially large financial savings in many chemical product development processes, such as pharmaceuticals.[30] In the pharmaceutical industry, solubility predictions form part of the early stage lead optimisation process of drug candidates. Solubility remains a concern all the way to formulation.[30] A number of methods have been applied to such predictions including quantitative structure–activity relationships (QSAR), quantitative structure–property relationships (QSPR) and data mining. These models provide efficient predictions of solubility and represent the current standard. The draw back such models is that they can lack physical insight. A method founded in physical theory, capable of achieving similar levels of accuracy at an sensible cost, would be a powerful tool scientifically and industrially.[31][32][33][34]

Methods founded in physical theory tend to use thermodynamic cycles, a concept from classical thermodynamics. The two common thermodynamic cycles used involve either the calculation of the free energy of sublimation (solid to gas without going through a liquid state) and the free energy of solvating a gaseous molecule (gas to solution), or the free energy of fusion (solid to a molten phase) and the free energy of mixing (molten to solution). These two process are represented in the following diagrams.

Thermodynamic cycle for calculating solvation via sublimation

Thermodynamic cycle for calculating solvation via fusion

These cycles have been used for attempts at first principles predictions (solving using the fundamental physical equations) using physically motivated solvent models,[32] to create parametric equations and QSPR models[35][33] and combinations of the two.[33] The use of these cycles enables the calculation of the solvation free energy indirectly via either gas (in the sublimation cycle) or a melt (fusion cycle). This is helpful as calculating the free energy of solvation directly is extremely difficult. The free energy of solvation can be converted to a solubility value using various formulae, the most general case being shown below, where the numerator is the free energy of solvation, R is the gas constant and T is the temperature in kelvins.[32]

{displaystyle log S(V_{m})={frac {Delta G_{text{solvation}}}{-2.303RT}}}

Well known fitted equations for solubility prediction are the general solubility equations. These equations stem from the work of Yalkowsky et al.[36][37] The original formula is given first, followed by a revised formula which takes a different assumption of complete miscibility in octanol.[37]

{displaystyle log _{10}(S)=0.8-log _{10}(P)-0.01({text{melting point}}-25)}
{displaystyle log _{10}(S)=0.5-log _{10}(P)-0.01({text{melting point}}-25)}

These equations are founded on the principles of the fusion cycle.

See also

  • Apparent molar property – Difference in properties of one mole of substance in a mixture vs. an ideal solution
  • Biopharmaceutics Classification System – guidance for predicting the intestinal drug absorption
  • Dühring’s rule – Linear relationship between the temperatures at which two solutions exert the same vapour pressure
  • Fajans–Paneth–Hahn Law – chemistry rule concerning co-precipitation and adsorption
  • Flexible SPC water model – Aspect of computational chemistry
  • Henry’s law – Gas law regarding proportionality of dissolved gas
  • Hot water extraction – method of carpet cleaning
  • Hydrotrope
  • Micellar solubilization – Process of incorporating the solubilizate into or onto micelles
  • Raoult’s law – Law of thermodynamics for vapour pressure of a mixture
  • Rate of solution – Capacity of a substance to dissolve in a solvent in a homogeneous way
  • Solubility equilibrium – type of dynamic equilibrium between solid state chemical compound and a solution of the same compound
  • van ‘t Hoff equation – Relation between temperature and the equilibrium constant of a chemical reaction

Notes

  1. ^ The solvent polarity is defined as its solvation power according to Reichardt.

References

  1. ^ a b IUPAC, Compendium of Chemical Terminology, 2nd ed. (the «Gold Book») (1997). Online corrected version: (2006–) «Solubility». doi:10.1351/goldbook.S05740
  2. ^ a b Clugston, M.; Fleming, R. (2000). Advanced Chemistry (1st ed.). Oxford: Oxford Publishing. p. 108.
  3. ^ J. de Swaan Arons and G. A. M. Diepen (1966): «Gas—Gas Equilibria». Journal of Chemical Physics, volume 44, issue 6, page 2322. doi:10.1063/1.1727043
  4. ^ Tomlinson, Charles (1868-01-01). «On Supersaturated Saline Solutions». Philosophical Transactions of the Royal Society of London. 158: 659–673. doi:10.1098/rstl.1868.0028. ISSN 0261-0523. S2CID 110079029.
  5. ^ Claudius Kormann, Detlef W. Bahnemann, and Michael R. Hoffmann (1988): «Preparation and characterization of quantum-size titanium dioxide». Journal of Physical Chemistry,volume 92, issue 18, pages 5196–5201. doi:10.1021/j100329a027
  6. ^ Abler (2021): «W/W (Weight/Weight)». Online page at Abler.com website. Accessed on 2021-11-26.
  7. ^ I. Lee and J. Lee (2012): «Measurement of mixing ratio and volume change of ethanol-water binary mixtures using suspended microchannel resonators.» SENSORS, volume 2012, pages 1-3. doi:10.1109/ICSENS.2012.6411272.
  8. ^ «Pharmacopeia of the United States of America, 32nd revision, and the National Formulary, 27th edition,» 2009, pp.1 to 12.
  9. ^
  10. ^ I.Y. Nekrasov (1996). Geochemistry, Mineralogy and Genesis of Gold Deposits. Taylor & Francis. pp. 135–136. ISBN 978-90-5410-723-1.
  11. ^ Hefter, G.T.; Tomkins, R.P.T (Editors) (2003). The Experimental Determination of Solubilities. Wiley-Blackwell. ISBN 978-0-471-49708-0.
  12. ^ a b John W. Hill, Ralph H. Petrucci, General Chemistry, 2nd edition, Prentice Hall, 1999.
  13. ^ P. Cohen, ed. (1989). The ASME Handbook on Water Technology for Thermal Power Systems. The American Society of Mechanical Engineers. p. 442.
  14. ^ Handbook of Chemistry and Physics (27th ed.). Cleveland, Ohio: Chemical Rubber Publishing Co. 1943.
  15. ^ «What substances, such as cerium sulfate, have a lower solubility when they are heated?». Scientific American. Retrieved 28 May 2014.
  16. ^ Salvatore Filippone, Frank Heimanna and André Rassat (2002). «A highly water-soluble 2+1 b-cyclodextrin–fullerene conjugate». Chem. Commun. 2002 (14): 1508–1509. doi:10.1039/b202410a. PMID 12189867.
  17. ^ E.M. Gutman (1994). Mechanochemistry of Solid Surfaces. World Scientific Publishing Co.
  18. ^ G.W. Greenwood (1969). «The Solubility of Gas Bubbles». Journal of Materials Science. 4 (4): 320–322. Bibcode:1969JMatS…4..320G. doi:10.1007/BF00550401. S2CID 93098036.
  19. ^ Kenneth J. Williamson (1994). Macroscale and Microscale Organic Experiments (2nd ed.). Lexington, Massachusetts: D. C, Heath. p. 40. ISBN 978-0-669-19429-6.
  20. ^ Merck Index (7th ed.). Merck & Co. 1960.
  21. ^ Dokoumetzidis, Aristides; Macheras, Panos (2006). «A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System». Int. J. Pharm. 321 (1–2): 1–11. doi:10.1016/j.ijpharm.2006.07.011. PMID 16920290.
  22. ^ C. Houk; R. Post, eds. (1997). Chemistry, Concept and Problems. John Wiley & Sons. p. 121. ISBN 978-0-471-12120-6.
  23. ^ Wood, Maxwell; Toriyama, Michael; Dugar, Shristi; Male, James; Anand, Shashwat; Stevanović, Vladan; Snyder, Jeff (2020). «Phase Boundary Mapping of Tin-Doped ZnSb Reveals Thermodynamic Route to High Thermoelectric Efficiency». Advanced Energy Materials. 11 (20). doi:10.1002/aenm.202100181. S2CID 234807088.
  24. ^ Tang, Yinglu; Hanus, Riley; Chen, Sin-wen; Snyder, Jeff (2015). «Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites». Nature Communications. 6 (7584): 7584. Bibcode:2015NatCo…6.7584T. doi:10.1038/ncomms8584. PMC 4518255. PMID 26189943.
  25. ^ Anand, Shashwat; Wolverton, Chris; Snyder, Jeff (2022). «Thermodynamic Guidelines for Maximum Solubility». Chemistry of Materials. 34 (4): 1638–1648. doi:10.1021/acs.chemmater.1c03715. S2CID 246516386.
  26. ^ O.M. Saether; P. de Caritat, eds. (1997). Geochemical processes, weathering and groundwater recharge in catchments. Rotterdam: Taylor & Francis. p. 6. ISBN 978-90-5410-641-8.
  27. ^ Skyner, R.; McDonagh, J. L.; Groom, C. R.; van Mourik, T.; Mitchell, J. B. O. (2015). «A Review of Methods for the Calculation of Solution Free Energies and the Modelling of Systems in Solution» (PDF). Phys Chem Chem Phys. 17 (9): 6174–91. Bibcode:2015PCCP…17.6174S. doi:10.1039/C5CP00288E. PMID 25660403.
  28. ^ Tomasi, J.; Mennucci, B.; Cammi, R. (2005). «Quantum Mechanical Continuum Solvation Models». Chemical Reviews. 105 (8): 2999–3093. doi:10.1021/cr9904009. PMID 16092826.
  29. ^ Cramer, C. J.; Truhlar, D. G. (1999). «Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics». Chemical Reviews. 99 (8): 2161–2200. doi:10.1021/cr960149m. PMID 11849023.
  30. ^ a b Abramov, Y. A. (2015). «Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?». Molecular Pharmaceutics. 12 (6): 2126–2141. doi:10.1021/acs.molpharmaceut.5b00119. PMID 25880026.
  31. ^ McDonagh, J. L. (2015). Computing the Aqueous solubility of Organic Drug-Like Molecules and Understanding Hydrophobicity (Thesis). University of St Andrews. hdl:10023/6534.
  32. ^ a b c Palmer, D. S.; McDonagh, J. L.; Mitchell, J. B. O.; van Mourik, T.; Fedorov, M. V. (2012). «First-Principles Calculation of the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules». Journal of Chemical Theory and Computation. 8 (9): 3322–3337. doi:10.1021/ct300345m. hdl:10023/25470. PMID 26605739.
  33. ^ a b c McDonagh, J. L.; Nath, N.; De Ferrari, L.; van Mourik, T.; Mitchell, J. B. O. (2014). «Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules». Journal of Chemical Information and Modeling. 54 (3): 844–856. doi:10.1021/ci4005805. PMC 3965570. PMID 24564264.
  34. ^ Lusci, A.; Pollastri, G.; Baldi, P. (2013). «Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules». Journal of Chemical Information and Modeling. 53 (7): 1563–1575. doi:10.1021/ci400187y. PMC 3739985. PMID 23795551.
  35. ^ Ran, Y.; N. Jain; S.H. Yalkowsky (2001). «Prediction of Aqueous Solubility of Organic Compounds by the General Solubility Equation (GSE)». Journal of Chemical Information and Modeling. 41 (5): 1208–1217. doi:10.1021/ci010287z. PMID 11604020.
  36. ^ Yalkowsky, S.H.; Valvani, S.C. (1980). «Solubility and partitioning I: solubility of nonelectrolytes in water». Journal of Pharmaceutical Sciences. 69 (8): 912–922. doi:10.1002/jps.2600690814. PMID 7400936.
  37. ^ a b Jain, N.; Yalkowsky, S.H. (2001). «Estimation of the aqueous solubility I: application to organic nonelectrolytes». Journal of Pharmaceutical Sciences. 90 (2): 234–252. doi:10.1002/1520-6017(200102)90:2<234::aid-jps14>3.0.co;2-v. PMID 11169540.

External links

Растворимость (Р, χ или ks)  это характеристика насыщенного раствора, которая показывает, какая масса растворенного вещества может максимально раствориться в 100 г растворителя. Размерность растворимости — г/ 100 г воды. Поскольку мы определяем массу соли,  которая приходится на 100 г воды, в формулу растворимости добавляем множитель 100:

здесь mр.в. – масса растворенного вещества, г

           mр-ля – масса растворителя, г

Иногда используют обозначение коэффициент растворимости kS.

Задачи на растворимость, как правило, вызывают сложности, так как эта физическая величина для школьников не очень привычна. 

Растворимость веществ в различных растворителях меняется в широких пределах.

В таблице приведена растворимость некоторых веществ в воде при 20oС:

Вещество

Растворимость, г на 100 г H2O

Вещество

Растворимость, г на 100 г H2O

NH4NO3

177

H3BO3

6

NaCl

36

CaCO3

0,0006

NaHCO3

10

AgI

0,0000002

От чего же зависит растворимость веществ? От ряда факторов: от природы растворенного вещества и растворителя, от температуры и давления. В справочных таблицах предлагается вещества делят на хорошо растворимые, малорастворимые и нерастворимые. Такое деление очень условное, поскольку абсолютно нерастворимых веществ нет. Даже серебро и золото растворимы в воде, однако их растворимость настолько мала, что можно пренебречь ей. 

Зависимость растворимости от природы растворенного вещества и растворителя*

Растворимость твердых веществ в жидкостях зависит от структуры твердого вещества (от типа кристаллической решетки твердого вещества). Например, вещества с металлическими кристаллическими решетками (железо, медь и др.) очень мало растворимы в воде. Вещества с ионной кристаллической решеткой, как правило, хорошо растворимы в воде.

Есть замечательное правило: “подобное хорошо растворяется в подобном”. Вещества с ионным или полярным типом связи хорошо растворяются в полярных растворителях. Например, соли хорошо растворимы в воде. В то же время неполярные вещества, как правило, хорошо растворяются в неполярных растворителях.

Большинство солей щелочных металлов и аммония хорошо растворимы в воде. Хорошо растворимы почти все нитраты, нитриты и многие галогениды (кроме галогенидов серебра, ртути, свинца и таллия) и сульфаты (кроме сульфатов щелочноземельных металлов, серебра и свинца). Для переходных металлов характерна небольшая растворимость их сульфидов, фосфатов, карбонатов и некоторых других солей.

Растворимость газов в жидкостях также зависит от их природы. Например, в 100 объемах воды при 20oС растворяется 2 объема водорода, 3 объема кислорода. В тех же условиях в 1 объеме Н2О растворяется 700 объемов аммиака. 

Влияние температуры на растворимость газов, твердых веществ и жидкостей*

Растворение газов в воде вследствие гидратации молекул растворяемого газа сопровождается выделением теплоты. Поэтому при повышении температуры растворимость газов понижается.

Температура различным образом влияет на растворимость твердых веществ в воде. В большинстве случаев растворимость твердых веществ возрастает с повышением температуры. Например, растворимость нитрата натрия NaNO3 и нитрата калия КNO3 при нагревании увеличивается (процесс растворения протекает с поглощением теплоты). Растворимость NaCl при увеличении температуры возрастает незначительно, что связано с почти нулевым тепловым эффектом растворения поваренной соли. 

Влияние давления на растворимость газов, твердых веществ и жидкостей*

На растворимость твердых и жидких веществ в жидкостях давление практически не оказывает влияния, так как изменение объема при растворении невелико. При растворении газообразных веществ в жидкости происходит уменьшение объема системы, поэтому повышение давления приводит к увеличению растворимости газов. В общем виде зависимость растворимости газов от давления подчиняется закону У. Генри (Англия, 1803 г.): растворимость газа при постоянной температуре прямо пропорциональна его давлению над жидкостью.

Закон Генри справедлив лишь при небольших давлениях для газов, растворимость которых сравнительно невелика и при условии отсутствия химического взаимодействия между молекулами растворяемого газа и растворителем.

Влияние посторонних веществ на растворимость*

В присутствии в воде других веществ (солей, кислот и щелочей) растворимость газов уменьшается. Растворимость газообразного хлора в насыщенном водном растворе поваренной соли в 10 раз меньше. Чем в чистой воде.

Эффект понижения растворимости в присутствии солей называется высаливанием. Понижение растворимости обусловлено гидратацией солей, что вызывает уменьшение числа свободных молекул воды. Молекулы воды, связанные с ионами электролита, уже не являются растворителем для других веществ.

Примеры задач на растворимость

Задача 1. Массовая доля вещества в насыщенном растворе равна 24% при некоторой температуре. Определите коэффициент растворимости этого вещества при данной температуре.

Решение:

Для определения растворимости вещества примем массу раствора равной 100 г. Тогда масса соли равна:

mр.в. = mр-ра⋅ωр.в. = 100⋅0,24 = 24 г

Масса воды равна: 

mводы = mр-ра – mр.в. = 100 — 24 = 76 г

Определяем растворимость:

χmр.в./mр-ля⋅100 = 24/76⋅100 = 31,6 г вещества на 100 г воды.

Ответ: χ = 31,6 г

Еще несколько аналогичных задач:

2. Массовая доля соли в насыщенном растворе при некоторой температуре равна 28,5%. Определите коэффициент растворимости вещества при этой температуре.

3.  Определите коэффициент растворимости нитрата калия при некоторой температуре, если массовая доля соли при этой температуре равна 0,48.

4. Какая масса воды и соли потребуется для приготовления 500г насыщенного при некоторой температуре раствора нитрата калия, если его коэффициент растворимости при этой температуре равен 63,9г соли в 100г воды?

Ответ: 194,95 г

5. Коэффициент растворимости хлорида натрия при некоторой температуре составляет 36г соли в 100г воды. Определите молярную концентрацию насыщенного раствора этой соли, если плотность раствора 1,2 г/мл.

Ответ: 5,49М

6. Какая масса соли и 5% раствора её потребуется для приготовления 450г насыщенного при некоторой температуре раствора сульфата калия, если его коэффициент растворимости при этой температуре равен 439г/1000г воды?

7. Какая масса нитрата бария выделится из раствора, насыщенного при 100ºС и охлаждённого до 0ºС, если во взятом растворе было 150мл воды? Коэффициент растворимости нитрата бария при температурах 0ºС и 100ºС равен соответственно 50г и 342г в 100г воды.

8. Коэффициент растворимости хлорида калия при 90ºС равен 500г/л воды. Сколько граммов этого вещества можно растворить в 500г воды при 90ºС и какова его массовая доля в насыщенном растворе при этой температуре?

9. В 500г воды растворено при нагревании 300г хлорида аммония. Какая масса хлорида аммония выделится из раствора при его охлаждении до 50ºС, если коэффициент растворимости соли при этой температуре равен 50г/л воды?

* Материалы портала onx.distant.ru

Понравилась статья? Поделить с друзьями:
  • Как найти средний диаметр трубопровода
  • Как составить текст описание весеннего дня
  • Как найти стоимость километра
  • 1720 smart hard drive detects imminent failure как исправить
  • Как найти доспехи святого георгия ассасин вальгалла