Как найти равные векторы в кубе

Чтобы вопрос опубликовался, войди или зарегистрируйся

Восстановление пароля

Мы отправили письмо со ссылкой на смену пароля на username@mail.ru.

Если письма нет, проверь папку «Спам».

Чтобы вопрос опубликовался, войди или зарегистрируйся

Нужна регистрация на Учи.ру

«Ваш урок» теперь называется Учи.Ответы. Чтобы зайти на сайт, используй логин и пароль от Учи.ру. Если у тебя их нет, зарегистрируйся на платформе.

Конспект урока: Компланарные векторы. Правило параллелепипеда. Разложение вектора по трём некомпланарным векторам

Другие разделы

План урока

  • Компланарные векторы;
  • Правило параллелепипеда;
  • Разложение вектора по трем некомпланарным векторам.

Цели урока

  • Знать определение компланарных векторов;
  • Знать и уметь доказывать признак компланарности трёх векторов;
  • Знать и уметь применять правило параллелепипеда сложения трёх некомпланарных векторов;
  • Знать и уметь доказывать теорему о разложении вектора по трём некомпланарным векторам;
  • Уметь находить разложение вектора по трём данным некомпланарным векторам.

Разминка

  • Какие векторы называются коллинеарными?
  • Сколько плоскостей проходит через три точки, не лежащие на одной прямой?
  • Две стороны треугольника параллельны плоскости α. Параллельна ли третья сторона плоскости α?

 Компланарные векторы


Определение 1


Компланарные векторы
— это векторы, которые параллельны одной плоскости или лежат в одной плоскости (рис. 1).



Рис. 1. Компланарные вектора

Можно также сказать, что векторы называются компланарными, если при откладывании их от одной точки они будут лежать в одной плоскости (другими словами, имеются равные им векторы, лежащие в одной плоскости).

Из определения следует, что любые два векторы компланарны, а три произвольных вектора могут быть как компланарными, так и не компланарными.


Рис. 2.

На рисунке 2 изображён параллелепипед.

Векторы D1D2→, A1C2→, A1C1→  компланарны, так как если отложить от точки A1 вектор, равный D1D2→, то получится A1A2→,  а векторы A1A2→, A1C2→, A1C1→ лежат в одной плоскости A2A1C1.

Векторы A1D1→, A1B1→, A1A2→  не компланарны, так вектор A1A2→ не лежит в плоскости D1A1B1.


Теорема 1 (признак компланарности трёх векторов)

Если вектор c→ можно разложить по векторам a→ и b→, т.е. представить в виде с→=xa→+yb→, где x и y – некоторые числа, то векторы a→, b→ и c→ компланарны.


Доказательство


Рис. 3. К теореме 1

Если векторы a→ и b→ коллинеарны, то компланарность векторов a→, b→ и c→ очевидна.

Рассмотрим случай когда векторы a→ и b→ не коллинеарны.

Отложим от произвольной точки O векторы OA→=a→ и OB→=b→ (рис. 3).

Векторы OA→ и OB→ лежат в плоскости OAB. В этой же плоскости лежат векторы OA1→=x·OA→  и OB1→=y·OB→, а значит и их сумма лежит в этой плоскости:

c→=OC→=OA1→+OB1→=x·OA→+y·OB→.

Таким образом векторы a→, b→ и c→ лежат в одной плоскости, т. е. компланарны.

Теорема доказана.

Из теоремы о разложении вектора по двум неколлинеарным векторам (эта теорема доказывалась в курсе планиметрии) следует и обратное утверждение.


Теорема 2 (обратная признаку компланарности)

Если векторы a→, b→ и c→ компланарны, а векторы a→ и b→ не коллинеарны, то вектор c→ можно разложить по векторам a→ и b→, т.е. представить в виде с→=xa→+yb→, причём коэффициенты разложения x и y определяются единственным образом.


Упражнение 1

Дан куб ABCDA1B1C1D1. Определите, являются ли компланарными векторы:

а) AB1→, AD→ и B1D→;      б) B1C1→, C1D→ и B1D→;

в) AB→, AD→ и AA1→;        г) DA→, DC→ и DB1→.


Правило параллелепипеда

Опишем так называемое правило параллелепипеда, которым можно пользоваться при сложении трёх некомпланарных векторов.


Рис. 4. Правило параллелепипеда

Пусть даны некомпланарные векторы a→, b→ и c→. От произвольной точки A1 отложим векторы A1B1→=a→, A1D1→=b→, A1A2→=c→. Построим параллелепипед A1B1C1D1A2B2C2D2 так, чтобы отрезки A1B1, A1D1, A1A2 были его рёбрами (рис. 4). Тогда вектор A1С2→ является суммой данных векторов a→, b→ и c→, т.е. A1С2→=a→+b→+c→.


Упражнение 2 

В кубе ABCDA1B1C1D1 найдите вектор, начало и конец которого являются вершины куба, равный сумме векторов:

а) C1B1→+C1D1→+C1C→;         б) BA→+BC→+BB1→;

в) AB→+A1D1→+AA1→;              г) B1A1→+BC→+B1B→.


Разложение вектора по трём некомпланарным векторам

Представление вектора p→ в виде p→=xa→+yb→+zc→, где x, y и z – некоторые числа, называют
разложением вектора p→ по векторам a→, b→ и c→
. Числа x, y и z называются
коэффициентами разложения
.

Сформулируем и докажем теорему о разложении вектора по трём некомпланарным векторам.


Теорема 3

Любой вектор можно разложить по трём данным некомпланарным векторам, причём коэффициенты разложения определяются единственным образом.


Доказательство


Рис. 5. К доказательству теоремы 3

Даны некомпланарные векторы a→, b→ и c→. Отложим от произвольной точки O векторы OA→=a→ , OB→=b→, OC→=c→,  OP→=p→ (рис. 5).

Проведём через точку P прямую, параллельную прямой OC.

Пусть P1 – точка пересечения этой прямой с плоскостью AOB. Через точку P1 проведём прямую, параллельную прямой OB. 

Пусть P2 – точка пересечения этой прямой с прямой OA. Согласно правилу многоугольника

 OP→=OP2→+P2P1→+P1P→,

OP2→∥OA→, P2P1→∥OB→, P1P→∥OC→. Следовательно, существуют числа x, y и z такие, что OP2→=x·OA→, P2P1→=y·OB→, P1P→=z·OC→.

Таким образом, 

OP→=x·OA→+y·OB→+z·OC→

p→=x·a→+y·b→+z·c→.

Докажем теперь, что коэффициенты разложения определяются единственным образом.

Предположим, что некоторый вектор p→ можно разложить по некомпланарным векторам a→, b→ и c→ двумя разными способами, т.е. p→=x1·a→+y1·b→+z1·c→ и  p→=x2·a→+y2·b→+z2·c→.

Вычитая из первого равенства второе, получим

0→=x1-x2·a→+y1-y2·b→+z1-z2·c→.

Так как векторы a→, b→ и c→ не компланарны, то это равенство возможно только в случае, если x1-x2=0, y1-y2=0, z1-z2=0  ⇒x1=x2, y1=y2, z1=z2.

Следовательно, коэффициенты разложения p→=x·a→+y·b→+z·c→ определяются единственным образом. 

Теорема доказана.


Упражнение 3 

В параллелепипеде ABCDA1B1C1D1 разложите:

а) вектор AC1→ по векторам AB→, AD→ и AA1→;

б) вектор AA1→ по векторам D1A1→, D1C1→ и  A1C→;

в) вектор D1B→ по векторам D1A1→, D1C1→ и  D1D→;

г) вектор BB1→ по векторам CB→, CD→ и  B1D→.


Контрольные вопросы

  1. Какие векторы называются компланарными?
  2. Сформулируйте признак компланарности трёх векторов.
  3. В чем заключается правило параллелепипеда, используемое при сложении трёх некомпланарных векторов?
  4. Сформулируйте теорему о разложении вектора по трём неколлинеарным векторам.

Ответы

Упражнение 1

а) да;    б) да;    в) нет;    г) нет.

Упражнение 2

а) C1A→;     б) BD1→;     в) AC1→;    г)B1D.

Упражнение 3

а) AC1→=AB→+AD→+AA1→;             

б) AA1→=D1C1→-D1A1→-A1C→;

в) D1B→=D1A1→+D1C1→+D1D→;      

г) BB1→=CD→-B1D→-CB→.

Считаем, что вершины куба A,B,C,D лежат в одной плоскости, A1 над A и т.д.

При параллельном переносе значение вектора не меняется, AA1= BB1, AB = A1B1 и т.д.

AA1 + B1C = BB1 + B1C.

Сумма векторов, у которых начало одного совпадает с концом другого есть вектор с началом в начале первого и концом в конце второго, BB1 + B1C = BC.

D1C1 = — C1D1, => AA1 + B1C — C1D1 = BC — C1D1 = BC + D1C1 = BC+DC.

Последние слагаемые есть два смежных ребра куба. По правилу параллелограмма их сумма -диагональ AC.

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора:

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1.  В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2.  В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и :

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму.

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

.

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

;

.

Выразим C и B через A и подставим в третье уравнение:

.

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» :-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Итак, AA1 = √3

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор  или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

  

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Векторы в пространстве и метод координат» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Содержание

  1. Метод координат в пространстве
  2. Вычисление координат векторов
  3. Вычисление направляющих векторов для прямых
  4. Вычисление нормальных векторов для плоскостей
  5. Координаты середины отрезка
  6. Векторы в пространстве и метод координат
  7. Система координат в пространстве
  8. Плоскость в пространстве задается уравнением:

Метод координат в пространстве

Для того, чтобы использовать метод координат, надо хорошо знать формулы. Их три:

Главная формула — косинус угла φ между векторами a = (x1; y1; z1) и b = (x2; y2; z2):

  • Уравнение плоскости в трехмерном пространстве: Ax + By + Cz + D = 0, где A, B, C и D — действительные числа, причем, если плоскость проходит через начало координат, D = 0. А если не проходит, то D = 1.
  • Вектор, перпендикулярный к плоскости Ax + By + Cz + D = 0, имеет координаты: n = (A; B; C).
  • На первый взгляд, выглядит угрожающе, но достаточно немного практики — и все будет работать великолепно.

    Задача. Найти косинус угла между векторами a = (4; 3; 0) и b = (0; 12; 5).

    Решение. Поскольку координаты векторов нам даны, подставляем их в первую формулу:

    Задача. Составить уравнение плоскости, проходящей через точки M = (2; 0; 1), N = (0; 1; 1) и K = (2; 1; 0), если известно, что она не проходит через начало координат.

    Решение. Общее уравнение плоскости: Ax + By + Cz + D = 0, но, поскольку искомая плоскость не проходит через начало координат — точку (0; 0; 0) — то положим D = 1. Поскольку эта плоскость проходит через точки M, N и K, то координаты этих точек должны обращать уравнение в верное числовое равенство.

    Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем:
    A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;

    Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения:
    A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
    A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;

    Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:

    Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.

    Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.

    Решение. Используя третью формулу, получаем n = (7; − 2; 4) — вот и все!

    Вычисление координат векторов

    А что, если в задаче нет векторов — есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми? Все просто: зная координаты точек — начала и конца вектора — можно вычислить координаты самого вектора.

    Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.

    Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:

    Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.

    Рассмотрим вектор AB: его начало находится в точке A, а конец — в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A:
    AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).

    Аналогично, начало вектора AC — все та же точка A, зато конец — точка C. Поэтому имеем:
    AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).

    Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B:
    BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).

    Ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)

    Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!

    Вычисление направляющих векторов для прямых

    Если вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.

    Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую.

    Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый для прямой:

    Зачем нужен этот вектор? Дело в том, что — это угол между их направляющими векторами. Таким образом, мы переходим от непонятных прямых к конкретным векторам, координаты которых легко считаются. Насколько легко? Взгляните на примеры:

    Задача. В кубе ABCDA1B1C1D1 проведены прямые AC и BD1. Найдите координаты направляющих векторов этих прямых.

    Поскольку длина ребер куба в условии не указана, положим AB = 1. Введем систему координат с началом в точке A и осями x, y, z, направленными вдоль прямых AB, AD и AA1 соответственно. Единичный отрезок равен AB = 1.

    Теперь найдем координаты направляющего вектора для прямой AC. Нам потребуются две точки: A = (0; 0; 0) и C = (1; 1; 0). Отсюда получаем координаты вектора AC = (1 − 0; 1 − 0; 0 − 0) = (1; 1; 0) — это и есть направляющий вектор.

    Теперь разберемся с прямой BD1. На ней также есть две точки: B = (1; 0; 0) и D1 = (0; 1; 1). Получаем направляющий вектор BD1 = (0 − 1; 1 − 0; 1 − 0) = (− 1; 1; 1).

    Ответ: AC = (1; 1; 0); BD1 = (− 1; 1; 1)

    Задача. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, проведены прямые AB1 и AC1. Найдите координаты направляющих векторов этих прямых.

    Введем систему координат: начало в точке A, ось x совпадает с AB, ось z совпадает с AA1, ось y образует с осью x плоскость OXY, которая совпадает с плоскостью ABC.

    Для начала разберемся с прямой AB1. Тут все просто: у нас есть точки A = (0; 0; 0) и B1 = (1; 0; 1). Получаем направляющий вектор AB1 = (1 − 0; 0 − 0; 1 − 0) = (1; 0; 1).

    Теперь найдем направляющий вектор для AC1. Все то же самое — единственное отличие в том, что у точки C1 иррациональные координаты. Итак, A = (0; 0; 0), поэтому имеем:

    Небольшое, но очень важное замечание насчет последнего примера. Если начало вектора совпадает с началом координат, вычисления резко упрощаются: координаты вектора просто равны координатам конца. К сожалению, это верно лишь для векторов. Например, при работе с плоскостями присутствие на них начала координат только усложняет выкладки.

    Вычисление нормальных векторов для плоскостей

    Нормальные векторы — это не те векторы, у которых все в порядке, или которые чувствуют себя хорошо. По определению, нормальный вектор (нормаль) к плоскости — это вектор, перпендикулярный данной плоскости.

    Другими словами, — это вектор, перпендикулярный любому вектору в данной плоскости. Наверняка вы встречали такое определение — правда, вместо векторов речь шла о прямых. Однако чуть выше было показано, что в задаче C2 можно оперировать любым удобным объектом — хоть прямой, хоть вектором.

    Еще раз напомню, что всякая плоскость задается в пространстве уравнением Ax + By + Cz + D = 0, где A, B, C и D — некоторые коэффициенты. Не умаляя общности решения, можно полагать D = 1, если плоскость не проходит через начало координат, или D = 0, если все-таки проходит. В любом случае, координаты нормального вектора к этой плоскости равны n = (A; B; C).

    Итак, плоскость тоже можно успешно заменить вектором — той самой нормалью. Всякая плоскость задается в пространстве тремя точками. Как найти уравнение плоскости (а следовательно — и нормали), мы уже обсуждали в самом начале статьи. Однако этот процесс у многих вызывает проблемы, поэтому приведу еще парочку примеров:

    Задача. В кубе ABCDA1B1C1D1 проведено сечение A1BC1. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA1 соответственно.

    Поскольку плоскость не проходит через начало координат, ее уравнение выглядит так: Ax + By + Cz + 1 = 0, т.е. коэффициент D = 1. Поскольку эта плоскость проходит через точки A1, B и C1, то координаты этих точек обращают уравнение плоскости в верное числовое равенство.

    Подставим вместо x, y и z координаты точки A1 = (0; 0; 1). Имеем:
    A · 0 + B · 0 + C · 1 + 1 = 0 ⇒ C + 1 = 0 ⇒ C = − 1;

    Аналогично, для точек B = (1; 0; 0) и C1 = (1; 1; 1) получим уравнения:
    A · 1 + B · 0 + C · 0 + 1 = 0 ⇒ A + 1 = 0 ⇒ A = − 1;
    A · 1 + B · 1 + C · 1 + 1 = 0 ⇒ A + B + C + 1 = 0;

    Но коэффициенты A = − 1 и C = − 1 нам уже известны, поэтому остается найти коэффициент B:
    B = − 1 − A − C = − 1 + 1 + 1 = 1.

    Получаем уравнение плоскости: − A + B − C + 1 = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; − 1).

    Задача. В кубе ABCDA1B1C1D1 проведено сечение AA1C1C. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA1 соответственно.

    В данном случае плоскость проходит через начало координат, поэтому коэффициент D = 0, а уравнение плоскости выглядит так: Ax + By + Cz = 0. Поскольку плоскость проходит через точки A1 и C, координаты этих точек обращают уравнение плоскости в верное числовое равенство.

    Подставим вместо x, y и z координаты точки A1 = (0; 0; 1). Имеем:
    A · 0 + B · 0 + C · 1 = 0 ⇒ C = 0;

    Аналогично, для точки C = (1; 1; 0) получим уравнение:
    A · 1 + B · 1 + C · 0 = 0 ⇒ A + B = 0 ⇒ A = − B;

    Положим B = 1. Тогда A = − B = − 1, и уравнение всей плоскости имеет вид: − A + B = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; 0).

    Вообще говоря, в приведенных задачах надо составлять систему уравнений и решать ее. Получится три уравнения и три переменных, но во втором случае одна из них будет свободной, т.е. принимать произвольные значения. Именно поэтому мы вправе положить B = 1 — без ущерба для общности решения и правильности ответа.

    Координаты середины отрезка

    Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

    Итак, пусть отрезок задан своими концами — точками A = (xa; ya; za) и B = (xb; yb; zb). Тогда координаты середины отрезка — обозначим ее точкой H — можно найти по формуле:

    Другими словами, координаты середины отрезка — это среднее арифметическое координат его концов.

    Задача. Единичный куб ABCDA1B1C1D1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA1 соответственно, а начало координат совпадает с точкой A. Точка K — середина ребра A1B1. Найдите координаты этой точки.

    Поскольку точка K — середина отрезка A1B1, ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A1 = (0; 0; 1) и B1 = (1; 0; 1). Теперь найдем координаты точки K:

    Задача. Единичный куб ABCDA1B1C1D1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A1B1C1D1.

    Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A1L = C1L, т.е. точка L — это середина отрезка A1C1. Но A1 = (0; 0; 1), C1 = (1; 1; 1), поэтому имеем:

    Источник

    Векторы в пространстве и метод координат

    Существует два способа решения задач по стереометрии

    Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

    Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

    Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

    Система координат в пространстве

    Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

    Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

    Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

    Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


    Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

    Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

    Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

    Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

    Произведение вектора на число:

    Скалярное произведение векторов:

    Косинус угла между векторами:

    Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

    1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

    Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

    Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

    Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

    Запишем координаты векторов:

    и найдем косинус угла между векторами и :

    2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

    Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

    Координаты точек A, B и C найти легко:

    Из прямоугольного треугольника AOS найдем

    Координаты вершины пирамиды:

    Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

    Найдем координаты векторов и

    Покажем теперь, как вписать систему координат в треугольную призму:

    3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

    Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

    Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
    отрезка.

    Найдем координаты векторов и , а затем угол между ними:

    Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

    Плоскость в пространстве задается уравнением:

    Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

    Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

    Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

    Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

    Уравнение плоскости выглядит так:

    Подставим в него по очереди координаты точек M, N и K.

    Получили систему из трех уравнений:

    В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

    Пусть, например, D = −2. Тогда:

    Выразим C и B через A и подставим в третье уравнение:

    Уравнение плоскости MNK имеет вид:

    Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

    Вектор — это нормаль к плоскости MNK.

    Уравнение плоскости, проходящей через заданную точку имеет вид:

    Угол между плоскостями равен углу между нормалями к этим плоскостям:

    Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

    Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

    Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

    4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

    Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

    Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

    Итак, первый вектор нормали у нас уже есть:

    Напишем уравнение плоскости AEF.

    Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

    Уравнение плоскости AEF:

    Нормаль к плоскости AEF:

    Найдем угол между плоскостями:

    5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

    Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

    Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

    Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

    «Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

    Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

    Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

    Координаты вектора — тоже:

    Находим угол между плоскостями, равный углу между нормалями к ним:

    Зная косинус угла, находим его тангенс по формуле

    Получим:

    Ответ:

    Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

    Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

    Находим синус угла между прямой m и плоскостью α по формуле:

    6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

    Как всегда, рисуем чертеж и выбираем систему координат

    Находим координаты вектора .

    Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

    Найдем угол между прямой и плоскостью:

    Ответ:

    Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

    7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

    Построим чертеж и выпишем координаты точек:

    Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

    Решим эту систему. Выберем

    Тогда

    Уравнение плоскости A1DB имеет вид:

    Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

    В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

    Источник

    Понравилась статья? Поделить с друзьями:
  • Как найти пароль в игре привет сосед
  • Как найти своего друга в чат рулетка
  • Вин 10 как найти карантин
  • Как найти риск актива
  • Как в майнкрафте найти дом лесника