Как найти размер матрицы произведения

Нами были рассмотрены действия сложения, вычитания и умножения матриц на число. Еще одним действием над ними является умножение. Выполняется оно сложнее, а само правило может показаться немного странным. При его выполнении важно уметь определять размер матриц. Это понятие было рассмотрено в теме «Что такое матрица».

Онлайн-калькулятор

Как умножать матрицы

Приступим к рассмотрению умножения матриц.

Нам известно, что складывать и вычитать можно матрицы, которые имеют одинаковый размер. С умножением дела обстоят немного сложнее.

Какие матрицы можно умножать

Матрицу P можно умножить на матрицу K только в том случае, если число столбцов матрицы P равняется числу строк матрицы K. Матрицы, для которых данное условие не выполняется, умножать нельзя.

Пример 1

Определим, можно ли умножить матрицу

K=(15271810)K=begin{pmatrix}15&27\18&10end{pmatrix} на матрицу L=(3516)L=begin{pmatrix}35\16end{pmatrix}.

Матрица KK состоит из 2 строк и 2 столбцов, а матрица LL — из 2 строк и 1 столбца. Число столбцов матрицы KK равно числу строк матрицы LL, значит, матрицу KK можно умножить на матрицу LL.

Пример 2

Переставим матрицы местами и определим, можно ли умножить матрицу

F=(3516)F=begin{pmatrix}35\16end{pmatrix} на матрицу C=(15271810)C=begin{pmatrix}15&27\18&10end{pmatrix}.

Матрица FF состоит из 2 строк и 1 столбца, а матрица CC — из 2 строк и 2 столбцов. Число столбцов матрицы FF не равно числу строк матрицы CC, значит, матрицу FF нельзя умножить на матрицу CC.

Правило умножения матриц

Произведение матрицы AA размера m×nmtimes n и матрицы BB размера n×kntimes k — это матрица CC размера m×kmtimes k, в которой элемент cijc_{ij} равен сумме произведений элементов ii строки матрицы AA на соответствующие элементы jj столбца матрицы B:cij=ai1b1j+ai2b2j+…+ainbnjB: c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+…+a_{in}b_{nj}.

Умножение матриц осуществляется путем умножения строки на столбец. Находятся произведения первого элемента строки и первого элемента столбца, второго элемента строки и второго элемента столбца и т.д. Затем полученные произведения суммируются.

Алгоритм нахождения произведения матриц

  1. определить размеры матриц;
  2. если число столбцов первой матрицы совпадает с числом строк второй матрицы, то выполнять умножение.

Рассмотрим пример умножения матрицы

A=(a11a12a21a22a31a32a41a42)A=begin{pmatrix}a_{11}&a_{12}\a_{21}&a_{22}\a_{31}&a_{32}\a_{41}&a_{42}end{pmatrix}

на матрицу

B=(b11b12b13b21b22b23)B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}end{pmatrix}.

Матрица AA состоит из 4 строк и 2 столбцов, а матрица BB — из 2 строк и 3 столбцов. Число столбцов матрицы AA равно числу строк матрицы BB, значит, можно найти произведение C=A⋅BC=Acdot B. Причем матрица CC будет иметь размер 4×34times 3. Найдем элементы c12c_{12} (выделен красными стрелками) и c33c_{33} (выделен синими стрелками):

умножение матриц .png

Для того чтобы найти элемент c12c_{12} нужно перемножать соответствующие элементы 1 строки матрицы AA и 2 столбца матрицы B:c12=a11⋅b12+a12⋅b22B: c_{12}=a_{11}cdot b_{12}+a_{12}cdot b_{22}. Для того чтобы найти элемент c33c_{33} нужно перемножать соответствующие элементы 3 строки матрицы AA и 3 столбца матрицы BB: c33=a31⋅b13+a32⋅b23c_{33}=a_{31}cdot b_{13}+a_{32}cdot b_{23}. Так находят все элементы.

Таким образом, матрица CC может быть найдена следующим образом:

A⋅B=(a11a12a21a22a31a32a41a42)⋅(b11b12b13b21b22b23)=Acdot B=begin{pmatrix}a_{11}&a_{12}\a_{21}&a_{22}\a_{31}&a_{32}\a_{41}&a_{42}end{pmatrix}cdot begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}end{pmatrix}=

=(a11⋅b11+a12⋅b21a11⋅b12+a12⋅b22a11⋅b13+a12⋅b23a21⋅b11+a22⋅b21a21⋅b12+a22⋅b22a21⋅b13+a22⋅b23a31⋅b11+a32⋅b21a31⋅b12+a32⋅b22a31⋅b13+a32⋅b23a41⋅b11+a42⋅b21a41⋅b12+a42⋅b22a41⋅b13+a42⋅b23)=begin{pmatrix}a_{11}cdot b_{11}+a_{12}cdot b_{21}&a_{11}cdot b_{12}+a_{12}cdot b_{22}&a_{11}cdot b_{13}+a_{12}cdot b_{23}\a_{21}cdot b_{11}+a_{22}cdot b_{21}&a_{21}cdot b_{12}+a_{22}cdot b_{22}&a_{21}cdot b_{13}+a_{22}cdot b_{23}\a_{31}cdot b_{11}+a_{32}cdot b_{21}&a_{31}cdot b_{12}+a_{32}cdot b_{22}&a_{31}cdot b_{13}+a_{32}cdot b_{23}\a_{41}cdot b_{11}+a_{42}cdot b_{21}&a_{41}cdot b_{12}+a_{42}cdot b_{22}&a_{41}cdot b_{13}+a_{42}cdot b_{23}end{pmatrix}

Произведение B⋅ABcdot A нельзя найти, поскольку число столбцов матрицы BB неравно числу строк матрицы AA.

Пример 1

Найти произведение матрицы C=(15271810)C=begin{pmatrix}15&27\18&10end{pmatrix} на матрицу F=(3516)F=begin{pmatrix}35\16end{pmatrix}.

Матрица CC имеет размер 2×22times 2, матрица FF имеет размер 2×12times 1, значит, размер матрицы произведения будет 2×12times 1.

C⋅F=(15271810)⋅(3516)=(15⋅35+27⋅1618⋅35+10⋅16)=(957790)Ccdot F=begin{pmatrix}15&27\18&10end{pmatrix}cdot begin{pmatrix}35\16end{pmatrix}=begin{pmatrix}15cdot 35+27cdot 16\18cdot 35+10cdot 16end{pmatrix}=begin{pmatrix}957\790end{pmatrix}.

Как отмечалось выше, произведение матриц F⋅CFcdot C невозможно.

Пример 2

Найти произведение матриц K⋅LKcdot L и L⋅KLcdot K, если K=(12171314)K=begin{pmatrix}12&17\13&14end{pmatrix} на матрицу L=(18111210)L=begin{pmatrix}18&11\12&10end{pmatrix}.

Матрица KK имеет размер 2×22times 2, матрица LL имеет размер 2×22times 2, значит, размер матрицы произведения будет 2×22times 2.

K⋅L=(12171314)⋅(18111210)=(12⋅18+17⋅1212⋅11+17⋅1013⋅18+14⋅1213⋅11+14⋅10)=(420302402283)Kcdot L=begin{pmatrix}12&17\13&14end{pmatrix}cdot begin{pmatrix}18&11\12&10end{pmatrix}=begin{pmatrix}12cdot 18+17cdot 12&12cdot 11+17cdot 10\13cdot 18+14cdot 12&13cdot 11+14cdot 10end{pmatrix}=begin{pmatrix}420&302\402&283end{pmatrix}

Произведение L⋅KLcdot K существует и его размер — 2×22times 2.

L⋅K=(18111210)⋅(12171314)=(18⋅12+11⋅1318⋅17+11⋅1412⋅12+10⋅1312⋅17+10⋅14)=(359460274344)Lcdot K=begin{pmatrix}18&11\12&10end{pmatrix}cdot begin{pmatrix}12&17\13&14end{pmatrix}=begin{pmatrix}18cdot 12+11cdot 13&18cdot 17+11cdot 14\12cdot 12+10cdot 13&12cdot 17+10cdot 14end{pmatrix}=begin{pmatrix}359&460\274&344end{pmatrix}

Произведение двух матриц в общем случае зависит от порядка сомножителей, т.е. оно некоммутативно: A⋅B≠B⋅AAcdot Bneq Bcdot A.

Так, для матриц K=(12171314)K=begin{pmatrix}12&17\13&14end{pmatrix} и L=(18111210)L=begin{pmatrix}18&11\12&10end{pmatrix} из рассмотренного примера K⋅L≠L⋅KKcdot L neq Lcdot K.

Перестановочные матрицы

Перестановочные, или коммутирующие, матрицы – матрицы, для которых выполняется равенство A⋅B=B⋅AAcdot B=Bcdot A. Они обязательно квадратные.

Пример 1

Проверить, являются ли перестановочными матрицы CC и DD, если C=(2342)C=begin{pmatrix}2&3\4&2end{pmatrix}, D=(3343)D=begin{pmatrix}3&3\4&3end{pmatrix}.

Найдем произведения этих матриц C⋅DCcdot D и D⋅CDcdot C.

C⋅D=(2342)⋅(3343)=(2⋅3+3⋅42⋅3+3⋅34⋅3+2⋅44⋅3+2⋅3)=(18152018)Ccdot D=begin{pmatrix}2&3\4&2end{pmatrix}cdot begin{pmatrix}3&3\4&3end{pmatrix}=begin{pmatrix}2cdot 3+3cdot 4&2cdot 3+3cdot 3\4cdot 3+2cdot 4&4cdot 3+2cdot 3end{pmatrix}=begin{pmatrix}18&15\20&18end{pmatrix},

D⋅C=(3343)⋅(2342)=(3⋅2+3⋅43⋅3+3⋅24⋅2+3⋅44⋅3+3⋅2)=(18152018)Dcdot C=begin{pmatrix}3&3\4&3end{pmatrix}cdot begin{pmatrix}2&3\4&2end{pmatrix}=begin{pmatrix}3cdot 2+3cdot 4&3cdot 3+3cdot 2\4cdot 2+3cdot 4&4cdot 3+3cdot 2end{pmatrix}=begin{pmatrix}18&15\20&18end{pmatrix}.

Таким образом, для заданных матриц выполняется равенство C⋅DCcdot D и D⋅CDcdot C, поэтому они являются перестановочными.

Пример 2

Проверить, являются ли перестановочными матрицы FF и HH, если F=(3421)F=begin{pmatrix}3&4\2&1end{pmatrix}, H=(0593)H=begin{pmatrix}0&5\9&3end{pmatrix}.

Найдем произведения этих матриц F⋅HFcdot H и H⋅FHcdot F.

F⋅H=(3421)⋅(0593)=(3⋅0+4⋅93⋅5+4⋅32⋅0+1⋅92⋅5+1⋅3)=(3627913)Fcdot H=begin{pmatrix}3&4\2&1end{pmatrix}cdot begin{pmatrix}0&5\9&3end{pmatrix}=begin{pmatrix}3cdot 0+4cdot 9&3cdot 5+4cdot 3\2cdot 0+1cdot 9&2cdot 5+1cdot 3end{pmatrix}=begin{pmatrix}36&27\9&13end{pmatrix},

H⋅F=(0593)⋅(3421)=(0⋅3+5⋅20⋅4+5⋅19⋅3+3⋅29⋅4+3⋅1)=(1053339)Hcdot F=begin{pmatrix}0&5\9&3end{pmatrix}cdot begin{pmatrix}3&4\2&1end{pmatrix}=begin{pmatrix}0cdot 3+5cdot 2&0cdot 4+5cdot 1\9cdot 3+3cdot 2&9cdot 4+3cdot 1end{pmatrix}=begin{pmatrix}10&5\33&39end{pmatrix}.

Таким образом, для заданных матриц не выполняется равенство F⋅HFcdot H и H⋅FHcdot F, поэтому они не являются перестановочными.

Контрольные работы на заказ онлайн от практикующих исполнителей!

Содержание:

Определение: Матрицей называется таблица чисел (выражений), имеющая m строк и n столбцов:Матрица - виды, операции и действия с примерами решения

В дальнейшем будем писать матрицу в сокращенном видеМатрица - виды, операции и действия с примерами решения

Определение: Если матрица содержит 1 строку и n столбцов, то она называется матрицей-строкой Матрица - виды, операции и действия с примерами решения

Определение: Если матрица содержит m строк и 1 столбец, то она называется матрицей-столбцом Матрица - виды, операции и действия с примерами решения

Пример:

Следующие таблицы являются матрицами

Матрица - виды, операции и действия с примерами решения

Определение: Матрица, у которой совпадает количество столбцов с количеством строк, называется квадратной.

Всякой квадратной матрице соответствует определитель, составленный из тех же матричных элементов, который в теории матриц называется детерминантом матрицы Матрица - виды, операции и действия с примерами решения

Определение: Транспонированной к исходной квадратной матрице называется такая матрица, строки которой заменены на соответствующие столбцы, а столбцы — на соответствующие строки.

Замечание: Согласно свойству 1. для определителей (см. Лекцию № 1) для квадратных матриц детерминант исходной матрицы равен детерминанту транспонированной матрицы.

Определение: Матрицу, у которой все элементы, стоящие под главной диагональю равны нулю, будем называть треугольной

Матрица - виды, операции и действия с примерами решения

Определение: Матрица, все элементы которой равны нулю, за исключением элементов, стоящих на главной диагонали, называется диагональной Матрица - виды, операции и действия с примерами решения

Определение: Единичной матрицей называется диагональная матрица, у которой на главной диагонали все элементы равны единице, а остальные элементы равны нулю: Матрица - виды, операции и действия с примерами решения

Действия над матрицами

1. Суммой (разностью) двух матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения одинаковой структуры называется матрица той же размерности Матрица - виды, операции и действия с примерами решения элементы которой вычисляются по формуле: Матрица - виды, операции и действия с примерами решения

Пример:

Найти сумму (разность) матриц Матрица - виды, операции и действия с примерами решения

Решение:

Из приведенных матриц складывать (вычитать) можно только матрицы А и С, которые имеют одинаковую структуру. Найдем сумму:

Матрица - виды, операции и действия с примерами решения

и разность этих матриц:

Матрица - виды, операции и действия с примерами решения

2. При умножении вещественного числа k на матрицу Матрица - виды, операции и действия с примерами решения все элементы матрицы умножаются на это число.

Пример:

Умножить (-2) на матрицу Матрица - виды, операции и действия с примерами решения

Решение:

Результат умножения имеет вид Матрица - виды, операции и действия с примерами решения

3. Произведением матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения называется матрица Матрица - виды, операции и действия с примерами решенияэлементы которой вычисляются по формуле: Матрица - виды, операции и действия с примерами решения

Замечание: Перемножать можно лишь те матрицы, для которых количество столбцов первой перемножаемой матрицы совпадает с количеством строк второй перемножаемой матрицы. Матрица, получаемая в результате перемножения, имеет количество строк равное количеству строк первой матрицы и количество столбцов равное количеству столбцов второй матрицы.

Пример:

Найти (возможные) произведения матриц

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица А имеет структуру 2×3, матрица В — 2×2, матрица С — 3×2. Согласно определению можно найти произведения Матрица - виды, операции и действия с примерами решения Не существуют произведения Матрица - виды, операции и действия с примерами решения Вычислим произведение Матрица - виды, операции и действия с примерами решения Прежде всего, определим структуру результирующей матрицы: имеем размерности Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения убирая подчеркнутые цифры, получим структуру результирующей матрицы 2×3. Вычислим ее элементы. Для того чтобы найти элементы возможных произведений, надо просуммировать произведения элементов строки первой матрицы на соответствующие элементы столбца второй матрицы:

Матрица - виды, операции и действия с примерами решения

Остальные возможные произведения найти самостоятельно.

Замечание: Из приведенного примера видно, что в общем случае произведение матриц некоммутативно (неперестановочно), т. е.Матрица - виды, операции и действия с примерами решения

Определение: Обратной матрицей к исходной квадратной матрице Матрица - виды, операции и действия с примерами решения называется матрица Матрица - виды, операции и действия с примерами решения той же структуры, произведение которой с матрицей А коммутативно и равно единичной матрице, то есть Матрица - виды, операции и действия с примерами решения

Рассмотрим схему построения обратной матрицы Матрица - виды, операции и действия с примерами решения

Замечание: Обращаем внимание на то, что матрица алгебраических дополнений записана в транспонированном виде.

Пример:

Найти обратную матрицу к матрице Матрица - виды, операции и действия с примерами решения

Решение:

Вычислим детерминант данной матрицы Матрица - виды, операции и действия с примерами решения раскроем этот определитель по элементам первой строки:

Матрица - виды, операции и действия с примерами решения

Вычислим алгебраические дополнения всех элементов определителя: Матрица - виды, операции и действия с примерами решения Запишем обратную матрицу Матрица - виды, операции и действия с примерами решения

Проверим правильность нахождения обратной матрицы, для чего воспользуемся ее определением. Умножим найденную матрицу на исходную матрицу, вычислим элементы результирующей матрицы

Матрица - виды, операции и действия с примерами решения

Таким образом, Матрица - виды, операции и действия с примерами решения т.е. найдена верно.

Основные сведения о матрицах

Понятие матрицы и основанный на нем раздел математики — матричная алгебра — имеют чрезвычайно важное значение для экономистов. Объясняется это тем, что значительная часть математических моделей экономических объектов и процессов записывается в достаточно простой, а главное — компактной матричной форме.

Матрицей размера Матрица - виды, операции и действия с примерами решения называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными (заглавными) буквами латинского алфавита, например, А, В, С, …, а для обозначения элементов матрицы используются строчные буквы с двойной индексацией: Матрица - виды, операции и действия с примерами решения , где Матрица - виды, операции и действия с примерами решения — номер строки, Матрица - виды, операции и действия с примерами решения — номер столбца.

Например, матрица

Матрица - виды, операции и действия с примерами решения

или, в сокращенной записи, Матрица - виды, операции и действия с примерами решения

Например, Матрица - виды, операции и действия с примерами решения Наряду с круглыми скобками используются и другие обозначения матрицы:Матрица - виды, операции и действия с примерами решения

Две матрицы А и В одного размера называются равными, если они совпадают поэлементно, т.е. Матрица - виды, операции и действия с примерами решения для любых Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения

С помощью матриц удобно записывать некоторые экономические зависимости. Например, таблица распределения ресурсов по отдельным отраслям экономики (усл. ед.) Матрица - виды, операции и действия с примерами решения

может быть записана в компактной форме в виде матрицы распределения ресурсов по отраслям: Матрица - виды, операции и действия с примерами решения

В этой записи, например, матричный элемент Матрица - виды, операции и действия с примерами решения показывает, сколько электроэнергии потребляет промышленность, а элемент Матрица - виды, операции и действия с примерами решения — сколько трудовых ресурсов потребляет сельское хозяйство.

Виды матриц

Матрица, состоящая из одной строки, называется матрицей (вектором)-строкой, а из одного столбца — матрицей (вектором)-столбцом: Матрица - виды, операции и действия с примерами решения— матрица-строка;

Матрица - виды, операции и действия с примерами решения— матрица-столбец.

Матрица называется квадратной Матрица - виды, операции и действия с примерами решения-го порядка, если число ее строк равно числу столбцов и равно Матрица - виды, операции и действия с примерами решения.

Например, Матрица - виды, операции и действия с примерами решения — квадратная матрица третьего порядка.

Элементы матрицы Матрица - виды, операции и действия с примерами решения, у которых номер столбца равен номеру строки Матрица - виды, операции и действия с примерами решения, называются диагональными и образуют главную диагональ матрицы. Для квадратной матрицы главную диагональ образуют элементы Матрица - виды, операции и действия с примерами решения

Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной. Например,

Матрица - виды, операции и действия с примерами решения—диагональная матрица третьего порядка.

Если у диагональной матрицы Матрица - виды, операции и действия с примерами решения-го порядка все диагональные элементы равны единице, то матрица называется единичной матрицей Матрица - виды, операции и действия с примерами решения-го порядка, она обозначается буквой Е.

Например,Матрица - виды, операции и действия с примерами решения— единичная матрица третьего порядка.

Матрица любого размера называется нулевой, или нуль-матрицей, если все ее элементы равны нулю:

Матрица - виды, операции и действия с примерами решения

Операции над матрицами

Над матрицами, как и над числами, можно производить ряд операций, причем некоторые из них аналогичны операциям над числами, а некоторые — специфические.

Умножение матрицы на число

Произведением матрицы А на число Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решения элементы которой Матрица - виды, операции и действия с примерами решения для Матрица - виды, операции и действия с примерами решения

Например, если Матрица - виды, операции и действия с примерами решения, то Матрица - виды, операции и действия с примерами решения

Следствие. Общий множитель всех элементов матрицы можно выносить за знак матрицы.

Например, Матрица - виды, операции и действия с примерами решения

В частности, произведение матрицы А на число 0 есть нулевая матрица, т.е. Матрица - виды, операции и действия с примерами решения

Сложение матриц

Суммой двух матриц А и В одинакового размера Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решения , элементы которой Матрица - виды, операции и действия с примерами решения для Матрица - виды, операции и действия с примерами решения(т.е. матрицы складываются поэлементно).

Например,

Матрица - виды, операции и действия с примерами решения В частном случае A + 0 = A.

Вычитание матриц

Разность двух матриц одинакового размера определяется через предыдущие операции: Матрица - виды, операции и действия с примерами решения

Умножение матриц

Умножение матрицы А на матрицу В определено, когда число столбцов первой матрицы равно числу строк второйМатрица - виды, операции и действия с примерами решения. Тогда произведением матриц Матрица - виды, операции и действия с примерами решения называется такая матрицаМатрица - виды, операции и действия с примерами решения, каждый элемент которой Матрица - виды, операции и действия с примерами решения равен сумме произведений элементов Матрица - виды, операции и действия с примерами решения-й строки матрицы А на соответствующие элементы Матрица - виды, операции и действия с примерами решения-го столбца матрицы В:

Матрица - виды, операции и действия с примерами решения

Пример №1

Вычислить произведение матриц Матрица - виды, операции и действия с примерами решения, где

Матрица - виды, операции и действия с примерами решения

Решение:

1. Найдем размер матрицы-произведения (если умножение матриц возможно): Матрица - виды, операции и действия с примерами решения

2. Вычислим элементы матрицы-произведения С, умножая элементы каждой строки матрицы А на соответствующие элементы столбцов матрицы В следующим образом:

Матрица - виды, операции и действия с примерами решения

Получаем Матрица - виды, операции и действия с примерами решения

Многие свойства, присущие операциям над числами, справедливы и для операций над матрицами (что следует из определений этих операций):

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решенияэтом случае матрица А называется согласованной с матрицей В.

Однако имеются и специфические свойства матриц. Так, операция умножения матриц имеет некоторые отличия от умножения чисел:

а)Если произведение матриц Матрица - виды, операции и действия с примерами решения существует, то после перестановки сомножителей местами произведения матриц Матрица - виды, операции и действия с примерами решения может и не существовать. Действительно, в примере 1.1 получили произведение матриц Матрица - виды, операции и действия с примерами решения, а произведения Матрица - виды, операции и действия с примерами решения не существует, так как число столбцов первой матрицы не совпадает с числом строк второй матрицы.

б)Если даже произведения Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения существуют, то они могут быть матрицами разных размеров.

Пример №2

Найти произведения матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения:

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения ► в) В случае, когда оба произведения Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения существуют и оба — матрицы одинакового размера (это возможно только при умножении квадратных матриц А и В одного порядка), коммутативный (переместительный) закон умножения, вообще говоря, не выполняется, т.е.Матрица - виды, операции и действия с примерами решения

Пример №3

Найти произведения матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения , где Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения В частном случае коммутативным законом обладает произведение любой квадратной матрицы А Матрица - виды, операции и действия с примерами решения-гo порядка на единичную матрицу Е того же порядка, причем это произведение равно А:

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

Таким образом, единичная матрица играет при умножении матриц ту же роль, что и число 1 при умножении чисел.

г) Произведение двух ненулевых матриц может равняться нулевой матрице, т.е. из того, что Матрица - виды, операции и действия с примерами решения, не следует, что Матрица - виды, операции и действия с примерами решения или,Матрица - виды, операции и действия с примерами решения. Например, Матрица - виды, операции и действия с примерами решения

Возведение в степень

Целой положительной степенью Матрица - виды, операции и действия с примерами решения квадратной матрицы Матрица - виды, операции и действия с примерами решения называется произведение Матрица - виды, операции и действия с примерами решения матриц, равных Матрица - виды, операции и действия с примерами решения, т.е.

Матрица - виды, операции и действия с примерами решения

Заметим, что операция возведения в степень определяется только для квадратных матриц.

По определению полагают Матрица - виды, операции и действия с примерами решения Нетрудно показать, что Матрица - виды, операции и действия с примерами решения

Пример №4

Найти Матрица - виды, операции и действия с примерами решения , где Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения

Обращаем внимание на то, что из равенства Матрица - виды, операции и действия с примерами решения еще не следует, что матрица Матрица - виды, операции и действия с примерами решения

Транспонирование матрицы

Транспонирование матрицы — переход от матрицы Матрица - виды, операции и действия с примерами решения к матрице Матрица - виды, операции и действия с примерами решения, в которой строки и столбцы поменялись местами с сохранением порядка. Матрица Матрица - виды, операции и действия с примерами решенияназывается транспонированной относительно матрицы Матрица - виды, операции и действия с примерами решения: Матрица - виды, операции и действия с примерами решения Из определения следует, что если матрица Матрица - виды, операции и действия с примерами решения имеет размер Матрица - виды, операции и действия с примерами решения , то транспонированная матрица Матрица - виды, операции и действия с примерами решения имеет размер Матрица - виды, операции и действия с примерами решения.

Например, Матрица - виды, операции и действия с примерами решения

В литературе встречаются и другие обозначения транспонированной матрицы, например, Матрица - виды, операции и действия с примерами решения.

Свойства операции транспонирования:

Матрица - виды, операции и действия с примерами решения

Рекомендуем читателю доказать их самостоятельно. Рассмотренные выше операции над матрицами позволяют упростить решения некоторых экономических задач.

Пример №5

Предприятие выпускает продукцию трех видов: Матрица - виды, операции и действия с примерами решения и использует сырье двух типов: Матрица - виды, операции и действия с примерами решения. Нормы расхода сырья характеризуются матрицей Матрица - виды, операции и действия с примерами решения

где каждый элемент Матрица - виды, операции и действия с примерами решенияпоказывает, сколько единиц сырья

Матрица - виды, операции и действия с примерами решения-го типа расходуется на производство единицы продукции Матрица - виды, операции и действия с примерами решения-го вида. План выпуска продукции задан матрицей-строкой Матрица - виды, операции и действия с примерами решения, стоимость единицы каждого типа сырья (ден. ед.) — матрицей-столбцом Матрица - виды, операции и действия с примерами решения

Определить затраты сырья, необходимые для планового выпуска продукции, и общую стоимость сырья.

Решение:

Затраты 1-го сырья составляют Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения ед. и 2-го — Матрица - виды, операции и действия с примерами решенияед., поэтому матрица-строка затрат сырья Матрица - виды, операции и действия с примерами решения может быть записана как произведение Матрица - виды, операции и действия с примерами решения

Тогда общая стоимость сырья Матрица - виды, операции и действия с примерами решения ден. ед. может быть записана в матричном виде Матрица - виды, операции и действия с примерами решения Общую стоимость сырья можно вычислить и в другом порядке: вначале вычислим матрицу стоимостей затрат сырья на единицу продукции, т.е. матрицу

Матрица - виды, операции и действия с примерами решения а затем общую стоимость сырья

Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения

На данном примере мы убедились в выполнении свойства 7 (см. с. 13) — ассоциативного закона произведения матриц: Матрица - виды, операции и действия с примерами решения

Определители квадратных матриц

Необходимость введения определителя — числа, характеризующего квадратную матрицу Матрица - виды, операции и действия с примерами решения, — тесно связана с решением систем линейных уравнений (см. гл. 2). Определитель матрицы Матрица - виды, операции и действия с примерами решенияобозначается Матрица - виды, операции и действия с примерами решения или Матрица - виды, операции и действия с примерами решения

Определителем матрицы первого порядка Матрица - виды, операции и действия с примерами решения, или определителем первого порядка, называется элемент Матрица - виды, операции и действия с примерами решения :

Матрица - виды, операции и действия с примерами решения Например, пусть Матрица - виды, операции и действия с примерами решения тогда Матрица - виды, операции и действия с примерами решения

Определителем матрицы второго порядка Матрица - виды, операции и действия с примерами решения, или определителем второго порядка, называется число, которое вычисляется по формуле:

Матрица - виды, операции и действия с примерами решения

Произведения аМатрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решенияназываются членами определителя второго порядка. Например, пусть Матрица - виды, операции и действия с примерами решения тогда

Матрица - виды, операции и действия с примерами решения

Пусть дана квадратная матрица третьего порядка: Матрица - виды, операции и действия с примерами решения Определителем матрицы третьего порядка Матрица - виды, операции и действия с примерами решения, или определителем третьего порядка, называется число, которое вычисляется по формуле:

Матрица - виды, операции и действия с примерами решения

Это число представляет алгебраическую сумму, состоящую из 6 слагаемых, или 6 членов определителя. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Знаки, с которыми члены определителя входят в формулу (1.4), легко запомнить, пользуясь схемой (рис. 1.1), которая называется правилом треугольников или правилом Сарруса.

Матрица - виды, операции и действия с примерами решения

Пример №6

Вычислить определитель третьего порядка

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения

Для того чтобы ввести понятие определителя более высокого порядка, потребуются некоторые дополнительные понятия. Рассмотрим квадратную матрицу Матрица - виды, операции и действия с примерами решения-гo порядка: Матрица - виды, операции и действия с примерами решения

Из общего числа Матрица - виды, операции и действия с примерами решения элементов этой матрицы выберем набор, содержащий Матрица - виды, операции и действия с примерами решения элементов, таким образом, чтобы в него входило по одному элементу из каждой строки и каждого столбца. Например, набор элементов Матрица - виды, операции и действия с примерами решенияили Матрица - виды, операции и действия с примерами решения соответственно главной и побочной диагоналей матрицы.

Любой такой набор можно упорядочить, записав сначала элемент из 1-й строки, затем из 2-й и т.д., т.е.

Матрица - виды, операции и действия с примерами решения

Номера столбцов Матрица - виды, операции и действия с примерами решения образуют при этом перестановку Матрица - виды, операции и действия с примерами решенияиз Матрица - виды, операции и действия с примерами решения чисел: Матрица - виды, операции и действия с примерами решения Всего существует Матрица - виды, операции и действия с примерами решения различных перестановок из Матрица - виды, операции и действия с примерами решения натуральных чисел.

Введем понятие беспорядка, или инверсии, в перестановке Матрица - виды, операции и действия с примерами решения Это наличие пары чисел, в которой большее число предшествует меньшему. Например, в перестановке из трех чисел Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения имеется одна инверсия (2; 1), а в перестановке Матрица - виды, операции и действия с примерами решения — три: (3; 2), (3; 1), (2; 1). Обозначим через Матрица - виды, операции и действия с примерами решения количество инверсий в перестановке Матрица - виды, операции и действия с примерами решения

Возвращаясь к наборам (1.5) из элементов матрицы Матрица - виды, операции и действия с примерами решения мы можем каждому такому набору поставить в соответствие произведение его элементов:

Матрица - виды, операции и действия с примерами решения

и число Матрица - виды, операции и действия с примерами решения, равное количеству инверсий в перестановке Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения из номеров соответствующих столбцов.

Определение. Определителем квадратной матрицы Матрица - виды, операции и действия с примерами решения-го порядка, или определителем Матрица - виды, операции и действия с примерами решения-го порядка, называется число, равное алгебраической сумме Матрица - виды, операции и действия с примерами решения членов, каждый из которых является произведением Матрица - виды, операции и действия с примерами решения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем знак каждого члена определяется как Матрица - виды, операции и действия с примерами решения, где Матрица - виды, операции и действия с примерами решения — число инверсий в перестановке Матрица - виды, операции и действия с примерами решения из номеров столбцов элементов матрицы, ест при этом номера строк записаны в порядке возрастания:

Матрица - виды, операции и действия с примерами решения где сумма берется по всем перестановкам Матрица - виды, операции и действия с примерами решения Проверим, например, что при Матрица - виды, операции и действия с примерами решения мы получаем введенный ранее определитель третьего порядка (1.4):

Матрица - виды, операции и действия с примерами решения

то же число, что и по формуле (1.4).

Заметим, что с ростом Матрица - виды, операции и действия с примерами решения резко увеличивается число членов определителя Матрица - виды, операции и действия с примерами решения поэтому даже для Матрица - виды, операции и действия с примерами решения использование формулы (1.7) весьма трудоемко (получим 24 слагаемых!).

На практике при вычислении определителей высоких порядков используют другие формулы. Для их рассмотрения необходимо ввести новые понятия.

Пусть дана квадратная матрица Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения-го порядка.

Минором Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решения матрицы Матрица - виды, операции и действия с примерами решения-го порядка называется

определитель матрицы Матрица - виды, операции и действия с примерами решения-го порядка, полученной из матрицы Матрица - виды, операции и действия с примерами решениявычеркиванием Матрица - виды, операции и действия с примерами решения-й строки и Матрица - виды, операции и действия с примерами решенияго столбца.

Например, минором элемента Матрица - виды, операции и действия с примерами решения матрицы Матрица - виды, операции и действия с примерами решения третьего порядка будет: Матрица - виды, операции и действия с примерами решения Каждая матрица Матрица - виды, операции и действия с примерами решения-го порядка имеет Матрица - виды, операции и действия с примерами решения миноров Матрица - виды, операции и действия с примерами решения-го порядка.

Алгебраическим дополнением Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решения матрицы Матрица - виды, операции и действия с примерами решения-го порядка называется его минор, взятый со знаком Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

т.е. алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбцаМатрица - виды, операции и действия с примерами решения — четное число, и отличается от минора знаком, когда Матрица - виды, операции и действия с примерами решения— нечетное число.

Например, Матрица - виды, операции и действия с примерами решения

Пример №7

Найти алгебраические дополнения всех элементов матрицы (из примера 1.6):

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения Важное значение для вычисления определителей имеет следующая теорема.

Теорема Лапласа. Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:

Матрица - виды, операции и действия с примерами решения

(разложение по элементам Матрица - виды, операции и действия с примерами решения-й строки; Матрица - виды, операции и действия с примерами решения);

Матрица - виды, операции и действия с примерами решения

(разложение по элементам Матрица - виды, операции и действия с примерами решения-го столбца; Матрица - виды, операции и действия с примерами решения).

Матрица - виды, операции и действия с примерами решенияУбедимся в справедливости теоремы Лапласа на примере определителя матрицы третьего порядка. Разложим его вначале по элементам первой строки:Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения Точнее данная теорема является частным случаем теоремы Лапласа.

После преобразований (представляем их сделать читателю) нетрудно убедиться в том, что полученное выражение совпадает с определением (1.4). Аналогичный результат получаем разложением определителя матрицы по любой строке или столбцу.

Пример №8

Вычислить определитель треугольной матрицыМатрица - виды, операции и действия с примерами решения:

Матрица - виды, операции и действия с примерами решения

Решение:

Раскладывая по первому столбцу, получаем:

Матрица - виды, операции и действия с примерами решения

На частном примере мы убедились в том, что определитель треугольной (и, очевидно, диагональной) матрицы равен произведению элементов главной диагонали.

Значение теоремы Лапласа состоит в том, что позволяет свести вычисление определителей Матрица - виды, операции и действия с примерами решения-го порядка к вычислению более простых определителей Матрица - виды, операции и действия с примерами решения-го порядка.

Свойства определителей

1. Если какая-либо строка (столбец) матрицы состоит из одних нулей, то ее определитель равен 0.

2. Если все элементы какой-либо строки (столбца) матрицы умножить на число Матрица - виды, операции и действия с примерами решения, то ее определитель умножится на это число Матрица - виды, операции и действия с примерами решения.

Пусть определитель исходной матрицы равен Матрица - виды, операции и действия с примерами решения. Для определенности первую строку матрицы умножим на Матрица - виды, операции и действия с примерами решения, получим новый определитель Матрица - виды, операции и действия с примерами решения, который разложим по элементам первой строки:

Матрица - виды, операции и действия с примерами решения

Замечание. За знак определителя можно выносить общий множитель элементов любой строки или столбца в отличие от матрицы, за знак которой можно выносить общий множитель лишь всех ее элементов. Например, Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения, но Матрица - виды, операции и действия с примерами решения

3. При транспонировании матрицы ее определитель не изменяется: Матрица - виды, операции и действия с примерами решения

4. При перестановке двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.

□ Предположим вначале, что переставлены две соседние строки матрицы:Матрица - виды, операции и действия с примерами решения Разложим определитель исходной матрицы Матрица - виды, операции и действия с примерами решения по элементам Матрица - виды, операции и действия с примерами решения-й строки, а определитель новой матрицы (с переставленными строками) Матрица - виды, операции и действия с примерами решения — по элементам Матрица - виды, операции и действия с примерами решения-й строки. Разложения будут отличаться только знаком, так как в формуле (1.9) для Матрица - виды, операции и действия с примерами решения каждое алгебраическое дополнение будет иметь противоположный знак (множители Матрица - виды, операции и действия с примерами решения сменятся на множители Матрица - виды, операции и действия с примерами решения , поэтому Матрица - виды, операции и действия с примерами решения

Если переставить не соседние строки, а, скажем, Матрица - виды, операции и действия с примерами решения-ю и Матрица - виды, операции и действия с примерами решения-ю, то такую перестановку можно представить как последовательное смещение Матрица - виды, операции и действия с примерами решения-й строки на Матрица - виды, операции и действия с примерами решения строк вниз (при этом каждый раз знак определителя меняется), Матрица - виды, операции и действия с примерами решения-й строки на Матрица - виды, операции и действия с примерами решения вверх, что тоже сопровождается Матрица - виды, операции и действия с примерами решенияизменением знака, т.е. знак поменяется нечетное число Матрица - виды, операции и действия с примерами решения раз: Матрица - виды, операции и действия с примерами решения.

Доказательство для столбцов аналогично.Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решенияКвадратная матрица называется треугольной, если все ее элементы, расположенные ниже (или выше) главной диагонали, равны нулю.

5. Если квадратная матрица содержит две одинаковые строки {столбца), то ее определитель равен 0.

□Действительно, переставим эти строки (столбцы). С одной стороны, определитель не изменится, но, с другой стороны, по свойству 4 поменяет знак, т.е.Матрица - виды, операции и действия с примерами решения , откуда Матрица - виды, операции и действия с примерами решения

6. Если элементы двух строк (столбцов) матрицы пропорциональны, то ее определитель равен 0.

□ Пусть для определенности пропорциональны первая и вторая строки. Тогда, вынося коэффициент пропорциональности Матрица - виды, операции и действия с примерами решения, получаем по свойству Матрица - виды, операции и действия с примерами решения, где Матрица - виды, операции и действия с примерами решенияимеет две одинаковые строки и по свойству 5 равен 0.

7. Сумма произведений элементов какой-либо строки (столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна 0, т.е.

Матрица - виды, операции и действия с примерами решения

Рассмотрим квадратную матрицу Матрица - виды, операции и действия с примерами решения и вспомогательную матрицу Матрица - виды, операции и действия с примерами решения, полученную из матрицы Матрица - виды, операции и действия с примерами решения заменой Матрица - виды, операции и действия с примерами решения-й строки на Матрица - виды, операции и действия с примерами решения-ю:

Матрица - виды, операции и действия с примерами решения

т.е. матрица Матрица - виды, операции и действия с примерами решения имеет две одинаковые строки, поэтому согласно свойству 5 ее определитель равен 0. Вычисляя его разложением по элементам Матрица - виды, операции и действия с примерами решения-й строки, получаем:

Матрица - виды, операции и действия с примерами решения

Замечание. Объединяя результат теоремы Лапласа и свойство 7, получаем:

Матрица - виды, операции и действия с примерами решения 8. Определитель матрицы не изменится, если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца), предварительно умноженные на одно и то же число.

Пусть для определенности к элементам Матрица - виды, операции и действия с примерами решения-Й строки матрицы прибавим элементы Матрица - виды, операции и действия с примерами решения-й строки, умноженные на Матрица - виды, операции и действия с примерами решения Тогда первая строка матрицы имеет вид: Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияОпределитель полученной матрицы вычислим разложением по элементам Матрица - виды, операции и действия с примерами решения-й строки:

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решенияалгебраические дополнения элементов Матрица - виды, операции и действия с примерами решения-й строки исходной матрицы Матрица - виды, операции и действия с примерами решения Раскроем скобки и получим после преобразования:

Матрица - виды, операции и действия с примерами решения

Используя формулу (1.12), получаем, что первая сумма равна определителю исходной матрицы, а вторая — 0, т.е.Матрица - виды, операции и действия с примерами решения

9. Сумма произведений произвольных чисел Матрица - виды, операции и действия с примерами решения на алгебраические дополнения элементов любой строки (столбца) равна определителю матрицы, полученной из данной заменой элементов этой строки (столбца) на числа Матрица - виды, операции и действия с примерами решения.

Свойство вытекает непосредственно из теоремы Лапласа.

10. Определитель произведения двух квадратных матриц равен произведению их определителей: Матрица - виды, операции и действия с примерами решения где Матрица - виды, операции и действия с примерами решения —матрицы Матрица - виды, операции и действия с примерами решения-го порядка.

Замечание. Из свойства 10 следует, что даже если Матрица - виды, операции и действия с примерами решения то Матрица - виды, операции и действия с примерами решения

Перечисленные свойства определителей позволяют существенно упростить их вычисление, особенно для определителей высоких порядков. При вычислении определителей целесообразно так преобразовать исходную матрицу с помощью свойств 1—9, чтобы преобразованная матрица имела строку (или столбец), содержащую как можно больше нулей, а потом найти определитель разложением по этой строке (столбцу).

Пример №9

Вычислить определитель четвертого порядка:

Матрица - виды, операции и действия с примерами решения

Решение:

Преобразуем матрицу так, чтобы в 3-й строке все элементы, кроме одного, обращались в 0. Для этого умножим, например, элементы 3-го столбца на (-4) и на 2 и прибавим их соответственно к элементам 1-го и 2-го столбцов. Раскладывая полученный определитель по элементам третьей строки, найдем Матрица - виды, операции и действия с примерами решения Полученный определитель третьего порядка можно вычислить по правилу треугольников или с помощью теоремы Лапласа, однако можно продолжить упрощение матрицы. «Обнулим» в матрице третьего порядка элементы 2-й строки (кроме одного). Для этого элементы 3-го столбца матрицы, предварительно умножив на (—13) и на 4, сложим с элементами 1-го и 2-го столбцов соответственно:Матрица - виды, операции и действия с примерами решения

Раскладывая по элементам множители, получаем: Матрица - виды, операции и действия с примерами решения

Обратная матрица

Для каждого числаМатрица - виды, операции и действия с примерами решения существует обратное число Матрица - виды, операции и действия с примерами решения такое, что произведение Матрица - виды, операции и действия с примерами решения Для квадратных матриц тоже вводится аналогичное понятие.

Определение. Матрица Матрица - виды, операции и действия с примерами решения называется обратной по отношению к квадратной матрице Матрица - виды, операции и действия с примерами решения, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица:

Матрица - виды, операции и действия с примерами решения

Из определения следует, что только квадратная матрица имеет обратную; в этом случае и обратная матрица является квадратной того же порядка.

Однако не каждая квадратная матрица имеет обратную. Если Матрица - виды, операции и действия с примерами решения является необходимым и достаточным условием существования числа Матрица - виды, операции и действия с примерами решения то для существования матрицы Матрица - виды, операции и действия с примерами решениятаким условием является требование Матрица - виды, операции и действия с примерами решения

Если определитель матрицы отличен от нуля Матрица - виды, операции и действия с примерами решения то такая квадратная матрица называется невырожденной, или неособенной; в противном случае (при Матрица - виды, операции и действия с примерами решения)— вырожденной, или особенной.

Теорема (необходимое и достаточное условие существования обратной матрицы). Обратная матрица Матрица - виды, операции и действия с примерами решения существует (и единственна) тогда и только тогда, когда исходная матрица невырожденная.

Необходимость. Пусть матрица Матрица - виды, операции и действия с примерами решения имеет обратную Матрица - виды, операции и действия с примерами решения, т.е Матрица - виды, операции и действия с примерами решения. По свойству 10 определителей имеем

Матрица - виды, операции и действия с примерами решения

Достаточность. Пусть Матрица - виды, операции и действия с примерами решения Рассмотрим квадратную матрицу Матрица - виды, операции и действия с примерами решения-го порядка, Матрица - виды, операции и действия с примерами решенияназываемую присоединенной*, элементы которой являются алгебраическими дополнениями элементов матрицы Матрица - виды, операции и действия с примерами решения, транспонированной к Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияТогда элементы произведения матриц Матрица - виды, операции и действия с примерами решения определяются по правилу умножения матриц: Матрица - виды, операции и действия с примерами решения Поэтому матрица Матрица - виды, операции и действия с примерами решения является диагональной, элементы ее главной диагонали равны определителю исходной матрицы:

Матрица - виды, операции и действия с примерами решения

Аналогично доказывается, что произведение Матрица - виды, операции и действия с примерами решения на Матрица - виды, операции и действия с примерами решения равно той же матрице Матрица - виды, операции и действия с примерами решения Отсюда следует, что если в качестве обратной матрицы взять матрицу.

Матрица - виды, операции и действия с примерами решения

то произведения Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения равны единичной матрице Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения-го порядка: Матрица - виды, операции и действия с примерами решения

Докажем единственность обратной матрицы. Предположим, что существуют еще матрицы Матрица - виды, операции и действия с примерами решения такие, что Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения, где матрица Матрица - виды, операции и действия с примерами решения получена по формуле (1.14), и выполняются равенства: Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения. Тогда, умножая наМатрица - виды, операции и действия с примерами решенияслева первое из них, получаем: Матрица - виды, операции и действия с примерами решения, откуда Матрица - виды, операции и действия с примерами решения , т.е. Матрица - виды, операции и действия с примерами решения. Аналогично, умножая второе равенство на Матрица - виды, операции и действия с примерами решения справа, получаем Матрица - виды, операции и действия с примерами решения . Единственность доказана. Матрица - виды, операции и действия с примерами решения

Алгоритм вычисления обратной матрицы:

Пример №10

Найти матрицу, обратную к данной:

Матрица - виды, операции и действия с примерами решения

Решение:

1°. Определитель матрицыМатрица - виды, операции и действия с примерами решения (см. пример 1.6), т.е. матрица Матрица - виды, операции и действия с примерами решения — невырожденная и обратная матрица Матрица - виды, операции и действия с примерами решения существует.

2°. Находим матрицу Матрица - виды, операции и действия с примерами решения, транспонированную к Матрица - виды, операции и действия с примерами решения :

Матрица - виды, операции и действия с примерами решения

3°. Находим алгебраические дополнения элементов матрицы Матрица - виды, операции и действия с примерами решения и составляем из них присоединенную матрицу Матрица - виды, операции и действия с примерами решения, учитывая, что Матрица - виды, операции и действия с примерами решения

4° . Вычисляем обратную матрицу Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения 5°. Проверяем правильность вычисления обратной матрицы по формулам:

Матрица - виды, операции и действия с примерами решения (рекомендуем в этом убедиться самому читателю). ►

Для невырожденных матриц выполняются следующие свойства:

Матрица - виды, операции и действия с примерами решения

Ранг матрицы

Для решения и исследования ряда математических и прикладных задач важное значение имеет понятие ранга матрицы.

В матрице Матрица - виды, операции и действия с примерами решения размера Матрица - виды, операции и действия с примерами решения вычеркиванием каких-либо строк и столбцов можно вычленить квадратные подматрицы Матрица - виды, операции и действия с примерами решения-то порядка, где Матрица - виды, операции и действия с примерами решения. Определители таких подматриц называются минорами Матрица - виды, операции и действия с примерами решения-го порядка матрицы Матрица - виды, операции и действия с примерами решения.

Например, из матрицы Матрица - виды, операции и действия с примерами решения можно получить подматрицы первого, второго и третьего порядков.

Определение. Рангом матрицы Матрица - виды, операции и действия с примерами решения называется наивысший порядок отличных от нуля миноров этой матрицы.

Ранг матрицы Матрица - виды, операции и действия с примерами решения обозначается Матрица - виды, операции и действия с примерами решения или Матрица - виды, операции и действия с примерами решения

Из определения следует: а) ранг матрицы Матрица - виды, операции и действия с примерами решения не превосходит меньшего из ее размеров, т.е. Матрица - виды, операции и действия с примерами решения;

б) Матрица - виды, операции и действия с примерами решения тогда и только тогда, когда все элементы матрицы равны нулю, т.е. Матрица - виды, операции и действия с примерами решения;

в) для квадратной матрицы Матрица - виды, операции и действия с примерами решения-го порядка Матрица - виды, операции и действия с примерами решения тогда и только тогда, когда матрица Матрица - виды, операции и действия с примерами решения— невырожденная.

Пример №11

Вычислить ранг матрицы

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица Матрица - виды, операции и действия с примерами решения имеет четвертый порядок, поэтому Матрица - виды, операции и действия с примерами решения Однако Матрица - виды, операции и действия с примерами решениятак как матрица Матрица - виды, операции и действия с примерами решения содержит нулевой столбец, поэтому Матрица - виды, операции и действия с примерами решения Все подматрицы третьего порядка тоже содержат нулевой столбец и поэтому имеют нулевые определители, значит Матрица - виды, операции и действия с примерами решения Все подматрицы второго порядка либо имеют нулевой столбец (второй или четвертый), либо имеют пропорциональные столбцы (первый и третий), поэтому тоже имеют нулевые определители; таким образом Матрица - виды, операции и действия с примерами решения Поскольку матрица Матрица - виды, операции и действия с примерами решения содержит ненулевые элементы, т.е. невырожденные подматрицы первого порядка, то Матрица - виды, операции и действия с примерами решения. ►

Пример №12

Вычислить ранг матрицы

Матрица - виды, операции и действия с примерами решения

Решение:

Для матрицы Матрица - виды, операции и действия с примерами решения.

Проверим, равен ли ранг 3-м, для этого вычислим все миноры третьего порядка, т.е. определители всех подматриц третьего порядка (их всего 4, они получаются при вычеркивании одного из столбцов матрицы):Матрица - виды, операции и действия с примерами решения

Поскольку все миноры третьего порядка нулевые,Матрица - виды, операции и действия с примерами решения Так как существует ненулевой минор второго порядка, например,

Матрица - виды, операции и действия с примерами решения

В общем случае определение ранга матрицы перебором всех миноров достаточно трудоемко. Для облегчения этой задачи используются преобразования, сохраняющие ранг матрицы.

Назовем элементарными преобразованиями матрицы следующие:

  1. Отбрасывание нулевой строки (столбца).
  2. Умножение всех элементов строки (столбца) матрицы на число, не равное нулю.
  3. Изменение порядка строк (столбцов) матрицы.
  4. Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.
  5. Транспонирование матрицы.

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

Матрица - виды, операции и действия с примерами решенияПри изучении свойств определителей было показано, что при преобразованиях квадратных матриц их определители либо сохраняются, либо умножаются на число, не равное нулю. В результате сохраняется наивысший порядок отличных от нуля миноров исходной матрицы, т.е. ее ранг не изменяется. Матрица - виды, операции и действия с примерами решения

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица Матрица - виды, операции и действия с примерами решения называется ступенчатой, если она имеет вид: Матрица - виды, операции и действия с примерами решения где Матрица - виды, операции и действия с примерами решения.

Замечание. Условие Матрица - виды, операции и действия с примерами решения всегда может быть достигнуто транспонированием матрицы.

Очевидно, что ранг ступенчатой матрицы равен Матрица - виды, операции и действия с примерами решения, так как имеется минор Матрица - виды, операции и действия с примерами решения-го порядка, не равный нулю:

Матрица - виды, операции и действия с примерами решения

Покажем на примере алгоритм вычисления ранга матрицы с помощью элементарных преобразований.

Пример №13

Найти ранг матрицы

Матрица - виды, операции и действия с примерами решения

Решение:

1°. Если Матрица - виды, операции и действия с примерами решения, то при перестановке строк или столбцов добиваемся того, что Матрица - виды, операции и действия с примерами решения. В данном примере поменяем местами, например, 1-ю и 2-ю строки матрицы (см. ниже).

2°. Если Матрица - виды, операции и действия с примерами решения, то умножая элементы 2-й, 3-й и 4-й строк на подходящие числа (именно на Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения) и прибавляя полученные числа соответственно к элементам 2-й1, 3-й и 4-й строк, добьемся того, чтобы все элементы 1-го столбца (кромеМатрица - виды, операции и действия с примерами решения ) равнялись нулю:

Матрица - виды, операции и действия с примерами решения 3°. Если в полученной матрице Матрица - виды, операции и действия с примерами решения(у нас Матрица - виды, операции и действия с примерами решения), то умножая элементы 3-й и 4-й строк на подходящие числа (а именно, на Матрица - виды, операции и действия с примерами решения), добьемся того, чтобы все элементы 2-го столбца (кроме Матрица - виды, операции и действия с примерами решения) равнялись нулю. Если в процессе преобразований получаются строки (или столбцы), целиком состоящие из нулей (как в данном примере), то отбрасываем эти строки (или столбцы):

Матрица - виды, операции и действия с примерами решения

Последняя матрица имеет ступенчатый вид и содержит миноры второго порядка, не равные нулю, например,

Матрица - виды, операции и действия с примерами решения Поэтому ранг полученной ступенчатой, а следовательно, и данной матрицы равен 2. ►

Для рангов матриц справедливы следующие соотношения:

Матрица - виды, операции и действия с примерами решения

5)Матрица - виды, операции и действия с примерами решения если Матрица - виды, операции и действия с примерами решения— квадратная матрица и Матрица - виды, операции и действия с примерами решения

6) Матрица - виды, операции и действия с примерами решения где Матрица - виды, операции и действия с примерами решения— число столбцов матрицы Матрица - виды, операции и действия с примерами решения или строк матрицы Матрица - виды, операции и действия с примерами решения.

Понятие ранга матрицы тесно связано с понятием линейной зависимости (независимости) ее строк или столбцов.

Матрица - виды, операции и действия с примерами решения матрице Матрица - виды, операции и действия с примерами решения обозначим ее строки следующим образом:

Матрица - виды, операции и действия с примерами решения

Две строки матрицы называются равными, если равны их соответствующие элементы: Матрица - виды, операции и действия с примерами решения, если Матрица - виды, операции и действия с примерами решения

Арифметические операции над строками матрицы (умножение строки на число, сложение строк) вводятся как операции, проводимые поэлементно:

Матрица - виды, операции и действия с примерами решения

Строка е называется линейной комбинацией строк Матрица - виды, операции и действия с примерами решения матрицы, если она равна сумме произведений этих строк на произвольные действительные числа: Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения — любые числа.

Строки матрицы Матрица - виды, операции и действия с примерами решенияназываются линейно зависимыми, если существуют такие числа Матрица - виды, операции и действия с примерами решения.т, не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:

Матрица - виды, операции и действия с примерами решения

где 0 = (0 0…0).

Линейная зависимость строк матрицы означает, что хотя бы одна строка матрицы является линейной комбинацией остальных.

Матрица - виды, операции и действия с примерами решенияДействительно, пусть для определенности в формуле (1.17) Матрица - виды, операции и действия с примерами решения , тогда Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения

Таким образом, строкаМатрица - виды, операции и действия с примерами решенияявляется линейной комбинацией остальных строк. Матрица - виды, операции и действия с примерами решения

Если линейная комбинация строк (1.17) равна нулю тогда и только тогда, когда все коэффициенты Матрица - виды, операции и действия с примерами решения равны нулю, т.е. Матрица - виды, операции и действия с примерами решения, то строки Матрица - виды, операции и действия с примерами решенияназываются линейно независимыми.

Теорема о ранге матрицы. Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные ее строки {столбцы).

Матрица - виды, операции и действия с примерами решения Пусть матрица Матрица - виды, операции и действия с примерами решения размера Матрица - виды, операции и действия с примерами решения имеет Матрица - виды, операции и действия с примерами решения

Это означает, что существует отличный от нуля минор Матрица - виды, операции и действия с примерами решения-го порядка. Всякий ненулевой минор Матрица - виды, операции и действия с примерами решения-го порядка будем называть базисным минором. Пусть для определенности это минор

Матрица - виды, операции и действия с примерами решения

Тогда строки матрицы Матрица - виды, операции и действия с примерами решения линейно независимы. Действительно, предположим противное, т.е. одна из этих строк, например Матрица - виды, операции и действия с примерами решения, является линейной комбинацией остальных:

Матрица - виды, операции и действия с примерами решения

Вычтем из элементов Матрица - виды, операции и действия с примерами решения-й строки элементы 1-й строки, умноженные на Матрица - виды, операции и действия с примерами решения, элементы 2-й строки, умноженные на Матрица - виды, операции и действия с примерами решения , и т.д., наконец, элементы Матрица - виды, операции и действия с примерами решения-й строки, умноженные на Матрица - виды, операции и действия с примерами решения. На основании свойства 8 (см. § 1.4) при таких преобразованиях матрицы ее определитель Матрица - виды, операции и действия с примерами решения не изменится, но так как теперь г-я строка будет состоять из одних нулей, то Матрица - виды, операции и действия с примерами решения — противоречие, и наше предположение о том, что строки Матрица - виды, операции и действия с примерами решения матрицы линейно зависимы, неверно.

Строки Матрица - виды, операции и действия с примерами решения назовем базисными.

Покажем, что любые Матрица - виды, операции и действия с примерами решения строк матрицы линейно зависимы, т.е. любая строка выражается через базисные.

Рассмотрим минор Матрица - виды, операции и действия с примерами решения-го порядка, который получается

при дополнении рассматриваемого минора элементами еще одной строки Матрица - виды, операции и действия с примерами решения и столбца Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения

Этот минор равен нулю, так как ранг матрицы равен Матрица - виды, операции и действия с примерами решения, поэтому любой минор более высокого порядка равен нулю.

Раскладывая его по элементам последнего (добавленного) столбца, получаем Матрица - виды, операции и действия с примерами решения, где последнее алгебраическое дополнение Матрица - виды, операции и действия с примерами решения совпадает с базисным минором Матрица - виды, операции и действия с примерами решения и поэтому отлично от нуля, т.е. Матрица - виды, операции и действия с примерами решения .

Разделив последнее равенство на Матрица - виды, операции и действия с примерами решения, можем выразить элемент Матрица - виды, операции и действия с примерами решения как линейную комбинацию:

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения

Фиксируем значение Матрица - виды, операции и действия с примерами решения и получаем, что для любого Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решенияэлементы Матрица - виды, операции и действия с примерами решения-й строки Матрица - виды, операции и действия с примерами решения линейно выражаются через элементы строк Матрица - виды, операции и действия с примерами решения т.е. Матрица - виды, операции и действия с примерами решения-я строка есть линейная комбинация базисных:

Матрица - виды, операции и действия с примерами решения

Теорема о ранге матрицы играет принципиальную роль в матричном анализе, в частности при исследовании систем линейных уравнений.

Матрицы в линейной алгебре

Прямоугольная таблица:

Матрица - виды, операции и действия с примерами решения (9.1)

состоящая из m строк и n столбцов, называется матрицей размера m х n или (n,m)-матрицей.

Матрицу (9.1) будем обозначать А или Матрица - виды, операции и действия с примерами решения. ЧислаМатрица - виды, операции и действия с примерами решения называются элементами матрицы, индекс i обозначает номер строки, а индекс j — номер столбца, на пересечении которых расположен элемент.

Если m = n, то матрица (9.1) называется квадратной матрицей порядка n.

В квадратной матрице n-го порядка диагональ, состоящая из элементов Матрица - виды, операции и действия с примерами решения называется главной диагональю, состоящая из элементов а,п, Матрица - виды, операции и действия с примерами решения — побочной диагональю.

Квадратная матрица:Матрица - виды, операции и действия с примерами решения

называется диагональной. Если в диагональной матрице все диагональные элементы равны, т.е. Матрица - виды, операции и действия с примерами решения, то такая матрица называется скалярной. Скалярная матрица, у которой Матрица - виды, операции и действия с примерами решения называется единичной и обозначается буквой Е. Например, единичная матрица третьего порядка:

Матрица - виды, операции и действия с примерами решения

Матрица, все элементы которой равны нулю, называется нулевой матрицей и обозначается через 0.

Матрицы А и В называются равными, если их размеры одинаковы и элементы этих матриц, стоящие на одинаковых местах, равны.

Операции над матрицами

Суммой двух матриц Матрица - виды, операции и действия с примерами решенияодинакового размера называется матрица Матрица - виды, операции и действия с примерами решения того же размера с элементами, равными суммам соответствующих элементов слагаемых матриц, т.е. Матрица - виды, операции и действия с примерами решения

Сложение матриц обладает следующими свойствами:

  1. Коммутативность, т.е. А + В = В + А.
  2. Ассоциативность, т.е. (А + B)+ С = А + (В + С).
  3. Для любых двух матриц А и В одинакового размера существует единственная матрица X такая, что А + X = В. Матрица X обозначается X = В-А и называется разностью матриц В и А. Урав-=нение А + Х = 0 имеет решение Х = 0-А, получающаяся при этом матрица называется противоположной А и обозначается — А.

Произведением матрицы Матрица - виды, операции и действия с примерами решенияна число Матрица - виды, операции и действия с примерами решения называется матрица, все элементы которой равны соответствующим элементам матрицы А, умноженным на число Матрица - виды, операции и действия с примерами решения.

Умножение матрицы на действительное число обладает следующими свойствами:

Матрица - виды, операции и действия с примерами решения

Матрица А называется согласованной с матрицей В, если число столбцов матрицы А равно числу строк матрицы В. В этом случае произведением матрицы Матрица - виды, операции и действия с примерами решения на матрицу Матрица - виды, операции и действия с примерами решенияназывается матрица

Матрица - виды, операции и действия с примерами решения

т.е. элемент, стоящий в n -той строке и j-том столбце матрицы произведения равен сумме произведений элементов n’-той строки матрицы А на соответствующие элементы j -го столбца матрицы В.

Свойства умножения:

  1. Если матрица А согласована с матрицей В, а матрица В согласована с матрицей С, то А • В• С = (А Матрица - виды, операции и действия с примерами решения В)- С = А Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения С) — ассоциативность умножения;
  2. (А + ВС = АС + ВС, А-(В + С)= АВ + АС — свойство дистрибутивности;
  3. Умножение матриц не коммутативно, т.е., как правило,Матрица - виды, операции и действия с примерами решения

Транспонированием матрицы А называется операция замены местами строк и столбцов с сохранением порядка их следования, т.е. i-я строка матрицы А становится i -тым столбцом транспонированной матрицы. Матрица, транспонированная к матрице А обозначается Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения

Свойства транспонирования: Матрица - виды, операции и действия с примерами решения

Определитель матрицы

Далее будем рассматривать только квадратные матрицы. Каждой квадратной матрице ставится в соответствие действительное число, называемое определителем матрицы и вычисляемое по определенному правилу.

Определитель матрицы естественно возникает при решении систем линейных уравнений, или в свернутой форме Матрица - виды, операции и действия с примерами решения , или в свернутой форме Матрица - виды, операции и действия с примерами решения

Предыдущая формула получается разложением определителя по первой строке.

Возьмем теперь квадратную матрицу n -го порядка

Матрица - виды, операции и действия с примерами решения

Для записи определителя n-го порядка матрицы А будем применять обозначения Матрица - виды, операции и действия с примерами решения. При n = 1 матрица A состоит из одного элемента и ее определитель равен этому элементу. При n = 2 получаем определитель Матрица - виды, операции и действия с примерами решения

Минором Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решения матрицы A называют определитель матрицы (n-1)-го порядка, получаемого из матрицы Л вычеркиванием i-той строки и j-го столбца.

Пример №14

Найти минор Матрица - виды, операции и действия с примерами решения матрицы:

Матрица - виды, операции и действия с примерами решения

По определению, минор Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решенияесть определитель матрицы, получаемой из матрицы А вычеркиванием первой строки и второго столбца. Следовательно, Матрица - виды, операции и действия с примерами решения

Алгебраическим дополнением элемента Матрица - виды, операции и действия с примерами решенияматрицы А называется минор Матрица - виды, операции и действия с примерами решения взятый со знаком Матрица - виды, операции и действия с примерами решения Алгебраическое дополнение элемента Матрица - виды, операции и действия с примерами решения обозначается Матрица - виды, операции и действия с примерами решения следовательно, Матрица - виды, операции и действия с примерами решения

Пример №15

Найти алгебраическое дополнение элемента Матрица - виды, операции и действия с примерами решения, матрицы А из примера 7.

Матрица - виды, операции и действия с примерами решения

Определителем квадратной матрицы А n-го порядка Матрица - виды, операции и действия с примерами решения называется число:

Матрица - виды, операции и действия с примерами решения

где аиМатрица - виды, операции и действия с примерами решения — элементы первой строки матрицы (9.2), а Матрица - виды, операции и действия с примерами решения их алгебраические дополнения Матрица - виды, операции и действия с примерами решения.

Запись по формуле (9.3) называется разложением определителя но первой строке.

Рассмотрим свойства определителей.

Свойство 1. При транспонировании матрицы ее определитель не меняется.

Это свойство устанавливает равноправность строк и столбцов определителя, поэтому определение определителя можно сформулировать так:

Определителем квадратной матрицы А n-го порядка Матрица - виды, операции и действия с примерами решения называется число:

Матрица - виды, операции и действия с примерами решения (9.4)

где Матрица - виды, операции и действия с примерами решения — элементы первого столбца матрицы (9.2), а Матрица - виды, операции и действия с примерами решения их алгебраические дополненияМатрица - виды, операции и действия с примерами решения.

Свойство 2. Если поменять местами две строки или два столбца матрицы А, то ее определитель изменит знак на противоположный.

Свойства 1 и 2 позволяют обобщить формулы (9.3) и (9.4) следующим образом:

Определитель квадратной матрицы n-го порядка (будем в дальнейшем говорить определитель n-го порядка) равен сумме попарных произведений любой строки (столбца) на их алгебраические дополнения.

Матрица - виды, операции и действия с примерами решения

Свойство 3. Определитель, y которого две строки или два столбца одинаковы, равен нулю.

Действительно, поменяем в определителе Матрица - виды, операции и действия с примерами решения две одинаковые сроки местами. Тогда, по свойству 2 получим определитель Матрица - виды, операции и действия с примерами решения, но с другой стороны, определитель не изменится, т.е.Матрица - виды, операции и действия с примерами решения. ОтсюдаМатрица - виды, операции и действия с примерами решения.

Свойство 4. Если все элементы какой-нибудь строки (столбца) определителя Матрица - виды, операции и действия с примерами решения умножить на число Матрица - виды, операции и действия с примерами решения, то определитель умножится на Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения

Умножим элементы i-той строки на Матрица - виды, операции и действия с примерами решения. Тогда получим определитель:

Матрица - виды, операции и действия с примерами решения

Следствие 1. Если все элементы какой-нибудь строки (столбца) имеют общий множитель, то его можно вынести за знак определителя.

Следствие 2. Если все элементы какой-нибудь строки (столбца) равны нулю, то определитель равен нулю.

Свойство 5. Определитель, у которого две строки (два столбца) пронорциональныу равен нулю.

Пусть i-я строка пропорциональна j-ой строке. Вынося коэффициент пропорциональности за знак определителя, получим определитель с двумя одинаковыми строками, который по свойству 3 равен нулю.

Свойство 6. Если каждый элемент строки (столбца) определителя Матрица - виды, операции и действия с примерами решения есть сумма двух слагаемых, то определитель Матрица - виды, операции и действия с примерами решения равен сумме двух определителей: у одного из них i-той строкой (столбцом) служат первые слагаемые, а у другого — вторые.

Разложив определитель Матрица - виды, операции и действия с примерами решения по i -той строке получим:

Матрица - виды, операции и действия с примерами решения

Свойство 7. Определитель не изменится, если к элементам какой-нибудь строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Прибавив к элементам i-той строки определителя Матрица - виды, операции и действия с примерами решения соответствующие элементы j-ой строки, умноженные на число Матрица - виды, операции и действия с примерами решения, получим определитель Матрица - виды, операции и действия с примерами решенияОпределитель Матрица - виды, операции и действия с примерами решения равен сумме двух определителей: первый естьМатрица - виды, операции и действия с примерами решения, а второй равен нулю, так как у него i-тая и j-тая строки пропорциональны.

Свойство 8. Определитель диагональной матрицы равен произведению элементов, стоящих на главной диагонали, т.е.:

Матрица - виды, операции и действия с примерами решения

Свойство 9. Сумма произведений элементов какой-нибудь строки (столбца) определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Рассмотрим вспомогательный определитель Матрица - виды, операции и действия с примерами решения, который получается из данного определителя Матрица - виды, операции и действия с примерами решения заменой j-той строки i-той строкой. Определитель Матрица - виды, операции и действия с примерами решения равен нулю, так как у него две одинаковые строки. Разложив его по j-той строке получим:

Матрица - виды, операции и действия с примерами решения

Большое значение имеет следующий критерий равенства определителя нулю. Определитель квадратной матрицы равен нулю тогда и только тогда когда его строки (столбцы) линейно зависимы.

Строки (столбцы) матрицы называются линейно зависимыми, если одна (один) из них является линейной комбинацией с действительными коэффициентами остальных.

Теорема об определителе произведения двух квадратных матриц. Определитель произведения двух квадратных матриц равен произведению определителей этих квадратных матриц, т.е. Матрица - виды, операции и действия с примерами решения.

Ранг матрицы

Рангом матрицы называется наибольший порядок ее миноров, отличных от нуля. Ранг матрицы А обозначают rankA или rА.

Если все миноры порядка к данной матрицы равны нулю, то все миноры более высокого порядка данной матрицы также равны нулю. Это следует из определения определителя. Отсюда вытекает алгоритм нахождения ранга матрицы.

Если все миноры первого порядка (элементы матрицы А) равны нулю, то rankA = 0. Если хотя бы один из миноров первого порядка отличен от нуля, а все миноры второго порядка равны нулю, то rankA = 1. Причем, достаточно просмотреть только те миноры второго порядка, которые окаймляют ненулевой минор первого порядка. Если найдется минор второго порядка отличный от нуля, исследуют миноры третьего порядка, окаймляющие ненулевой минор второго порядка. Так продолжают до тех пор, пока не придут к одному из двух случаев: либо все миноры порядка к, окаймляющие ненулевой минор (A-l)-ro порядка равны нулю, либо таких миноров нет. Тогда rankA = к -1.

Пример №16

Вычислить ранг матрицы Матрица - виды, операции и действия с примерами решения

Минор первого порядка (элемент Матрица - виды, операции и действия с примерами решения) отличен от нуля. Окаймляющий его минор Матрица - виды, операции и действия с примерами решения тоже не равен нулю.

Далее рассмотрим миноры, окаймляющие минор М :

Матрица - виды, операции и действия с примерами решения

Все эти миноры равны нулю, значит rankA = 2. Приведенный алгоритм нахождения ранга матрицы не всегда удобен, поскольку связан с вычислением большого числа определителей. Наиболее удобно пользоваться при вычислении ранга матрицы элементарными преобразованиями, при помощи которых матрица приводится к столь простому виду, что очевидно, чему равен ее ранг.

Элементарными преобразованиями матрицы называют следующие преобразования:

  • > умножение какой-нибудь строки (столбца) матрица на число, отличное от нуля;
  • > прибавление к одной строке (столбцу) другой строки (столбца), умноженной на произвольное число.

Полужордановым преобразованием строк матрицы:

Матрица - виды, операции и действия с примерами решения

с разрешающим элементом Матрица - виды, операции и действия с примерами решения называется следующая совокупность преобразований со строками матрицы:

  • > k первой строке прибавить k-ю, умноженную на число Матрица - виды, операции и действия с примерами решения и т.д.;

> k последней строке прибавить k — го, умноженную на число Матрица - виды, операции и действия с примерами решения После выполнения этих преобразований получается матрица:Матрица - виды, операции и действия с примерами решения

Полужордановым преобразованием столбцов матрицы с разрешающим элементом Матрица - виды, операции и действия с примерами решения называется следующая совокупность преобразований со столбцами матрицы:

После выполнения этих преобразований получается матрица:Матрица - виды, операции и действия с примерами решения

Полужорданово преобразование строк или столбцов квадратной матрицы не изменяет ее определителя. Элементарные преобразования матрицы не изменяют ее ранга. Покажем на пример, как вычислить ранг матрицы, пользуясь элементарными преобразованиями.

Пример №17

Вычислить ранг матрицы Матрица - виды, операции и действия с примерами решения

Применим к матрице А элементарные преобразования: первую строку матрицы, умноженную на (-3) прибавим ко второй и третьей и ее же вычтем из последней.

Матрица - виды, операции и действия с примерами решения

Вычитая далее вторую строку из третьей и последней, имеем:

Матрица - виды, операции и действия с примерами решения

Последняя матрица содержит отличный от нуля минор Матрица - виды, операции и действия с примерами решениятретьего порядка, определитель же самой матрицы А равен нулю. Следовательно, Матрица - виды, операции и действия с примерами решения

Отметим два важных свойства ранга матрицы:

  • Ранг матрицы не меняется при ее транспонировании;
  • Если ранг матрицы равен г, то любые ее г + 1 строк (столбцов) линейно зависимы.

Обратная матрица

Пусть А — квадратная матрица порядка n. Матрица В называется обратной матрицей к матрице А, если выполняются равенства А-В = В■ А = Е, где Е — единичная матрица порядка n.

Теорема 1. Если для данной матрицы существует обратная матрица, то она единственная.

Пусть Матрица - виды, операции и действия с примерами решения — матрицы, обратные к матрице А. Тогда Матрица - виды, операции и действия с примерами решения с другой стороны, Матрица - виды, операции и действия с примерами решения

Откуда Матрица - виды, операции и действия с примерами решения. Обратную матрицу к матрице А обозначают Матрица - виды, операции и действия с примерами решения.

Теорема 2. Матрица А имеет обратную матрицу тогда и только тогда, когда Матрица - виды, операции и действия с примерами решения.

Пусть А имеет обратную матрицу. Тогда Матрица - виды, операции и действия с примерами решения и, применяя теорему об умножении определителей, получаем Матрица - виды, операции и действия с примерами решенияили Матрица - виды, операции и действия с примерами решения

Следовательно, Матрица - виды, операции и действия с примерами решения.

Пусть Матрица - виды, операции и действия с примерами решения. Укажем явное выражение матрицы Матрица - виды, операции и действия с примерами решения через элементы матрицы А, а именно: если Матрица - виды, операции и действия с примерами решения, то:

Матрица - виды, операции и действия с примерами решения

здесь Матрица - виды, операции и действия с примерами решения — алгебраическое дополнение к элементу Матрица - виды, операции и действия с примерами решения. Матрица (9.5) получается из матрицы А следующим образом. Сначала вместо каждого элемента Матрица - виды, операции и действия с примерами решения пишется его алгебраическое дополнение, затем полученная матрица транспонируется и получается т.н. присоединенная матрица. Для получения обратной матрицы присоединенная матрица умножается на величину, обратную Матрица - виды, операции и действия с примерами решения

Непосредственное умножение А на матрицу (9.5) слева и справа дает единичную матрицу, что подтверждает, что (9.5) — матрица, обратная к А.

Пример №18

Найти обратную матрицу к матрице

Матрица - виды, операции и действия с примерами решения

Так как Матрица - виды, операции и действия с примерами решения, то Матрица - виды, операции и действия с примерами решения существует. Вычислим алгебраические дополнения элементов матрицы А: Матрица - виды, операции и действия с примерами решения

Матрицу Матрица - виды, операции и действия с примерами решения находим в два приема, согласно формуле (9.5). Сначала запишем матрицу В, состоящую из алгебраических дополнений элементов Матрица - виды, операции и действия с примерами решения Затем матрица В транспонируется и умножается на число обратное Матрица - виды, операции и действия с примерами решения, в данном случае — на (-1). Окончательно получаем:

Матрица - виды, операции и действия с примерами решения

Матрица называется неособенной или невырожденной, если ее определитель не равен нулю. Отметим свойства обратных матриц. Если А и В — невырожденные матрицы одинакового порядка, то: Матрица - виды, операции и действия с примерами решения

Матрицы и определители

Определение и типы матриц

Определение 3.1.1. Прямоугольная таблица Матрица - виды, операции и действия с примерами решения(3.1.1) состоящая из m строк и n столбцов, называется матрицей размером Матрица - виды, операции и действия с примерами решения.

Числа Матрица - виды, операции и действия с примерами решения называются элементами матрицы. Каждый элемент матрицы имеет два индекса, первый индекс i обозначает номер строки, второй индекс j — номер столбца.

Матрицы удобно обозначать в виде Матрица - виды, операции и действия с примерами решения, при Матрица - виды, операции и действия с примерами решения. Фигурные (круглые) скобки, двойные прямые вертикальные линии показывают, что Матрица - виды, операции и действия с примерами решения— типовой элемент матрицы А, в котором индексы i и j последовательно принимают все значения от 1 до указанных конечных величин.

Превратим в матрице (3.1.1) строки в столбцы, а столбцы в строки, получим матрицу Матрица - виды, операции и действия с примерами решения которая называется транспонированной по отношению к А. Если размер А Матрица - виды, операции и действия с примерами решения, то Матрица - виды, операции и действия с примерами решения размерности Матрица - виды, операции и действия с примерами решения. Повторное транспонирование приводит к исходной матрице: Матрица - виды, операции и действия с примерами решения.

Пример №19

Рассмотрим матрицу

Матрица - виды, операции и действия с примерами решения

элементы которой характеризуют зависимость средних розничных цен на автомобили от срока их службы в 1998, 1999 и 2000 гг. Строки матрицы соответствуют продолжительности эксплуатации автомобиля, а столбцы — годам. Содержательное значение каждого элемента матрицы определяется его местом в данном массиве чисел. Например, число 3100 во второй строке и втором столбце, элемент с/22> представляет среднюю розничную цену автомобиля прослужившего два года в 1999 г. Следовательно, числа, записанные в строку, характеризуют цены автомобилей, прослуживших один и гот же срок службы в разные годы 1998-2000 гг., а числа в столбце — цены автомобилей различного срока службы в данном году.

В той мере, в какой это связано с характеристикой цен па автомобили, такой выбор строк матрицы полностью произволен, и мы могли бы сразу же поменять местами строки и столбцы без какой-либо потери информации, получив строки для отдельных лет и столбцы для сроков службы, т.е. получили бы транспонированную матрицу по отношению к матрице Р:

Матрица - виды, операции и действия с примерами решения

Хотя элементы матрицы Матрица - виды, операции и действия с примерами решения те же, что и матрицы Р, обе матрицы не одинаковые. Взаимосвязь этих матриц проявляется в том, что строки матрицы Р являются столбцами матрицы Матрица - виды, операции и действия с примерами решения.

Если, элементы Матрица - виды, операции и действия с примерами решения матрицы А неотрицательные (положительные) действительные числа Матрица - виды, операции и действия с примерами решения, то матрица А называется неотрицательной (положительной) и записывается Матрица - виды, операции и действия с примерами решения.

Матрица Р в примере 3.1.1 является положительной матрицей, так как её элементы положительные действительные числа.

Матрица, состоящая из одной строки Матрица - виды, операции и действия с примерами решения, называется матрицей-строкой. Матрица, состоящая из одного столбца

Матрица - виды, операции и действия с примерами решения

называется матрицей-столбцом. Транспонированием переводят матрицу-строку в матрицу-столбец, и наоборот.

Если m=n, то матрица называется квадратной, при этом число строк (столбцов) называется порядком квадратной матрицы.

Рассмотрим некоторые виды квадратных матриц.

Квадратная матрица, у которой все элементы, не стоящие на главной диагонали, равны нулю, называется диагональной. Она обозначается символомМатрица - виды, операции и действия с примерами решения:Матрица - виды, операции и действия с примерами решения

Если в диагональной матрицеМатрица - виды, операции и действия с примерами решения то она называется скалярной. Скалярная матрица, у которой диагональные элементы равны 1, называется единичной:

Матрица - виды, операции и действия с примерами решения Квадратная матрица, у которой все элементы, стоящие ниже главной диагонали, равны нулю, называется верхнетреугольной («матрица А). Аналогично, если в квадратной матрице нулю равны все элементы, стоящие выше главной диагонали, то она называется нижнетреугольной (матрица В).

Матрица - виды, операции и действия с примерами решения

Например, Матрица - виды, операции и действия с примерами решения

Матрица A — верхнеугольная, а В — нижнетреугольная. Квадратная матрица называется ленточной, если все её элементы, не стоящие на главной диагонали и в соседних с ней косых строках, равны нулю. Например,Матрица - виды, операции и действия с примерами решения

В ленточной матрице не равные нулю элементы заполняют «ленту», осью которой служит главная диагональ. Ленточная матрица называется модулированной, если в каждой косой строке стоят одинаковые элементы:Матрица - виды, операции и действия с примерами решения

Квадратная матрица называется симметрической, если её элементы, расположенные симметрично относительно главной диагонали, одинаковы: Матрица - виды, операции и действия с примерами решения; если жеМатрица - виды, операции и действия с примерами решения, то матрица А называется кососимметрической. Симметрическая матрица совпадает с транспонированной матрицей, т.е. Матрица - виды, операции и действия с примерами решения.

Например, матрица, характеризующая влияние факторов на инвестиции и запасы, является симметрической матрицей вида:

Матрица - виды, операции и действия с примерами решения

Элемент Матрица - виды, операции и действия с примерами решения=0,29, характеризующий зависимость использования мощностей и изменения объёмов запасов, совпадает с элементом Матрица - виды, операции и действия с примерами решения=0,29, характеризующим зависимость между изменением объёмов запасов и использованием мощностей; элемент Матрица - виды, операции и действия с примерами решения=0,15, характеризующий зависимость между изменением общей величины хозяйственных запасов и суммой совокупного оборота с поправкой на сезонность, совпадает с элементом Матрица - виды, операции и действия с примерами решения=0,15, характеризующим зависимость между суммой совокупного оборота с поправкой на сезонность и изменением общей величины хозяйственных запасов; элемент Матрица - виды, операции и действия с примерами решения=0,71, характеризующий зависимость между степенью использования производственных мощностей и суммой совокупного оборота с поправкой на сезонность, совпадает с элементом Матрица - виды, операции и действия с примерами решения=0,71, характеризующим зависимость между суммой совокупного оборота с поправкой на сезонность и степенью использования производственных мощностей.

Очевидно, что транспонированная симметричная матрица равна самой матрице.

Квадратная матрица, у которой на главной диагонали стоит одно и го же число Матрица - виды, операции и действия с примерами решения и все элементы одного ряда выше диагонали равны единице, а все другие элементы равны нулю, называется клеткой Жордана:

Матрица - виды, операции и действия с примерами решения

Матрица, у которой на главной диагонали стоят любые клетки Жордана, а все элементы вне этих клеток равны нулю, называется Жордаповой матрицей. Например, матрица является Жордановой.

Матрица - виды, операции и действия с примерами решения

Она содержит четыре клетки Жордана: две клетки второго порядка с числом 3 на диагонали, одну клетку третьего порядка с числом нуль на диагонали и одну клетку первого порядка с числом нуль на диагонали.

Из приведенных примеров следует, что понятие матрицы широко используется в экономике. Кроме того, можно подчеркнуть, что планирование производства должно основываться на надлежащим образом упорядоченной системе информации, записанной в виде матрицы, с помощью которой просто и сжато описываются зависимости, имеющие место в материальном производстве. Так, например, планирование на предприятии основывают, пользуясь нормами как системой информации. Если на предприятии производится четыре продукта Матрица - виды, операции и действия с примерами решенияи для их производства используются материалы Матрица - виды, операции и действия с примерами решения, то система норм материальных затрат, которая представляет собой основу плана снабжения, может быть представлена в виде таблицы (матрицы):

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения есть норма расхода Матрица - виды, операции и действия с примерами решенияi-го материала на производство единицы Матрица - виды, операции и действия с примерами решенияj-го продукта. Так норма расхода материала Матрица - виды, операции и действия с примерами решения на производство единицы продукта Матрица - виды, операции и действия с примерами решения соответственно равна Матрица - виды, операции и действия с примерами решения и т.д.

Можно привести следующий пример использования матриц: два предприятия передают свою продукцию на три оптовых склада, причём расходы на перевозку единицы продукции с предприятия 1 на отдельные склады соответственно равняются 2,3,4; а с предприятия 2 они составляют 1,5,2. Тогда матрицаМатрица - виды, операции и действия с примерами решения

есть матрица удельных транспортных расходов.

Следует отметить использование матриц в межотраслевом балансе производства (матрица технологических коэффициентов производства), в определении совокупных затрат труда (матрица коэффициентов материальных затрат) и т.д.

Пример №20

Продавец мороженого решает вопрос о том, сколько пакетов мороженого ему следует закупить. К покупке пакетов мороженого он может прибегнуть один раз. Каждый пакет стоит 10 ден.ед. и может быть продан за 12 ден.ед. Пакеты мороженого, оставшиеся не распроданными, никакой стоимости не представляют. Известно, что количество пакетов мороженого, которое он сможет продать, колеблется от 1 до 5. Составим матрицу денежных сумм, выручаемых в зависимости от его решения и от результатов продажи. По строкам расположим результаты того или иного решения продавца мороженого, а по столбцам — возможный исход продаж.

Решение:

Предположим, что продавец мороженого закупает один пакет. Тогда он его продаст и получает прибыль в 2 ден.ед.

Следовательно, первая строка матрицы будет иметь вид: 2 2 2 2 2. Сели он закупит 2 пакета, то продав один, он потеряет 8 ден.ед.; продав 2 пакета, он получит прибыль 4 ден.ед. Следовательно, вторая строка примет вид: -8 4 4 4 4. Рассуждая аналогичным образом, получаем матрицу:Матрица - виды, операции и действия с примерами решения

Арифметические операции над матрицами

Матрицы А и В считаются равными, если они одинаковой размерности и всс элементы Матрица - виды, операции и действия с примерами решения матрицы А совпадают с соответствующими элементамиМатрица - виды, операции и действия с примерами решения матрицы В, т.е. выполняются Матрица - виды, операции и действия с примерами решения скалярные равенства Матрица - виды, операции и действия с примерами решения, которые равносильны равенству А=В.

Определение 3.2.1. Суммой матриц А а В размерностиМатрица - виды, операции и действия с примерами решения называется матрица S=A+B той же размерности, элементы которой Sik равны суммам соответствующих элементов матриц А и В: Матрица - виды, операции и действия с примерами решения

Из определения следует, что складывают матрицы с одинаковыми размерами, при этом сумма будет матрицей с теми же размерами.

Например,

Матрица - виды, операции и действия с примерами решения

Определение 3.2.2. Произведением матрицы А на скаляр Матрица - виды, операции и действия с примерами решения называется матрица Матрица - виды, операции и действия с примерами решения той же размерности, что и А, элементы которой получены из элементов матрицы А умножением на Матрица - виды, операции и действия с примерами решения. Например,

Матрица - виды, операции и действия с примерами решения

Матрица (-1)A записывается -А и называется матрицей, противоположной матрице А. Если все элементы матрицы равны нулю, го она называется нуль-матрицей и обозначается 0.

Введенные операции сложения матриц и умножения матрицы на скаляр Матрица - виды, операции и действия с примерами решенияобладают свойствами:

  1. А + В = В + А — (перемсстительный) коммутативный закон.
  2. (А + В) + С = А + (B + C);
  3. Матрица - виды, операции и действия с примерами решения.
  4. Матрица - виды, операции и действия с примерами решения.
  5. Матрица - виды, операции и действия с примерами решения.
  6. Матрица - виды, операции и действия с примерами решения.

Определение 3.2.3. Разностью матриц одинаковой размерности называется матрица той же размерности: Матрица - виды, операции и действия с примерами решения, её элементы равны разностям соответствующих элементов матриц А и В: Матрица - виды, операции и действия с примерами решения .

Например,

Матрица - виды, операции и действия с примерами решения

Как и при операции сложения, можно вычитать друг из друга только те матрицы, которые имеют одинаковую размерность.

Прежде чем вводить произведение матриц, рассмотрим произведение векторов. И для пояснения общего метода воспользуемся числовыми примерами.

Предположим, что объем различных продаж за месяц некоторого товара некоторой компании «а» составил 58, 26, 12, 25 единиц за первую, вторую, третью и четвертую недели соответственно, и что цена этого товара по неделям соответственно равна 3, 5, 10, 4 ден.ед. Следовательно, общий доход за месяц от продажи товара равен 58-3 + 26-5+ 12-10 + 25-4 = 524ден.ед. Представим данные

о продажах при помощи матрицы-строки:

Матрица - виды, операции и действия с примерами решения

а соответствующие цены с помощью матрицы-столбца:

Матрица - виды, операции и действия с примерами решения

Тогда общий доход от продажи товара, равный 524 ден.ед., представляет собой сумму произведений элементов матрицы-строки A (количество проданного товара по неделям) на соответствующие элементы матрицы-столбца В (цены по неделям на товар): Матрица - виды, операции и действия с примерами решения

Приведенный пример помогает уяснить общую методику вычисления произведения матрицы-строки на матрицу-столбец: для этого каждый элемент матрицы-строки А нужно умножить на соответствующий элемент матрицы-столбца В и сложить полученные произведения.

Предположим теперь, что компания «а» имеет отделения в трёх различных регионах. Данные о количестве проданного товара по регионам запишем в виде матрицы С:

Матрица - виды, операции и действия с примерами решения

Цена по неделям за месяц была такой же. Доход от розничной продажи в первом регионе был вычислен; аналогичные расчёты могут быть произведены и по двум другим регионам:

Матрица - виды, операции и действия с примерами решения

Представим итоговые данные по выручке в виде матрицы-столбца:

Матрица - виды, операции и действия с примерами решения

Взглянув на вычисления, можно убедиться в том, что элементы этой матрицы-столбца получаются так же, как и описанное ранее произведение матрицы-строки А на матрицу-столбец В, причем в качестве матрицы-строки А в каждом случае взята последующая строка матрицы С. Полученный результат представляет произведение СВ:

Матрица - виды, операции и действия с примерами решения

В общем случае произведение матрицы С на матрицу-столбец В, это вектор-столбец,i-Й элемент которого представляет сумму произведений каждого из элементов i-й строки матрицы С на соответствующие элементы вектора-столбца В.

Из этого примера следует, что произведение Матрица - виды, операции и действия с примерами решения существует только в том случае, когда число элементов в строках матрицы С (т.е. число столбцов) равно числу элементов, составляющих вектор-столбец В (т.е. числу строк). При соблюдении этого равенства, произведение Матрица - виды, операции и действия с примерами решения образует вектор-столбец, содержащий столько элементов, сколько строк насчитывается в матрице С. Следовательно, если в матрице С содержится т строк и q столбцов и порядок матрицы-столбца В равен q, тогда произведение Матрица - виды, операции и действия с примерами решения представляет собой матрицу-столбец порядка т, причем i-й элемент этого вектора равен

Матрица - виды, операции и действия с примерами решения

Аналогичным образом определяется произведение матрицы-строки Матрица - виды, операции и действия с примерами решения на матрицу Р. Оно существует в том случае,

если число элементов матрицы-строки D равно числу элементов в столбцах матрицы Р (т.е. равно числу строк этой матрицы). В этом случае произведении Матрица - виды, операции и действия с примерами решения образует матрицу-строку, содержащую столько же элементов, сколько столбцов насчитывается в матрице Р. При этом произведение Матрица - виды, операции и действия с примерами решения равно Матрица - виды, операции и действия с примерами решения , произведение Матрица - виды, операции и действия с примерами решения может к не существовать, несмотря на то что, существует произведение Матрица - виды, операции и действия с примерами решения, и наоборот.

Пример №21

Пусть матрица

Матрица - виды, операции и действия с примерами решения

характеризует переход подписчика от одной газеты к другой в зависимости от продолжительности подписки. В этой матрице перехода данные сгруппированы по строкам и столбцам в соответствии с продолжительностью подписки: до одного года, от одного года до двух лет, более двух лет и, наконец, аннулирование подписки. Элементы первой строки характеризуют состояние подписчиков газет с продолжительностью подписки до одного года; второй строки — с продолжительностью подписки от одного года до двух лет; третья строка — с продолжительностью подписки более двух лет; элементы четвертой строки характеризуют аннулирование подписки. Элементы первого столбца характеризуют возможность остаться в категории подписчиков до одного года; элементы второго столбца — возможность продолжить подписку от одного до двух лет, если подписчик имеет продолжительность подписки до одного года; элементы третьего столбца- возможность продолжить подписку более двух лет: элементы четвертого столбца — возможность аннулировать подписку.

Предположим, что известно распределение 5000 подписчиков по продолжительности подписки на газеты: 3000 имеют продолжительность подписки до одного года (категория 1), 800 — имеют продолжительность подписки от одного до двух лет (категория 2), 1200 подписчиков имеют, продолжительность подписки более двух лет (категория 3). Представим эти данные в виде матрицы-строки Q =Матрица - виды, операции и действия с примерами решения.

Для того чтобы определить возможное количество подписчиков в каждой из этих категорий через год, умножим матрицу-строку Q на матрицу Р:

Матрица - виды, операции и действия с примерами решения

Матрица-строка, полученная в результате умножения, показывает, что из I категории через год возможно 2100 подписчиков будут принадлежать к категории II, 1720- к категории III, и 1180 возможно аннулируют подписку.

Учитывая введенные операции, умножение двух матриц А и В можно представить как многократное умножение матрицы А на матрицы-столбцы, рассматривая вторую матрицу В как набор мат-риц-столбцов. При этом произведение матриц А и В может иметь смысл только в том случае, когда j-й столбец матрицы В (а, следовательно, и все ее столбцы) насчитывают тоже число элементов, что и i-я строка матрицы А (а, следовательно, и все ее строки). Поскольку количество элементов в столбце матрицы равно числу строк в ней (а количество элементов в строке равно количеству столбцов) это означает, что в матрице В должно быть столько же строк, сколько столбцов содержит матрица А.

Таким образом, произведение матрицы Матрица - виды, операции и действия с примерами решения определено, когда число столбцов в А равно числу строк в В. Тогда произведение Матрица - виды, операции и действия с примерами решения содержит то же количество строк, что и матрица А, и то же количество столбцов, что и матрица В.

Если число столбцов в А равно числу строк в В, то матрицы называются согласованными для умножения А на В. При этом если А размерности т * п, а В размерность Матрица - виды, операции и действия с примерами решения, то произведение Матрица - виды, операции и действия с примерами решения является матрицей размерности Матрица - виды, операции и действия с примерами решения, т. е.:

Матрица - виды, операции и действия с примерами решения

Определение 3.2.4. Произведением матрицы А размерности Матрица - виды, операции и действия с примерами решения на матрицу В размерности Матрица - виды, операции и действия с примерами решенияназывается матрица Р размерности Матрица - виды, операции и действия с примерами решения, элементы которой Матрица - виды, операции и действия с примерами решенияопределяется формулами:

Матрица - виды, операции и действия с примерами решения

, при Матрица - виды, операции и действия с примерами решения, т.е. Матрица - виды, операции и действия с примерами решения элемент равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-ого столбца матрицы В.

  • Заказать решение задач по высшей математике

Пример №22

Пусть Матрица - виды, операции и действия с примерами решения Матрица А содержит три столбца, а В содержит три строки. Следовательно, матрицы А и В согласованные для умножения. Тогда Матрица - виды, операции и действия с примерами решения

Произведение матриц, вообще говоря, не коммутативно, т.е. А В не всегда равно Матрица - виды, операции и действия с примерами решения. Например, Матрица - виды, операции и действия с примерами решения

Из приведенного примера следует, что, перемножая матрицы А и В, можно получить два произведения Матрица - виды, операции и действия с примерами решения к Матрица - виды, операции и действия с примерами решения. Если размеры матрицы A равны Матрица - виды, операции и действия с примерами решения, то оба произведения существуют только в том случае, когда размеры матрицы В равны Матрица - виды, операции и действия с примерами решения. Тогда произведение Матрица - виды, операции и действия с примерами решения образует квадратную матрицу порядка m, а произведение Матрица - виды, операции и действия с примерами решения — квадратную матрицу n. Поэтому размеры АВ могут быть равны ВА в том случае, когда m = n, т.е. когда обе матрицы квадратные и имеют один и тот же порядок равный m. При этом указанные произведения матриц могут не иметь ни одного одинакового элемента, полученного в результате суммирования произведений соотвстствующих элементов исходных матриц. Поэтому, если даже существуют оба произведения АВ и ВА и оба они имеют одинаковый порядок, вообще говоря, они не обязательно должны быть равны между собой, что и показывает приведенный выше пример.

Из сказанного не следует, что АВ и ВА всегда должны различаться между собой, в отдельных случаях они могут быть равны. Например, Матрица - виды, операции и действия с примерами решения

В двух случаях, имеющих особо важное значение, произведение матриц обладает свойством коммутативности:

1) в случае умножения на нулевую матрицу: если Матрица - виды, операции и действия с примерами решения представляет собой квадратную матрицу п-ого порядка, а Матрица - виды, операции и действия с примерами решения — аналогичную матрицу, все элементы которой составляют нули, тогда

Матрица - виды, операции и действия с примерами решения

Нулевая матрица выполняет роль нуля в матричной алгебре;

2) в случае умножения на единичную матрицу: если Матрица - виды, операции и действия с примерами решения представляет собой квадратную матрицу n-ого порядка, а Матрица - виды, операции и действия с примерами решения— аналогичную единичную матрицу, то

Матрица - виды, операции и действия с примерами решения

Единичная матрица того же порядка служит единицей в матричной алгебре. Например, Матрица - виды, операции и действия с примерами решения

Отметим, что произведение матрицы на скалярную величину так же коммутативно: Матрица - виды, операции и действия с примерами решения

Матрицу А можно умножить саму на себя тогда и только тогда, когда она квадратная. Если n — натуральное число, больше единицы, то Матрица - виды, операции и действия с примерами решения есть произведение n матриц равных А. Для действий со степенями матриц справедливы следующие правила: Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения ,если АВ = ВА.

Значением многочлена

Матрица - виды, операции и действия с примерами решения

с числовыми коэффициентами Матрица - виды, операции и действия с примерами решения от матрицы А или значением многочлена Матрица - виды, операции и действия с примерами решения при х = А называется матрицаМатрица - виды, операции и действия с примерами решения

где Е- единичная матрица.

Многочленной матрицей называется прямоугольная (в частности квадратная) матрица А, элементы которой являются многочленами от одной переменной х с числовыми коэффициентами. Матричным многочленом называется выражение вида

Матрица - виды, операции и действия с примерами решения

где х- переменное и Матрица - виды, операции и действия с примерами решения— квадратные матрицы с числовыми элементами одного и того же порядка n. Число n называется порядком многочлена F(x). Если Матрица - виды, операции и действия с примерами решения, то число m называется степенью матричного многочлена F{x). Если матрица Матрица - виды, операции и действия с примерами решения не вырождена, т.е. Матрица - виды, операции и действия с примерами решения, то матричный многочлен F(x) называется регулярным.

Два матричных многочлена одинакового порядка можно складывать, вычитать и умножать аналогично обычным многочленам с числовыми коэффициентами, с той разницей, что умножение числовых матриц, а потому и матричных многочленов не обязательно коммутативно.

Операцию умножения для матриц можно ввести иначе. Пусть задана матрица размерности Матрица - виды, операции и действия с примерами решения: Матрица - виды, операции и действия с примерами решения

Обозначим столбцы матрицы А следующим образом: Матрица - виды, операции и действия с примерами решения

их называют векторами-столбцами; а строки:

Матрица - виды, операции и действия с примерами решения

которые называют векторами-строками.

Пример №23

Пусть число трёх типов игрушек, которые нужно изготовить, равно соответственно 20, 30, 40. Определим число деталей каждого вида, необходимых для сборки игрушек при полном удовлетворении заказа на них.

Решение:

Составим матрицу А, в которой по строкам укажем число деталей одного вида, необходимых для производства трёх типов игрушек, а по столбцам — число деталей трех видов, необходимых для производства одной игрушки трёх типов:

Матрица - виды, операции и действия с примерами решения

Число деталей каждого вида, необходимых для сборки игрушек при полном удовлетворении заказа определим умножением матрицы А на матрицу-столбец, характеризующую число игрушек:

Матрица - виды, операции и действия с примерами решения

Зная количество деталей, необходимых для производства одной игрушки, можно определить потребность в сырье для производства одной игрушки, если известны нормы расхода сырья для производства одной детали, которые приведены в таблице 3.2.2.

Матрица - виды, операции и действия с примерами решения

Эти потребности в сырье определяются умножением матриц

Матрица - виды, операции и действия с примерами решения

Умножив результат произведения матриц на количество игрушек, определим потребности в сырье для выполнения заказа

Матрица - виды, операции и действия с примерами решения

Приведенный пример иллюстрирует простоту решения задачи при помощи умножения матриц.

Пример №24

Предположим, что затраты рабочего времени в часах на каждом рабочем месте и на каждое изделие заданы в таблице 3.2.3. Количество изделий (в штуках) в каждом заказе задано в таблице 3.2.4. Часовая заработная плата (в рублях) на каждом рабочем месте задана в таблице 3.2.5

Решение:

Рассчитаем заработную плату, приходящуюся при производстве различных изделий на каждый заказ. Матрица - виды, операции и действия с примерами решения

Решение. Введем в рассмотрение следующие матрицы:

Матрица - виды, операции и действия с примерами решения где А — матрица затрат, В — матрица спроса, С — матрица почасовой зарплаты.

Так как матрица С задает зависимость между величиной заработной платы и затратами рабочего времени на каждом рабочем месте, а матрица А — между затратами времени на каждом рабочем месте и выпуском изделий, то произведение АС задает линейную зависимость между выпуском одного изделия и величиной заработной платы. Поскольку матрица В определяет количество изделий в каждом заказе, то произведение В(АС) определяет выполнение каждого заказа. Поэтому, вычислив произведение В (АС):

Матрица - виды, операции и действия с примерами решения находим заработную плату, приходящуюся на заказ Матрица - виды, операции и действия с примерами решения равную 23920 руб., на заказ Матрица - виды, операции и действия с примерами решения — 23640 руб. и на заказ Матрица - виды, операции и действия с примерами решения — 24850 руб.

Блочные матрицы и действия над ними

Для упрощения действий над матрицами больших размеров выполняют переход к матрицам меньших размеров путём разбиения их на клетки горизонтальными и вертикальными прямыми, пересекающими всю матрицу.

Например, проведём в матрице А две горизонтальные и две вертикальные прямые: Матрица - виды, операции и действия с примерами решения

Получим 9 клеток, каждая из которых будет некоторой матрицей. Введём для них обозначения:

Матрица - виды, операции и действия с примерами решения

Тогда матрицу А можно записать в виде:

Матрица - виды, операции и действия с примерами решения

Полученную матрицу называют блочной, или клеточной. Любую матрицу множеством способов можно представить в блочной форме. Особый интерес представляют блочные матрицы, имеющие квадратные диагональные клетки. Например, Матрица - виды, операции и действия с примерами решения

В матрице В клетки Матрица - виды, операции и действия с примерами решения — квадратные матрицы третьего, второго и первого порядка соответственно.

Если у блочных матриц число диагональных клеток одинаково, причём соответственные диагональные клетки имеют один и тот же порядок, то такие матрицы называются конформными.

Блочная матрица, у которой все клетки, кроме стоящих на главной диагонали, являются нуль-матрицами, называется квазидиагональной. Примером квазидиагональной матрицы является матрица

вида: Матрица - виды, операции и действия с примерами решения Квазидиагональная матрица обозначается Матрица - виды, операции и действия с примерами решения, где

Матрица - виды, операции и действия с примерами решения — её диагональные квадратные клетки.

Если к квадратной матрице а добавить снизу матрицу-строку, справа — матрицу-столбец и в правом нижнем углу добавить элемент, то полученная блочная матрица называется окаймлённой.

Матрица - виды, операции и действия с примерами решения

Арифметические операции над блочными матрицами выражаются через операции над клетками матриц. Такое выражение возможно для конформных матриц.

1) Сложение блочных матриц производится аналогично правилу сложения обычных матриц: Матрица - виды, операции и действия с примерами решения Подчеркнем, что можно складывать только конформные матрицы. В противном случае равенство не имеет смысла.

2) При умножении блочной матрицы на скаляр все клетки блочной матрицы умножаются на этот скаляр: Матрица - виды, операции и действия с примерами решения

3) Произведение конформных блочных матриц формально совпадает с правилом умножения обычных матриц:

Матрица - виды, операции и действия с примерами решения

При умножении матриц соответственные диагональные клетки умножаемых матриц должны иметь одинаковый порядок. В противном случае блочные матрицы не будут конформными и их умножать нельзя.

Произведением конформных квазидиагональных матриц является квазидиагональная матрица с той же структурой, причём каждая диагональная клетка произведения является произведением соответствующих диагональных клеток сомножителей:

Матрица - виды, операции и действия с примерами решения

При транспонировании квазидиагональной матрицы получаем квазидиагональную матрицу, диагональные клетки которой являются транспонированными матрицами:

Матрица - виды, операции и действия с примерами решения

Матрица А, которую одновременной перестановкой строк и столбцов можно привести к блочному виду

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения — квадратные блоки, включающие ненулевые элементы; О — блок, состоящий только из нулей; В — блок, элементы которого могут принимать любые значения, называется разложимой матрицей.

Матрица неразложима если для неё не существует таких одновременных перестановок строк и столбцов, которые приводили бы сё к разложимой форме.

Оператор суммирования и его свойства

В экономических исследованиях часто употребляются переменные, определенные на дискретных множествах Матрица - виды, операции и действия с примерами решения

илиМатрица - виды, операции и действия с примерами решения и рассматриваются их суммы. Символом операции

суммирования служит заглавная греческая буква Матрица - виды, операции и действия с примерами решения (сигма). Тогда,

например, сумму Матрица - виды, операции и действия с примерами решения можно записать в видехМатрица - виды, операции и действия с примерами решения . Числа сточщие под знаком Матрица - виды, операции и действия с примерами решения и над ним, называются пределами суммирования и указывают наибольшие и наименьшие значения индекса суммирования, между которыми расположены его промежуточные значения.

Для оператора суммирования справедливы следующие тождества:

Существует также способ записи операции умножения с помощью прописной греческой буквы «пи» — П : Так, например, произ-ведение пяти множителей можно сокращенно записать:

Матрица - виды, операции и действия с примерами решения

Перестановки

Рассмотрим n целых чисел (элементов) Матрица - виды, операции и действия с примерами решения. Их можно располагать в различном порядке. Всевозможные расположения этих чисел называются перестановками. Перестановка Матрица - виды, операции и действия с примерами решения, в которой числа идут в порядке возрастания, называется натуральной. Например, из трех чисел можно составить 6 перестановок: (123), (132), (213), (231), (312), (321). Справедливо следующее утверждение: «Из n чисел можно составить n! перестановок». Символ n! читается юн факториал» и обозначает произведение последовательных натуральных чисел: 0!=1; 1!=1; Матрица - виды, операции и действия с примерами решения; Матрица - виды, операции и действия с примерами решения; … Матрица - виды, операции и действия с примерами решения.

Назовем беспорядком (или инверсией) в перестановке тот факт, что большее число стоит перед меньшим. Если перестановка имеет четное число инверсий, то она называется четной, в противном случае — нечетной. Обмен местами двух элементов в перестановке называется транспозицией. Например:

Матрица - виды, операции и действия с примерами решения

Транспозиция переводит одну перестановку в другую и меняет четность перестановки.

Определение определителя

Рассмотрим квадратную матрицу размерности п и составим из ее элементов таблицу вида

Матрица - виды, операции и действия с примерами решения

или более компактно: Матрица - виды, операции и действия с примерами решения. Каждый элемент Матрица - виды, операции и действия с примерами решения имеет два индекса, первый из которых указывает, какой строке принадлежит элемент, а второй — какому столбцу.

Этой таблице соотнесем число, называемое определителем, вычисляемое по правилу, сформулированному в следующем определении.

Определение 3.6.1. Определителем n-го порядка называется алгебраическая сумма n! членов, каждый из которых представляет собой произведение n элементов Матрица - виды, операции и действия с примерами решения, взятых по одному из каждой

строки и каждого столбца; при этом член определителя берется со знаком «+», если вторые индексы его элементов образуют чётную перестановку, и со знаком «—», если эта перестановка нечетная, а первые индексы образуют натуральную перестановку.

Определитель n-то порядка обозначается в виде таблицы (3.6.1), где горизонтали — строки, а вертикали — столбцы.

Введем величину:

Матрица - виды, операции и действия с примерами решения

Тогда в силу определения 3.6.1 определитель n-то порядка запишется в виде:

Матрица - виды, операции и действия с примерами решения

Суммирование распространяется на все перестановки Матрица - виды, операции и действия с примерами решения из n чисел 1,2,…,n, что условно обозначили символом n!

В частности, определителем второго порядкаМатрица - виды, операции и действия с примерами решенияназывается алгебраическая сумма двух слагаемых Матрица - виды, операции и действия с примерами решения, каждое из которых равно произведению двух элементов. Согласно определению 3.6.1, первое слагаемое имеет знак «+», а второе — знак «-». Следовательно, для нахождения определителя второго порядка, нужно из произведения элементов, стоящих на главной диагонали вычесть произведение элементов стоящих на побочной диагонали:

Матрица - виды, операции и действия с примерами решения

Таким образом, каждой квадратной матрице А можно поставить в соответствие некоторое число, называемое определителем матрицы и обозначаемое Матрица - виды, операции и действия с примерами решения.

Свойства определителя n-го порядка

Свойствами, сформулированными ниже, обладают определители любого порядка, в частности второго и третьего порядков.

Матрица - виды, операции и действия с примерами решения. Величина определителя при его транспонировании (т. е. при замене его строк соответствующими столбцами) не меняется.

Доказательство. Рассмотрим определитель Матрица - виды, операции и действия с примерами решения . Протранспонируем его; получим определитель Матрица - виды, операции и действия с примерами решения, т. е. элементы строки и i-го столбца определителя Матрица - виды, операции и действия с примерами решения совпадают с элементами из i-й строки и k-го столбца определителя D. Тогда по определению

Матрица - виды, операции и действия с примерами решения

В каждом слагаемом формулы (4.1) переставим сомножители таким образом, чтобы их первые индексы составили натуральную перестановку; вторые индексы образуют произвольную перестановку:

Матрица - виды, операции и действия с примерами решения

Перестановки Матрица - виды, операции и действия с примерами решения иМатрица - виды, операции и действия с примерами решения разные, но обладают одинаковой четностью, так как одним и тем же числом транспозиций перестановка Матрица - виды, операции и действия с примерами решения переводится в натуральную, а перестановку Матрица - виды, операции и действия с примерами решения получаем из натуральной. Поэтому Матрица - виды, операции и действия с примерами решения, и равенство (3.7.1) принимает вид:

Матрица - виды, операции и действия с примерами решения

Так как Матрица - виды, операции и действия с примерами решения то Матрица - виды, операции и действия с примерами решения чтo и требовалось доказать.

Из свойства Матрица - виды, операции и действия с примерами решения вытекает, что строки и столбцы определителя равноправны. Поэтому любое свойство доказанное для строк, справедливо и для столбцов.

Матрица - виды, операции и действия с примерами решения. Если в определителе поменять местами две строки (столбца), то у него изменится только знак, а абсолютная величина останется прежней.

Доказательство. Рассмотрим определитель Матрица - виды, операции и действия с примерами решения, в котором переставим l-ую и m-ую строки. При этом считаем, что Матрица - виды, операции и действия с примерами решения. Получим определитель Матрица - виды, операции и действия с примерами решения, элементы которого связаны с элементами определителя Матрица - виды, операции и действия с примерами решения соотношениями

Матрица - виды, операции и действия с примерами решения

В силу равенств (3.7.2) преобразуем определитель

Матрица - виды, операции и действия с примерами решения

к виду

Матрица - виды, операции и действия с примерами решения

Выполним в перестановке Матрица - виды, операции и действия с примерами решения одну транспозицию Матрица - виды, операции и действия с примерами решения, в результате четность перестановки изменится на противоположную:

Матрица - виды, операции и действия с примерами решения

Затем поменяем местами сомножители Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения в произведении Матрица - виды, операции и действия с примерами решения . Произведение при этом не изменится, а равенство (3.7.3) примет вид

Матрица - виды, операции и действия с примерами решения

В равенстве (3.7.4) первые индексы элементов образуют натуральную перестановку Матрица - виды, операции и действия с примерами решения, т. к. Матрица - виды, операции и действия с примерами решения, а перестановка из

вторых индексов такая же, как и в выраженииМатрица - виды, операции и действия с примерами решения . Поэтому сумма правой части формулы (3.7.4) равна определителю Матрица - виды, операции и действия с примерами решения, т. е. Матрица - виды, операции и действия с примерами решения. что и требовалось доказать.

Матрица - виды, операции и действия с примерами решения. Определитель с двумя одинаковыми строками (столбцами) равен нулю.

Доказательство. Так как по условию две строки одинаковы, то их перестановка не меняет величины Матрица - виды, операции и действия с примерами решения определителя. С другой стороны, по свойству Матрица - виды, операции и действия с примерами решения в результате перестановки знак определителя изменится, т. с. Матрица - виды, операции и действия с примерами решения. Следовательно, Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения. Если все элементы строки (столбца) содержат общий множитель, то его можно вынести за знак определителя.

Доказательство. Пусть в определителе Матрица - виды, операции и действия с примерами решения l-тая строка содержит общий множитель, тогда по определению его можно записать в виде:

Матрица - виды, операции и действия с примерами решения

Из (3.7.5) следует, что каждое слагаемое содержит множителем число Матрица - виды, операции и действия с примерами решения, его можно вынести за знак суммы, т. с. преобразовать

Матрица - виды, операции и действия с примерами решения

Из свойства Матрица - виды, операции и действия с примерами решения вытекает:

Следствие 3.7.1. Определитель с двумя пропорциональными строками (столбцами) равен нулю.

Действительно, по свойству Матрица - виды, операции и действия с примерами решения общий множитель у одной из строк, пропорциональной другой, можно вынести за знак определителя. Получим определитель с двумя одинаковыми строками, а в силу свойства Матрица - виды, операции и действия с примерами решения он равен нулю.

Матрица - виды, операции и действия с примерами решения. Если все элементы строки (столбца) являются суммами из одинакового числа слагаемых, то определитель равен сумме определителей, у которых элементами этой строки (столбца) служат отдельные слагаемые.

Доказательство. Пусть все элементы Матрица - виды, операции и действия с примерами решения i-той строки определителя Матрица - виды, операции и действия с примерами решения являются суммами из одинакового числа слагаемых: Матрица - виды, операции и действия с примерами решения. Тогда определитель имеет вид:

Матрица - виды, операции и действия с примерами решения

В силу определения его можно записать:

Матрица - виды, операции и действия с примерами решения

но так как Матрица - виды, операции и действия с примерами решения

то

Матрица - виды, операции и действия с примерами решения

что и требовалось доказать.

Следствие 3.7.2. Величина определителя не изменится, если /с элементам любой его строки (столбца) прибавить соответствующие элементы другой строки (столбца), умножив их предварительно на один и тот же множитель.

Действительно, если мы рассмотрим определитель

Матрица - виды, операции и действия с примерами решения полученный из Матрица - виды, операции и действия с примерами решения прибавляем к элементам l строки соответствующие элементы m строки, то в силу свойства Матрица - виды, операции и действия с примерами решения его можно представить в виде суммы двух определителей, т. е.

Матрица - виды, операции и действия с примерами решения

так как второе слагаемое равно 0 как определитель с двумя пропорциональными строками.

Миноры и алгебраические дополнения

Определение 3.8.1. Если в определителе n-го порядка вычеркнем i-ую строку и k-ый столбец, на пересечении которых находится элемент Матрица - виды, операции и действия с примерами решения, то полученный определитель (n-1)-го порядка называется минором исходного определителя Матрица - виды, операции и действия с примерами решения, соответствующего элементу Матрица - виды, операции и действия с примерами решения, и обозначается Матрица - виды, операции и действия с примерами решения. Например, если

Матрица - виды, операции и действия с примерами решения

Определение 3.8.1. Минор Матрица - виды, операции и действия с примерами решения с определенным знаком, зависящим от четности суммы i+k номеров строки и столбца, на пересечении которых находится элемент Матрица - виды, операции и действия с примерами решения называется алгебраическим дополнением элемента Матрица - виды, операции и действия с примерами решения в определителе Матрица - виды, операции и действия с примерами решения и обозначается

Матрица - виды, операции и действия с примерами решения.

С помощью алгебраических дополнений определитель порядка п может быть выражен через определители порядка n-1. Этот факт справедлив для определителей имеющих специальную структуру, т. е. имеют место

Лемма 3.8.1. Если в определителе порядка n все элементы последней строки (столбца), кроме элемента, стоящего в правом нижнем углу, равны нулю, то определитель равен произведению этого элемента на соответствующий ему минор.

Лемма 3.8.2. Если в определителе порядка n все элементы какой-либо строки (столбца), кроме одного, равны нулю, то определитель равен произведению этого элемента на его алгебраическое дополнение.

Из сформулированных лемм вытекают следующие теоремы:

Теорема 3.8.1. (теорема разложения). Определитель порядка п равен сумме парных произведений элементов любой строки (столбца) на их алгебраические дополнения: Матрица - виды, операции и действия с примерами решения .

Доказательство. Так как строки и столбцы равносильны, то достаточно проверить справедливость равенства: Матрица - виды, операции и действия с примерами решения

Представим каждый элемент i-й строки определителяМатрица - виды, операции и действия с примерами решения в виде суммы n слагаемых, из которых n-1 слагаемое равно нулю

Матрица - виды, операции и действия с примерами решения

тогда его можно представить в виде суммы определителей (по свойству Матрица - виды, операции и действия с примерами решения):

Матрица - виды, операции и действия с примерами решения

Определитель Матрица - виды, операции и действия с примерами решения по лемме 2 равен произведению элемента Матрица - виды, операции и действия с примерами решения на его алгебраическое дополнение в этом определителе. Но так как определитель Матрица - виды, операции и действия с примерами решения отличается от Матрица - виды, операции и действия с примерами решения лишь элементами i-й строки, го это алгебраическое дополнение совпадает с алгебраическим дополнением Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решения, определителя Матрица - виды, операции и действия с примерами решения, так как эта строка и столбец будут вычеркнуты, а все остальные элементы определителя Матрица - виды, операции и действия с примерами решения, и Матрица - виды, операции и действия с примерами решения совпадают.

Следовательно,Матрица - виды, операции и действия с примерами решения.

Аналогично Матрица - виды, операции и действия с примерами решения и поэтому (т. к. Матрица - виды, операции и действия с примерами решения

Теорема 3.8.2. (теорема аннулирования). Сумма парных произведений элементов любой строки (столбца) определителя на алгебраические дополнения параллельной строки (столбца) равна нулю:

Матрица - виды, операции и действия с примерами решения, где i, j — строки определителя Матрица - виды, операции и действия с примерами решения.

Вычисление определителей

Укажем некоторые способы вычисления определителей.

1) По теореме 3.8.1 определитель любого порядка п выражается через n определителей (n-1)-го порядка. Применяя эту теорему несколько раз, можно преобразовать исходный определитель к некоторому числу определителей третьего порядка, вычисление которых не представляет труда. Однако для упрощения вычислений целесообразно предварительно преобразовать определитель так, чтобы в одном из его рядов все элементы, кроме одного, обратились в нуль. Тогда данный определитель сведется к определителю более низкого порядка, и т. д.

2) Пользуясь свойствами определителя, приводят его к треугольному виду, когда все элементы, стоящие по одну сторону от главной диагонали, равны нулю. Полученный определитель треугольного вида равен произведению элементов главной диагонали, т. е. Матрица - виды, операции и действия с примерами решения

Если удобнее получить нули по одну сторону от побочной диагонали, то Матрица - виды, операции и действия с примерами решениягде Матрица - виды, операции и действия с примерами решения приведен уже к треугольному виду.

3) Если определитель Матрица - виды, операции и действия с примерами решения порядка n после разложения по строке или столбцу и после преобразования, выражается через определители того же вида, но более низких порядков, то полученное равенство называется рекуррентным. Вычисляют столько определителей данного вида начальных порядков, сколько их входит в правую часть рекуррентного соотношения. Далее вычисляют определители высших порядков, используя рекуррентные соотношения, до тех пор, пока не удастся заметить общую закономерность для получаемых выражений. Для общего случая доказывают индукцией по п эту закономерность.

Определитель квазидиагональной матрицы равен произведению определителей её диагональных клеток:

Матрица - виды, операции и действия с примерами решения.

Определитель второго порядка, согласно определению 3.6.1 равен произведению диагональных элементов минус произведение элементов побочной диагонали. Например,

Матрица - виды, операции и действия с примерами решения.

Определитель третьего порядка по определению 3.6.1. равен алгебраической сумме шести слагаемых. Построение этой суммы можно выполнить по правилу Саррюса. Со знаком «+» и рассматривая произведение элементов определителя, обозначенных на схеме точками

Матрица - виды, операции и действия с примерами решения

Hстример,

Матрица - виды, операции и действия с примерами решения

Определители выше третьего порядков вычисляются либо сведением к треугольному виду, либо используя теорему разложения или используя рекуррентную формулу. Например,

Матрица - виды, операции и действия с примерами решения

(последовательно умножим первую строку на 2; 4; 3 и вычтем получающиеся при этом строки из второй, третьей и четвертой строк)

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

(умножим третью строку на 20/34 и вычтем из четвертой строки; сомножитель четвертой строки 1/34 вынесем за знак определителя; в результате получим определитель верхнетреуголыюго вида, который равен произведению элементов, стоящих на главной диагонали) .

Матрица - виды, операции и действия с примерами решения

Матрицы и операции над матрицами

Матрицей размера Матрица - виды, операции и действия с примерами решения называется прямоугольная таблица чисел Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решениявида Матрица - виды, операции и действия с примерами решения состоящая из m строк и n столбцов. Числа Матрица - виды, операции и действия с примерами решения называются элементами матрицы, где i — индекс строки, j — индекс столбца. Обозначение: Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения

Например, элемент Матрица - виды, операции и действия с примерами решения(читается «а три пять») в таблице будет расположен в третьей строке и пятом столбце.

Суммой двух матриц одинакового размера Матрица - виды, операции и действия с примерами решения называется матрица Матрица - виды, операции и действия с примерами решения того же порядка, каждый элемент которой равен сумме соответствующих элементов матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения

Например,Матрица - виды, операции и действия с примерами решения

Произведением матрицы Матрица - виды, операции и действия с примерами решения на действительное число Матрица - виды, операции и действия с примерами решения. называется такая матрица Матрица - виды, операции и действия с примерами решения что Матрица - виды, операции и действия с примерами решения

Например,

Матрица - виды, операции и действия с примерами решения Если количество столбцов первой матрицы (множимой) равно количеству строк второй матрица (множителя), то матрицы называются согласованными.

Внимание! Умножаются только согласованные матрицы.

Произведением матрицы А размера Матрица - виды, операции и действия с примерами решения (n столбцов) на матрицу В размера Матрица - виды, операции и действия с примерами решения(n строк) называется матрица С размера Матрица - виды, операции и действия с примерами решения каждый элемент которой Матрица - виды, операции и действия с примерами решенияравен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-ro столбца матрицы В, т.е. Матрица - виды, операции и действия с примерами решения («i-ю строку первой матрицы умножаем на j-й столбец второй матрицы»). Число строк матрицы произведения С равно числу строк матрицы А, а число столбцов матрицы С равно числу столбцов матрицы В.

Пример:

Даны матрицы

Матрица - виды, операции и действия с примерами решения

Найти то из произведений АВ, В А, которое существует.

Решение:

Найдем произведение матриц АВ. Оно существует, т.к. количество столбцов матрицы А равно количеству строк матрицы В и равно двум.

Например, элемент произведения матриц с индексом 12 равен по определению сумме произведений элементов 1-й строки матрицы А на соответствующие элементы 2-го столбца матрицы В:

Матрица - виды, операции и действия с примерами решения

Тогда Матрица - виды, операции и действия с примерами решения

Рассмотрим произведение матриц ВА. Число столбцов матрицы В (n=3) не совпадает с числом строк матрицы А (m=2). Произведение матриц ВА не существует.

Вывод. В общем случае произведение матриц не коммутативно, т.е. не всегда АВ=ВА.

Если АВ=ВА, то матрицы А и В называются перестановочными.

Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется матрицей, транспонированной к данной. Обозначение: Матрица - виды, операции и действия с примерами решения или Матрица - виды, операции и действия с примерами решения

Например, Матрица - виды, операции и действия с примерами решения

  • Линейный оператор — свойства и определение
  • Многочлен — виды, определение с примерами
  • Квадратичные формы — определение и понятие
  • Системы линейных уравнений с примерами
  • Прямая — понятие, виды и её свойства
  • Плоскость — определение, виды и правила
  • Кривые второго порядка
  • Евклидово пространство

Умножение матриц

21 мая 2018

  • Домашняя работа
  • Ответы

Итак, в предыдущем уроке мы разобрали правила сложения и вычитания матриц. Это настолько простые операции, что большинство студентов понимают их буквально с ходу.

Однако вы рано радуетесь. Халява закончилась — переходим к умножению. Сразу предупрежу: умножить две матрицы — это вовсе не перемножить числа, стоящие в клеточках с одинаковыми координатами, как бы вы могли подумать. Тут всё намного веселее. И начать придётся с предварительных определений.

Согласованные матрицы

Одна из важнейших характеристик матрицы — это её размер. Мы уже сто раз говорили об этом: запись $A=left[ mtimes n right]$ означает, что в матрице ровно $m$ строк и $n$ столбцов. Как не путать строки со столбцами, мы тоже уже обсуждали. Сейчас важно другое.

Определение. Матрицы вида $A=left[ mtimes n right]$ и $B=left[ ntimes k right]$, в которых количество столбцов в первой матрице совпадает с количеством строк во второй, называются согласованными.

Ещё раз: количество столбцов в первой матрице равно количеству строк во второй! Отсюда получаем сразу два вывода:

  1. Нам важен порядок матриц. Например, матрицы $A=left[ 3times 2 right]$ и $B=left[ 2times 5 right]$ являются согласованными (2 столбца в первой матрице и 2 строки во второй), а вот наоборот — матрицы $B=left[ 2times 5 right]$ и $A=left[ 3times 2 right]$ — уже не согласованы (5 столбцов в первой матрице — это как бы не 3 строки во второй).
  2. Согласованность легко проверить, если выписать все размеры друг за другом. На примере из предыдущего пункта: «3 2 2 5» — посередине одинаковые числа, поэтому матрицы согласованы. А вот «2 5 3 2» — не согласованы, поскольку посередине разные числа.

Кроме того, капитан очевидность как бы намекает, что квадратные матрицы одинакового размера $left[ ntimes n right]$ согласованы всегда.

В математике, когда важен порядок перечисления объектов (например, в рассмотренном выше определении важен порядок матриц), часто говорят об упорядоченных парах. Мы встречались с ними ещё в школе: думаю, и ежу понятно, что координаты $left( 1;0 right)$ и $left( 0;1 right)$ задают разные точки на плоскости.

Так вот: координаты — это тоже упорядоченные пары, которые составляются из чисел. Но ничто не мешает составить такую пару из матриц. Тогда можно будет сказать: «Упорядоченная пара матриц $left( A;B right)$ является согласованной, если количество столбцов в первой матрице совпадает с количеством строк во второй».

Ну и что с того?

Определение умножения

Рассмотрим две согласованные матрицы: $A=left[ mtimes n right]$ и $B=left[ ntimes k right]$. И определим для них операцию умножения.

Определение. Произведение двух согласованных матриц $A=left[ mtimes n right]$ и $B=left[ ntimes k right]$ — это новая матрица $C=left[ mtimes k right]$, элементы которой считаются по формуле:

[begin{align} & {{c}_{i;j}}={{a}_{i;1}}cdot {{b}_{1;j}}+{{a}_{i;2}}cdot {{b}_{2;j}}+ldots +{{a}_{i;n}}cdot {{b}_{n;j}}= \ & =sumlimits_{t=1}^{n}{{{a}_{i;t}}cdot {{b}_{t;j}}} end{align}]

Обозначается такое произведение стандартно: $C=Acdot B$.

По-моему, тут всё очевидно. Дальше можно не читать. [на самом деле нет]

У тех, кто впервые видит это определение, сразу возникает два вопроса:

  1. Что это за лютая дичь?
  2. А почему так сложно?

Что ж, обо всём по порядку. Начнём с первого вопроса. Что означают все эти индексы? И как не ошибиться при работе с реальными матрицами?

Прежде всего заметим, что длинная строчка для расчёта ${{c}_{i;j}}$ (специально поставил точку с запятой между индексами, чтобы не запутаться, но вообще их ставить не надо — я сам задолбался набирать формулу в определении) на самом деле сводится к простому правилу:

  1. Берём $i$-ю строку в первой матрице;
  2. Берём $j$-й столбец во второй матрице;
  3. Получаем две последовательности чисел. Перемножаем элементы этих последовательностей с одинаковыми номерами, а затем складываем полученные произведения.

Данный процесс легко понять по картинке:

Схема перемножения двух матриц

Ещё раз: фиксируем строку $i$ в первой матрице, столбец $j$ во второй матрице, перемножаем элементы с одинаковыми номерами, а затем полученные произведения складываем — получаем ${{c}_{ij}}$. И так для всех $1le ile m$ и $1le jle k$. Т.е. всего будет $mtimes k$ таких «извращений».

На самом деле мы уже встречались с перемножением матриц в школьной программе, только в сильно урезанном виде. Пусть даны вектора:

[begin{align} & vec{a}=left( {{x}_{a}};{{y}_{a}};{{z}_{a}} right); \ & overrightarrow{b}=left( {{x}_{b}};{{y}_{b}};{{z}_{b}} right). \ end{align}]

Тогда их скалярным произведением будет именно сумма попарных произведений:

[overrightarrow{a}times overrightarrow{b}={{x}_{a}}cdot {{x}_{b}}+{{y}_{a}}cdot {{y}_{b}}+{{z}_{a}}cdot {{z}_{b}}]

По сути, в те далёкие годы, когда деревья были зеленее, а небо ярче, мы просто умножали вектор-строку $overrightarrow{a}$ на вектор-столбец $overrightarrow{b}$.

Сегодня ничего не поменялось. Просто теперь этих векторов-строк и столбцов стало больше.

Но хватит теории! Давайте посмотрим на реальные примеры. И начнём с самого простого случая — квадратных матриц.

Умножение квадратных матриц

Задача 1. Выполните умножение:

[left[ begin{array}{*{35}{r}} 1 & 2 \ -3 & 4 \end{array} right]cdot left[ begin{array}{*{35}{r}} -2 & 4 \ 3 & 1 \end{array} right]]

Решение. Итак, у нас две матрицы: $A=left[ 2times 2 right]$ и $B=left[ 2times 2 right]$. Понятно, что они согласованы (квадратные матрицы одинакового размера всегда согласованы). Поэтому выполняем умножение:

[begin{align} & left[ begin{array}{*{35}{r}} 1 & 2 \ -3 & 4 \end{array} right]cdot left[ begin{array}{*{35}{r}} -2 & 4 \ 3 & 1 \end{array} right]=left[ begin{array}{*{35}{r}} 1cdot left( -2 right)+2cdot 3 & 1cdot 4+2cdot 1 \ -3cdot left( -2 right)+4cdot 3 & -3cdot 4+4cdot 1 \end{array} right]= \ & =left[ begin{array}{*{35}{r}} 4 & 6 \ 18 & -8 \end{array} right]. end{align}]

Вот и всё!

Ответ: $left[ begin{array}{*{35}{r}}4 & 6 \ 18 & -8 \end{array} right]$.

Задача 2. Выполните умножение:

[left[ begin{matrix} 1 & 3 \ 2 & 6 \end{matrix} right]cdot left[ begin{array}{*{35}{r}}9 & 6 \ -3 & -2 \end{array} right]]

Решение. Опять согласованные матрицы, поэтому выполняем действия:[]

[begin{align} & left[ begin{matrix} 1 & 3 \ 2 & 6 \end{matrix} right]cdot left[ begin{array}{*{35}{r}} 9 & 6 \ -3 & -2 \end{array} right]=left[ begin{array}{*{35}{r}} 1cdot 9+3cdot left( -3 right) & 1cdot 6+3cdot left( -2 right) \ 2cdot 9+6cdot left( -3 right) & 2cdot 6+6cdot left( -2 right) \end{array} right]= \ & =left[ begin{matrix} 0 & 0 \ 0 & 0 \end{matrix} right]. end{align}]

Как видим, получилась матрица, заполненная нулями

Ответ: $left[ begin{matrix} 0 & 0 \ 0 & 0 \end{matrix} right]$.

Из приведённых примеров очевидно, что умножение матриц — не такая уж и сложная операция. По крайней мере для квадратных матриц размера 2 на 2.

В процессе вычислений мы составили промежуточную матрицу, где прямо расписали, какие числа входят в ту или иную ячейку. Именно так и следует делать при решении настоящих задач.

Основные свойства матричного произведения

В двух словах. Умножение матриц:

  1. Некоммутативно: $Acdot Bne Bcdot A$ в общем случае. Бывают, конечно, особые матрицы, для которых равенство $Acdot B=Bcdot A$ (например, если $B=E$ — единичной матрице), но в абсолютном большинстве случаев это не работает;
  2. Ассоциативно: $left( Acdot B right)cdot C=Acdot left( Bcdot C right)$. Тут без вариантов: стоящие рядом матрицы можно перемножать, не переживая за то, что стоит левее и правее этих двух матриц.
  3. Дистрибутивно: $Acdot left( B+C right)=Acdot B+Acdot C$ и $left( A+B right)cdot C=Acdot C+Bcdot C$ (в силу некоммутативности произведения приходится отдельно прописывать дистрибутивность справа и слева.

А теперь — всё то же самое, но более подробно.

Умножение матриц во многом напоминает классическое умножение чисел. Но есть отличия, важнейшее из которых состоит в том, что умножение матриц, вообще говоря, некоммутативно.

Рассмотрим ещё раз матрицы из задачи 1. Прямое их произведение мы уже знаем:

[left[ begin{array}{*{35}{r}} 1 & 2 \ -3 & 4 \end{array} right]cdot left[ begin{array}{*{35}{r}} -2 & 4 \ 3 & 1 \end{array} right]=left[ begin{array}{*{35}{r}}4 & 6 \ 18 & -8 \end{array} right]]

Но если поменять матрицы местами, то получим совсем другой результат:

[left[ begin{array}{*{35}{r}} -2 & 4 \ 3 & 1 \end{array} right]cdot left[ begin{array}{*{35}{r}} 1 & 2 \ -3 & 4 \end{array} right]=left[ begin{matrix} -14 & 4 \ 0 & 10 \end{matrix} right]]

Получается, что $Acdot Bne Bcdot A$. Кроме того, операция умножения определена только для согласованных матриц $A=left[ mtimes n right]$ и $B=left[ ntimes k right]$, но никто не гарантировал, что они останутся согласованными, если их поменять местами. Например, матрицы $left[ 2times 3 right]$ и $left[ 3times 5 right]$ вполне себе согласованы в указанном порядке, но те же матрицы $left[ 3times 5 right]$ и $left[ 2times 3 right]$, записанные в обратном порядке, уже не согласованы. Печаль.:(

Среди квадратных матриц заданного размера $n$ всегда найдутся такие, которые дают одинаковый результат как при перемножении в прямом, так и в обратном порядке. Как описать все подобные матрицы (и сколько их вообще) — тема для отдельного урока. Сегодня не будем об этом.:)

Тем не менее, умножение матриц ассоциативно:

[left( Acdot B right)cdot C=Acdot left( Bcdot C right)]

Следовательно, когда вам надо перемножить сразу несколько матриц подряд, совсем необязательно делать это напролом: вполне возможно, что некоторые рядом стоящие матрицы при перемножении дают интересный результат. Например, нулевую матрицу, как в Задаче 2, рассмотренной выше.

В реальных задачах чаще всего приходится перемножать квадратные матрицы размера $left[ ntimes n right]$. Множество всех таких матриц обозначается ${{M}^{n}}$ (т.е. записи $A=left[ ntimes n right]$ и [Ain {{M}^{n}}] означают одно и то же), и в нём обязательно найдётся матрица $E$, которую называют единичной.

Определение. Единичная матрица размера $n$ — это такая матрица $E$, что для любой квадратной матрицы $A=left[ ntimes n right]$ выполняется равенство:

[Acdot E=Ecdot A=A]

Такая матрица всегда выглядит одинаково: на главной диагонали её стоят единицы, а во всех остальных клетках — нули.

Идём далее. Помимо ассоциативности умножение матриц ещё и дистрибутивно:

[begin{align} & Acdot left( B+C right)=Acdot B+Acdot C; \ & left( A+B right)cdot C=Acdot C+Bcdot C. \ end{align}]

Другими словами, если нужно умножить одну матрицу на сумму двух других, то можно умножить её на каждую из этих «двух других», а затем результаты сложить. На практике обычно приходится выполнять обратную операцию: замечаем одинаковую матрицу, выносим её за скобку, выполняем сложение и тем самым упрощаем себе жизнь.:)

Заметьте: для описания дистрибутивности нам пришлось прописать две формулы: где сумма стоит во втором множителе и где сумма стоит в первом. Это происходит как раз из-за того, что умножение матриц некоммутативно (и вообще, в некоммутативной алгебре куча всяких приколов, которые при работе с обычными числами даже не приходят в голову). И если, допустим, вам на экзамене нужно будет расписать это свойство, то обязательно пишите обе формулы, иначе препод может немного разозлиться.

Ладно, всё это были сказки о квадратных матрицах. А что насчёт прямоугольных?

Случай прямоугольных матриц

А ничего — всё то же самое, что и с квадратными.

Задача 3. Выполните умножение:

[left[ begin{matrix} begin{matrix} 5 \ 2 \ 3 \end{matrix} & begin{matrix} 4 \ 5 \ 1 \end{matrix} \end{matrix} right]cdot left[ begin{array}{*{35}{r}} -2 & 5 \ 3 & 4 \end{array} right]]

Решение. Имеем две матрицы: $A=left[ 3times 2 right]$ и $B=left[ 2times 2 right]$. Выпишем числа, обозначающие размеры, в ряд:

[3; 2; 2; 2]

Как видим, центральные два числа совпадают. Значит, матрицы согласованы, и их можно перемножить. Причём на выходе мы получим матрицу $C=left[ 3times 2 right]$:

[begin{align} & left[ begin{matrix} begin{matrix} 5 \ 2 \ 3 \end{matrix} & begin{matrix} 4 \ 5 \ 1 \end{matrix} \end{matrix} right]cdot left[ begin{array}{*{35}{r}} -2 & 5 \ 3 & 4 \end{array} right]=left[ begin{array}{*{35}{r}} 5cdot left( -2 right)+4cdot 3 & 5cdot 5+4cdot 4 \ 2cdot left( -2 right)+5cdot 3 & 2cdot 5+5cdot 4 \ 3cdot left( -2 right)+1cdot 3 & 3cdot 5+1cdot 4 \end{array} right]= \ & =left[ begin{array}{*{35}{r}} 2 & 41 \ 11 & 30 \ -3 & 19 \end{array} right]. end{align}]

Всё чётко: в итоговой матрице 3 строки и 2 столбца. Вполне себе $=left[ 3times 2 right]$.

Ответ: $left[ begin{array}{*{35}{r}} begin{array}{*{35}{r}} 2 \ 11 \ -3 \end{array} & begin{matrix} 41 \ 30 \ 19 \end{matrix} \end{array} right]$.

Сейчас рассмотрим одно из лучших тренировочных заданий для тех, кто только начинает работать с матрицами. В нём нужно не просто перемножить какие-то две таблички, а сначала определить: допустимо ли такое умножение?

Рекомендую после прочтения задания не смотреть в решение, а сначала попробовать выполнить его самостоятельно. И затем сравнить с ответами.

Задача 4. Найдите все возможные попарные произведения матриц:

[A=left[ begin{array}{*{35}{r}} begin{matrix} 1 \ 1 \end{matrix} & begin{array}{*{35}{r}} -1 \ 1 \end{array} & begin{matrix} 2 \ 2 \end{matrix} & begin{array}{*{35}{r}} -2 \ 2 \end{array} \end{array} right]]; $B=left[ begin{matrix} begin{matrix} 0 \ 2 \ 0 \ 4 \end{matrix} & begin{matrix} 1 \ 0 \ 3 \ 0 \end{matrix} \end{matrix} right]$; $C=left[ begin{matrix}0 & 1 \ 1 & 0 \end{matrix} right]$.

Решение. Для начала запишем размеры матриц:

[A=left[ 2times 4 right]; B=left[ 4times 2 right]; C=left[ 2times 2 right]]

Получаем, что матрицу $A$ можно согласовать лишь с матрицей $B$, поскольку количество столбцов у $A$ равно 4, а такое количество строк только у $B$. Следовательно, можем найти произведение:

[Acdot B=left[ begin{array}{*{35}{r}} 1 & -1 & 2 & -2 \ 1 & 1 & 2 & 2 \end{array} right]cdot left[ begin{array}{*{35}{r}} 0 & 1 \ 2 & 0 \ 0 & 3 \ 4 & 0 \end{array} right]=left[ begin{array}{*{35}{r}}-10 & 7 \ 10 & 7 \end{array} right]]

Промежуточные шаги предлагаю выполнить читателю самостоятельно. Замечу лишь, что размер результирующей матрицы лучше определять заранее, ещё до каких-либо вычислений:

[A cdot B=left[ 2times 4 right]cdot left[ 4times 2 right]=left[ 2times 2 right]]

Другими словами, мы просто убираем «транзитные» коэффициенты, которые обеспечивали согласованность матриц.

Какие ещё возможны варианты? Безусловно, можно найти $Bcdot A$, поскольку $B=left[ 4times 2 right]$, $A=left[ 2times 4 right]$, поэтому упорядоченная пара $left( B;A right)$ является согласованной, а размерность произведения будет:

[B cdot A=left[ 4times 2 right]cdot left[ 2times 4 right]=left[ 4times 4 right]]

Короче говоря, на выходе будет матрица $left[ 4times 4 right]$, коэффициенты которой легко считаются:

[Bcdot A=left[ begin{array}{*{35}{r}} 0 & 1 \ 2 & 0 \ 0 & 3 \ 4 & 0 \end{array} right]cdot left[ begin{array}{*{35}{r}} 1 & -1 & 2 & -2 \ 1 & 1 & 2 & 2 \end{array} right]=left[ begin{array}{*{35}{r}}1 & 1 & 2 & 2 \ 2 & -2 & 4 & -4 \ 3 & 3 & 6 & 6 \ 4 & -4 & 8 & -8 \end{array} right]]

Очевидно, можно согласовать ещё $Ccdot A$ и $Bcdot C$ — и всё. Поэтому просто запишем полученные произведения:

[Ccdot A=left[ begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \ 1 & -1 & 2 & -2 \end{array} right]]

[Bcdot C=left[ begin{array}{*{35}{r}}1 & 0 \ 0 & 2 \ 3 & 0 \ 0 & 4 \end{array} right]]

Это было легко.:)

Ответ: $AB=left[ begin{array}{*{35}{r}} -10 & 7 \ 10 & 7 \end{array} right]$; $BA=left[ begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \ 2 & -2 & 4 & -4 \ 3 & 3 & 6 & 6 \ 4 & -4 & 8 & -8 \end{array} right]$; $CA=left[ begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \ 1 & -1 & 2 & -2 \end{array} right]$; $BC=left[ begin{array}{*{35}{r}}1 & 0 \ 0 & 2 \ 3 & 0 \ 0 & 4 \end{array} right]$.

Вообще, очень рекомендую выполнить это задание самостоятельно. И ещё одно аналогичное задание, которое есть в домашней работе. Эти простые на первый взгляд размышления помогут вам отработать все ключевые этапы умножения матриц.

Но на этом история не заканчивается. Переходим к частным случаям умножения.:)

Вектор-строки и вектор-столбцы

Одной из самых распространённых матричных операций является умножение на матрицу, в которой одна строка или один столбец.

Определение. Вектор-столбец — это матрица размера $left[ mtimes 1 right]$, т.е. состоящая из нескольких строк и только одного столбца.

Вектор-строка — это матрица размера $left[ 1times n right]$, т.е. состоящая из одной строки и нескольких столбцов.

На самом деле мы уже встречались с этими объектами. Например, обычный трёхмерный вектор из стереометрии $overrightarrow{a}=left( x;y;z right)$ — это не что иное как вектор-строка. С точки зрения теории разницы между строками и столбцами почти нет. Внимательными надо быть разве что при согласовании с окружающими матрицами-множителями.

Задача 5. Выполните умножение:

[left[ begin{array}{*{35}{r}} 2 & -1 & 3 \ 4 & 2 & 0 \ -1 & 1 & 1 \end{array} right]cdot left[ begin{array}{*{35}{r}} 1 \ 2 \ -1 \end{array} right]]

Решение. Перед нами произведение согласованных матриц: $left[ 3times 3 right]cdot left[ 3times 1 right]=left[ 3times 1 right]$. Найдём это произведение:

[left[ begin{array}{*{35}{r}} 2 & -1 & 3 \ 4 & 2 & 0 \ -1 & 1 & 1 \end{array} right]cdot left[ begin{array}{*{35}{r}} 1 \ 2 \ -1 \end{array} right]=left[ begin{array}{*{35}{r}} 2cdot 1+left( -1 right)cdot 2+3cdot left( -1 right) \ 4cdot 1+2cdot 2+0cdot 2 \ -1cdot 1+1cdot 2+1cdot left( -1 right) \end{array} right]=left[ begin{array}{*{35}{r}} -3 \ 8 \ 0 \end{array} right]]

Ответ: $left[ begin{array}{*{35}{r}}-3 \ 8 \ 0 \end{array} right]$.

Задача 6. Выполните умножение:

[left[ begin{array}{*{35}{r}} 1 & 2 & -3 \end{array} right]cdot left[ begin{array}{*{35}{r}} 3 & 1 & -1 \ 4 & -1 & 3 \ 2 & 6 & 0 \end{array} right]]

Решение. Опять всё согласовано: $left[ 1times 3 right]cdot left[ 3times 3 right]=left[ 1times 3 right]$. Считаем произведение:

[left[ begin{array}{*{35}{r}} 1 & 2 & -3 \end{array} right]cdot left[ begin{array}{*{35}{r}} 3 & 1 & -1 \ 4 & -1 & 3 \ 2 & 6 & 0 \end{array} right]=left[ begin{array}{*{35}{r}}5 & -19 & 5 \end{array} right]]

На самом деле мне было в лом считать все эти три числа — посчитайте сами. А я просто запишу ответ.:)

Ответ: $left[ begin{matrix} 5 & -19 & 5 \end{matrix} right]$.

Как видите, при умножении вектор-строки и вектор-столбца на квадратную матрицу на выходе мы всегда получаем строку или столбец того же размера. Этот факт имеет множество приложений — от решения линейных уравнений до всевозможных преобразований координат (которые в итоге тоже сводятся к системам уравнений, но давайте не будем о грустном).

Думаю, здесь всё было очевидно. Переходим к заключительной части сегодняшнего урока.

Возведение матрицы в степень

Среди всех операций умножения отдельного внимания заслуживает возведение в степень — это когда мы несколько раз умножаем один и тот же объект на самого себя. Матрицы — не исключение, их тоже можно возводить в различные степени.

Такие произведения всегда согласованы:

[Acdot A=left[ ntimes n right]cdot left[ ntimes n right]=left[ ntimes n right]]

И обозначаются точно так же, как и обычные степени:

[begin{align} & Acdot A={{A}^{2}}; \ & Acdot Acdot A={{A}^{3}}; \ & underbrace{Acdot Acdot ldots cdot A}_{n}={{A}^{n}}. \ end{align}]

На первый взгляд, всё просто. Посмотрим, как это выглядит на практике:

Задача 7. Возведите матрицу в указанную степень:

${{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{3}}$

Решение. Ну ОК, давайте возводить. Сначала возведём в квадрат:

[begin{align} & {{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{2}}=left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]cdot left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]= \ & =left[ begin{array}{*{35}{r}} 1cdot 1+1cdot 0 & 1cdot 1+1cdot 1 \ 0cdot 1+1cdot 0 & 0cdot 1+1cdot 1 \end{array} right]= \ & =left[ begin{array}{*{35}{r}} 1 & 2 \ 0 & 1 \end{array} right] end{align}]

[begin{align} & {{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{3}}={{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{3}}cdot left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]= \ & =left[ begin{array}{*{35}{r}} 1 & 2 \ 0 & 1 \end{array} right]cdot left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]= \ & =left[ begin{array}{*{35}{r}} 1 & 3 \ 0 & 1 \end{array} right] end{align}]

Вот и всё.:)

Ответ: $left[ begin{matrix}1 & 3 \ 0 & 1 \end{matrix} right]$.

Задача 8. Возведите матрицу в указанную степень:

[{{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{10}}]

Решение. Вот только не надо сейчас плакать по поводу того, что «степень слишком большая», «мир не справедлив» и «преподы совсем берега потеряли». На самом деле всё легко:

[begin{align} & {{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{10}}={{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{3}}cdot {{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{3}}cdot {{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{3}}cdot left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]= \ & =left( left[ begin{matrix} 1 & 3 \ 0 & 1 \end{matrix} right]cdot left[ begin{matrix} 1 & 3 \ 0 & 1 \end{matrix} right] right)cdot left( left[ begin{matrix} 1 & 3 \ 0 & 1 \end{matrix} right]cdot left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right] right)= \ & =left[ begin{matrix} 1 & 6 \ 0 & 1 \end{matrix} right]cdot left[ begin{matrix} 1 & 4 \ 0 & 1 \end{matrix} right]= \ & =left[ begin{matrix} 1 & 10 \ 0 & 1 \end{matrix} right] end{align}]

Заметьте: во второй строчке мы использовали ассоциативность умножения. Собственно, мы использовали её и в предыдущем задании, но там это было неявно.

Ответ: $left[ begin{matrix} 1 & 10 \ 0 & 1 \end{matrix} right]$.

Как видите, ничего сложного в возведении матрицы в степень нет. Последний пример можно обобщить:

[{{left[ begin{matrix} 1 & 1 \ 0 & 1 \end{matrix} right]}^{n}}=left[ begin{array}{*{35}{r}} 1 & n \ 0 & 1 \end{array} right]]

Этот факт легко доказать через математическую индукцию или прямым перемножением. Однако далеко не всегда при возведении в степень можно выловить подобные закономерности. Поэтому будьте внимательны: зачастую перемножить несколько матриц «напролом» оказывается проще и быстрее, нежели искать какие-то там закономерности.

В общем, не ищите высший смысл там, где его нет. В заключение рассмотрим возведение в степень матрицы большего размера — аж $left[ 3times 3 right]$.

Задача 9. Возведите матрицу в указанную степень:

[{{left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right]}^{3}}]

Решение. Не будем искать закономерности. Работаем «напролом»:

[{{left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right]}^{3}}={{left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right]}^{2}}cdot left[ begin{matrix}0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right]]

Для начала возведём эту матрицу в квадрат:

[begin{align} & {{left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right]}^{2}}=left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right]cdot left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right]= \ & =left[ begin{array}{*{35}{r}} 2 & 1 & 1 \ 1 & 2 & 1 \ 1 & 1 & 2 \end{array} right] end{align}]

Теперь возведём в куб:

[begin{align} & {{left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right]}^{3}}=left[ begin{array}{*{35}{r}} 2 & 1 & 1 \ 1 & 2 & 1 \ 1 & 1 & 2 \end{array} right]cdot left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right]= \ & =left[ begin{array}{*{35}{r}} 2 & 3 & 3 \ 3 & 2 & 3 \ 3 & 3 & 2 \end{array} right] end{align}]

Вот и всё. Задача решена.

Ответ: $left[ begin{matrix} 2 & 3 & 3 \ 3 & 2 & 3 \ 3 & 3 & 2 \end{matrix} right]$.

Как видите, объём вычислений стал больше, но смысл от этого нисколько не поменялся.:)

На этом урок можно заканчивать. В следующий раз мы рассмотрим обратную операцию: по имеющемуся произведению будем искать исходные множители.

Как вы уже, наверное, догадались, речь пойдёт об обратной матрице и методах её нахождения.

Смотрите также:

  1. Определитель
  2. Обратная матрица
  3. Тест к уроку «Что такое логарифм» (средний)
  4. Тест к уроку «Площади многоугольников без координатной сетки» (легкий)
  5. Координаты вершин правильного тетраэдра
  6. Нестандартная задача B5 на площадь круга

Умноже́ниема́триц —
одна из основных операций над матрицами.
Матрица, получаемая в результате операции
умножения, называется произведе́ниемма́триц.

Произведением матрицы размеровна
матрицуразмеровназывается
матрицаразмеров,
элементы которой вычисляются по формуле

(14.5)

где ,.

Операция
умножения двух матриц выполнима только
в том случае, если число столбцов в
первом сомножителе равно числу строк
во втором; в этом случае говорят, что
форма матрицсогласована.
В частности, умножение всегда выполнимо,
если оба сомножителя — квадратные
матрицы одного
и того же порядка.

 Найти
произведения матриц AB и BA,
если

   и   

   Р
е ш е н и е: Имеем



назад
в содержание

(38)87.Какие операции называют коммутативными? Покажите на примерах, что умножение матриц не коммутативно.

Коммутативность
= Перестановочность.

Обычные
числа переставлять можно: а
матрицы в общем случае не перестановочны
.

Какие
матрицы можно умножать?

Чтобы
матрицу   можно
было умножить на матрицу  нужно, чтобы
число столбцов матрицы
  равнялось
числу строк матрицы
 .

Пример: 
Можно
ли умножить матрицу  на
матрицу ?

,
значит, умножать данные матрицы можно.

А
вот если матрицы переставить местами,
то, в данном случае, умножение уже
невозможно!

,
следовательно, выполнить умножение
невозможно:

Не
так уж редко встречаются задания с
подвохом, когда студенту предлагается
умножить матрицы, умножение которых
заведомо невозможно.

Следует
отметить, что в ряде случаев можно
умножать матрицы и так, и так. 
Например,
для матриц,  и  возможно
как умножение ,
так и умножение 


назад
в содержание

(39)88.Что такое единичная и обратная матрицы? Как строится (по Гауссу) обратная матрица?

Пусть a
– квадратная матрица порядка n.
Обратной к ней матрице называется такая
матрица A-1,
что A-1*A=E
(здесь A-1
и E
– квадратные матрицы того же порядка,
причём E
– единичная матрица).

Это определение
вовсе не подразумевает, что обратная
матрица существует для любой матрицы
A.

Примеры

  1. не
    существует

  2. не
    существует

(0 0) – эта строка
приводит к тому, что первая строка
произведения этой матрицы на любую
другую состоит из одних нулей (в единичной
матрице это не так)

Определения
с википедии:

  1. Обратная
    матрица —
    такая матрица A−1,
    при умножении на которую, исходная
    матрица A даёт
    в результате единичную матрицу E:

  1. Единичная
    матрица — квадратная
    матрица,
    элементы главной
    диагонали которой
    равны единице поля,
    а остальные равны нулю.

Нахождение
обратной матрицы методом Гаусса.

Исходная
матрица А.

A =

1

2

3

4

Найдем
матрицу А-1 обратную
к матрице А.

Для
этого напишем расширенную матрицу ,
в левой части которой находится наша
исходная матрица А, а в правой единичная.

Применяя
метод Гаусса, последовательно будем
приводить нашу исходную матрицу (левую
часть расширенной матрицы) к единичной
матрице. Причем совершенные преобразование
мы будем применять ко всей расширенной
матрице.

Приведя
левую часть расширенной матрицы к
единичной, правая часть будет являться
обратной матрицей к нашей исходной.

Последовательность
приведения левой части расширенной
матрицы к единичной, Вы можете проследить
по выделенным серыми прямоугольниками
элементам.

1

2

1

0

3

4

0

1

 Рассмотрим
столбец 1.

К
элементам стороки 2 прибавим
соответствующие элементы строки 1
умноженные на -3.

1

2

1

0

0

2

3

1

 Рассмотрим
столбец 2.

К
элементам строки 1 прибавим соответствующие
элементы строки 2.

1

0

2

1

0

2

3

1

Элементы
строки 2 разделим на    -2 .

1

0

2

1

0

1

3

2

1

2

Ответ
:

A-1 =

2

1

3

2

1

2


назад
в содержание

Соседние файлы в папке Math

  • #
  • #

Матрицы. Виды матриц. Основные термины.

В данной теме рассмотрим понятие матрицы, а также виды матриц. Так как в данной теме немало терминов, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

    (матрица, размер матрицы, элемент матрицы, равные матрицы). . . (нулевая матрица, трапециевидная матрица, ступенчатая матрица, нижняя треугольная матрица, верхняя треугольная матрица, диагональная матрица, единичная матрица).

Определение матрицы и её элемента. Обозначения.

Матрица – это таблица из $m$ строк и $n$ столбцов. Элементами матрицы могут быть объекты совершенно разнообразной природы: числа, переменные или, к примеру, иные матрицы. Например, матрица $left( begin 5 & 3 \ 0 & -87 \ 8 & 0 end right)$ содержит 3 строки и 2 столбца; элементами её являются целые числа. Матрица $left(begin a & a^9+2 & 9 & sin x \ -9 & 3t^2-4 & u-t & 8end right)$ содержит 2 строки и 4 столбца.

Разные способы записи матриц: показатьскрыть

Матрица может быть записана не только в круглых, но и в квадратных или двойных прямых скобках. Ниже указана одна и та же матрица в различных формах записи:

$$ left( begin 5 & 3 \ 0 & -87 \ 8 & 0 end right);;; left[ begin 5 & 3 \ 0 & -87 \ 8 & 0 end right]; ;; left Vert begin 5 & 3 \ 0 & -87 \ 8 & 0 end right Vert $$

Произведение $mtimes n$ называют размером матрицы. Например, если матрица содержит 5 строк и 3 столбца, то говорят о матрице размера $5times 3$. Матрица $left(begin5 & 3\0 & -87\8 & 0endright)$ имеет размер $3 times 2$.

Обычно матрицы обозначаются большими буквами латинского алфавита: $A$, $B$, $C$ и так далее. Например, $B=left( begin 5 & 3 \ 0 & -87 \ 8 & 0 end right)$. Нумерация строк идёт сверху вниз; столбцов – слева направо. Например, первая строка матрицы $B$ содержит элементы 5 и 3, а второй столбец содержит элементы 3, -87, 0.

Элементы матриц обычно обозначаются маленькими буквами. Например, элементы матрицы $A$ обозначаются $a_$. Двойной индекс $ij$ содержит информацию о положении элемента в матрице. Число $i$ – это номер строки, а число $j$ – номер столбца, на пересечении которых находится элемент $a_$. Например, на пересечении второй строки и пятого столбца матрицы

$$ A=left( begin51 & 37 & -9 & 0 & 9 & 97 \ 1 & 2 & 3 & 41 & 59 & 6 \ -17 & -15 & -13 & -11 & -8 & -5 \ 52 & 31 & -4 & -1 & 17 & 90 end right) $$

расположен элемент $a_=59$:

Элемент

Точно так же на пересечении первой строки и первого столбца имеем элемент $a_=51$; на пересечении третьей строки и второго столбца – элемент $a_=-15$ и так далее. Замечу, что запись $a_$ читается как «а три два», но не «а тридцать два».

Для сокращённого обозначения матрицы $A$, размер которой равен $mtimes n$, используется запись $A_$. Нередко используется и такая запись:

Здесь $(a_)$ указывает на обозначение элементов матрицы $A$, т.е. говорит о том, что элементы матрицы $A$ обозначаются как $a_$. В развёрнутом виде матрицу $A_=(a_)$ можно записать так:

Введём еще один термин – равные матрицы.

Запись «$i=overline$» означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=overline$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Итак, для равенства матриц требуется выполнение двух условий: совпадение размеров и равенство соответствующих элементов. Например, матрица $A=left(begin5 & 3\0 & -87\8 & 0endright)$ не равна матрице $B=left(begin8 & -9\0 & -87 endright)$, поскольку матрица $A$ имеет размер $3times 2$, а размер матрицы $B$ составляет $2times 2$. Также матрица $A$ не равна матрице $C=left(begin5 & 3\98 & -87\8 & 0endright)$, поскольку $a_neq c_$ (т.е. $0neq 98$). А вот для матрицы $F=left(begin5 & 3\0 & -87\8 & 0endright)$ можно смело записать $A=F$ поскольку и размеры, и соответствующие элементы матриц $A$ и $F$ совпадают.

Определить размер матрицы $A=left(begin -1 & -2 & 1 \ 5 & 9 & -8 \ -6 & 8 & 23 \ 11 & -12 & -5 \ 4 & 0 & -10 \ end right)$. Указать, чему равны элементы $a_$, $a_$, $a_$.

Данная матрица содержит 5 строк и 3 столбца, поэтому размер её $5times 3$. Для этой матрицы можно использовать также обозначение $A_$.

Элемент $a_$ находится на пересечении первой строки и второго столбца, поэтому $a_=-2$. Элемент $a_$ находится на пересечении третьей строки и третьего столбца, поэтому $a_=23$. Элемент $a_$ находится на пересечении четвертой строки и третьего столбца, поэтому $a_=-5$.

Виды матриц в зависимости от их размера. Главная и побочная диагонали. След матрицы.

Пусть задана некая матрица $A_$. Если $m=1$ (матрица состоит из одной строки), то заданную матрицу называют матрица-строка. Если же $n=1$ (матрица состоит из одного столбца), то такую матрицу называют матрица-столбец. Например, $left( begin -1 & -2 & 0 & -9 & 8 end right)$ – матрица-строка, а $left( begin -1 \ 5 \ 6 end right)$ – матрица-столбец.

Если для матрицы $A_$ верно условие $mneq n$ (т.е. количество строк не равно количеству столбцов), то часто говорят, что $A$ – прямоугольная матрица. Например, матрица $left( begin -1 & -2 & 0 & 9 \ 5 & 9 & 5 & 1 end right)$ имеет размер $2times 4$, т.е. содержит 2 строки и 4 столбца. Так как количество строк не равно количеству столбцов, то эта матрица является прямоугольной.

Если для матрицы $A_$ верно условие $m=n$ (т.е. количество строк равно количеству столбцов), то говорят, что $A$ – квадратная матрица порядка $n$. Например, $left( begin -1 & -2 \ 5 & 9 end right)$ – квадратная матрица второго порядка; $left( begin -1 & -2 & 9 \ 5 & 9 & 8 \ 1 & 0 & 4 end right)$ – квадратная матрица третьего порядка. В общем виде квадратную матрицу $A_$ можно записать так:

Говорят, что элементы $a_$, $a_$, $ldots$, $a_$ находятся на главной диагонали матрицы $A_$. Эти элементы называются главными диагональными элементами (или просто диагональными элементами). Элементы $a_$, $a_$, $ldots$, $a_$ находятся на побочной (второстепенной) диагонали; их называют побочными диагональными элементами. Например, для матрицы $C=left(begin2&-2&9&1\5&9&8& 0\1& 0 & 4 & -7 \ -4 & -9 & 5 & 6endright)$ имеем:

Диагональ

Элементы $c_=2$, $c_=9$, $c_=4$, $c_=6$ являются главными диагональными элементами; элементы $c_=1$, $c_=8$, $c_=0$, $c_=-4$ – побочные диагональные элементы.

Сумма главных диагональных элементов называется следом матрицы и обозначается $Tr A$ (или $Sp A$):

Например, для матрицы $C=left(begin 2 & -2 & 9 & 1\5 & 9 & 8 & 0\1 & 0 & 4 & -7\-4 & -9 & 5 & 6 endright)$ имеем:

Понятие диагональных элементов используется также и для неквадратных матриц. Например, для матрицы $B=left( begin 2 & -2 & 9 & 1 & 7 \ 5 & -9 & 8 & 0 & -6 \ 1 & 0 & 4 & -7 & -6 end right)$ главными диагональными элементами будут $b_=2$, $b_=-9$, $b_=4$.

Виды матриц в зависимости от значений их элементов.

Если все элементы матрицы $A_$ равны нулю, то такая матрица называется нулевой и обозначается обычно буквой $O$. Например, $left( begin 0 & 0 \ 0 & 0 \ 0 & 0 end right)$, $left( begin 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 end right)$ – нулевые матрицы.

Рассмотрим некоторую ненулевую строку матрицы $A$, т.е. такую строку, в которой есть хоть один элемент, отличный от нуля. Ведущим элементом ненулевой строки назовём её первый (считая слева направо) ненулевой элемент. Для примера рассмотрим такую матрицу:

Во второй строке ведущим будет четвёртый элемент, т.е. $w_=12$, а в третьей строке ведущим будет второй элемент, т.е. $w_=-9$.

Матрица $A_=left(a_right)$ называется ступенчатой, если она удовлетворяет двум условиям:

  1. Нулевые строки, если они есть, расположены ниже всех ненулевых строк.
  2. Номера ведущих элементов ненулевых строк образуют строго возрастающую последовательность, т.е. если $a_$, $a_$, . $a_$ – ведущие элементы ненулевых строк матрицы $A$, то $k_1ltltldotslt$.

Примеры ступенчатых матриц:

Для сравнения: матрица $Q=left(begin2 & -2 & 0 & 1 & 9\0 & 0 & 0 & 7 & 9\0 & -5 & 0 & 10 & 6endright)$ не является ступенчатой, так как нарушено второе условие в определении ступенчатой матрицы. Ведущие элементы во второй и третьей строках $q_=7$ и $q_=10$ имеют номера $k_2=4$ и $k_3=2$. Для ступенчатой матрицы должно быть выполнено условие $k_2lt$, которое в данном случае нарушено. Отмечу, что если поменять местами вторую и третью строки, то получим ступенчатую матрицу: $left(begin2 & -2 & 0 & 1 & 9\0 & -5 & 0 & 10 & 6 \0 & 0 & 0 & 7 & 9endright)$.

Ступенчатую матрицу называют трапециевидной или трапецеидальной, если для ведущих элементов $a_$, $a_$, . $a_$ выполнены условия $k_1=1$, $k_2=2$. $k_r=r$, т.е. ведущими являются диагональные элементы. В общем виде трапециевидную матрицу можно записать так:

$$ A_> =left(begin a_ & a_ & ldots & a_ & ldots & a_\ 0 & a_ & ldots & a_ & ldots & a_\ ldots & ldots & ldots & ldots & ldots & ldots\ 0 & 0 & ldots & a_ & ldots & a_\ 0 & 0 & ldots & 0 & ldots & 0\ ldots & ldots & ldots & ldots & ldots & ldots\ 0 & 0 & ldots & 0 & ldots & 0 endright) $$

Примеры трапециевидных матриц:

Дадим ещё несколько определений для квадратных матриц. Если все элементы квадратной матрицы, расположенные под главной диагональю, равны нулю, то такую матрицу называют верхней треугольной матрицей. Например, $left( begin 2 & -2 & 9 & 1 \ 0 & 9 & 8 & 0 \ 0 & 0 & 4 & -7 \ 0 & 0 & 0 & 6 end right)$ – верхняя треугольная матрица. Заметьте, что в определении верхней треугольной матрицы ничего не сказано про значения элементов, расположенных над главной диагональю или на главной диагонали. Они могут быть нулевыми или нет, – это несущественно. Например, $left( begin 0 & 0 & 9 \ 0 & 0 & 0\ 0 & 0 & 0 end right)$ – тоже верхняя треугольная матрица.

Если все элементы квадратной матрицы, расположенные над главной диагональю, равны нулю, то такую матрицу называют нижней треугольной матрицей. Например, $left( begin 3 & 0 & 0 & 0 \ -5 & 1 & 0 & 0 \ 8 & 2 & 1 & 0 \ 5 & 4 & 0 & 6 end right)$ – нижняя треугольная матрица. Заметьте, что в определении нижней треугольной матрицы ничего не сказано про значения элементов, расположенных под или на главной диагонали. Они могут быть нулевыми или нет, – это неважно. Например, $left( begin -5 & 0 & 0 \ 0 & 0 & 0\ 0 & 0 & 9 end right)$ и $left( begin 0 & 0 & 0 \ 0 & 0 & 0\ 0 & 0 & 0 end right)$ – тоже нижние треугольные матрицы.

Квадратная матрица называется диагональной, если все элементы этой матрицы, не лежащие на главной диагонали, равны нулю. Пример: $left( begin 3 & 0 & 0 & 0 \ 0 & -2 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 6 end right)$. Элементы на главной диагонали могут быть любыми (равными нулю или нет), – это несущественно.

Диагональная матрица называется единичной, если все элементы этой матрицы, расположенные на главной диагонали, равны 1. Например, $left(begin 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 endright)$ – единичная матрица четвёртого порядка; $left(begin 1 & 0 \ 0 & 1 endright)$ – единичная матрица второго порядка.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Знакомство с матрицами

Разработчики нейросетей говорят, что все нейросети — это просто бесконечное перемножение матриц. Мы решили разобраться, что это за матрицы и как их перемножать, а для этого пришлось полезть в линейную алгебру. И это оказалось не так сложно, как мы думали:

    — это просто группа из нескольких чисел, выстроенных в определённой последовательности. Например, рост и вес человека можно представить как вектор (172, 80). Ничего сложного.

  • У вектора может быть внутри сколько угодно чисел. Главное — чтобы мы договорились, что для нас значат эти числа, и не меняли их местами просто так, произвольно.
  • Векторы можно складывать, вычитать, умножать. Это чуть сложнее, чем с обычными числами.
  • У вектора есть понятие линейной зависимости. Грубо говоря — параллельны друг другу векторы или нет. От этого зависит, какие операции можно делать с этими векторами.

Вектор — это «кирпичик» линейной алгебры. На его основе мы переходим к понятию матрицы.

Что такое матрица

Если вектор — это строка с числами в определённом порядке, то матрица — это таблица с числами в определённом порядке. Как у любой таблицы, у матрицы есть столбцы и строки. В них сидят какие-то числа. Всё вместе — это математический объект, то есть в каких-то случаях всю эту таблицу можно рассматривать как единое целое и совершать с ним операции.

Матрицы принято обозначать большими буквами латинского алфавита вроде А, В, С, D и так далее.

Числа внутри матрицы называют элементами. Каждый элемент обозначается двумя цифрами: первая цифра указывает на строку, а вторая — на столбец. Это адрес числа внутри матрицы. Например, элемент А₂₃ означает, что нужное число находится во второй строке и третьем столбце. Нумерация элементов нужна для записи формул и устного объяснения того, где находится нужное число в матрице.

В матрице может находиться неограниченное количество строк, столбцов и элементов. Из-за этого матрицы бывают разных видов и могут обладать разными особенностями. Например, если в матрице совпадает число строк и столбцов, то такая матрица называется квадратной.

В этой статье и в следующих материалах мы будем рассматривать разные виды матрицы и постепенно изучим их особенности.

Общая схема матрицыОбщая схема матрицы Пример квадратной матрицы с пятью строками и столбцамиПример квадратной матрицы с пятью строками и столбцами. Записывается как матрица размера 5×5. В числовой матрице мы не нумеруем элементы — они закрепляются за числами по умолчанию. Например, элементу А₂₃ соответствует число три

Простые операции с матрицами

Вынесение минуса за пределы матрицы. Если внутри матрицы у большинства элементов знак минус, то часто это мешает расчётам или приводит к ошибкам. Чтобы этого избежать, от минуса избавляются. Для этого нужно вынести минус за пределы матрицы и изменить знак всех элементов внутри самой матрицы.

И наоборот: если внутри матрицы у большинства элементов знак минус и перед матрицей стоит минус, то минус можно внести в матрицу.

Выносим минус за пределы матрицы и получаем вместо двадцати одного отрицательного элемента — четыреВыносим минус за пределы матрицы и получаем вместо двадцати одного отрицательного элемента — четыре Общая схема матрицыПеред матрицей минус, и внутри у большинства элементов минус. Вносим минус в матрицу и делаем её удобной для дальнейших вычислений

Умножение матрицы на число. Для умножения матрицы на число достаточно каждый элемент матрицы умножить на это число.

Пример умножения матрицы на числоПример умножения матрицы на число

Транспонирование матрицы. Это операция, которая позже нам понадобится для решения матричных уравнений. Для транспонирования мы берём известную матрицу, меняем в ней местами строки со столбцами и получаем новую матрицу. Как бы поставили матрицу набок.

⚠️ При этом в матрице запрещено в произвольном порядке менять элементы. Зато можно полностью менять местами строки или столбцы. Если мы поменяем местами первую и вторую строку, то это останется прежняя матрица.

Схема транспонирования матрицСхема транспонирования матриц: первая строка переходит в первый столбец, вторая строка — во второй столбец и так далее в зависимости от количества элементов матрицы Пример транспонированияПример транспонирования. Транспонированная матрица обозначается буквой той же матрицы, из которой она получилась + надстрочечный индекс в виде печатной буквы «Т» Матрицу можно перетасовывать, но это нужно делать по правиламМатрицу можно перетасовывать, но это нужно делать по правилам. Транспонирование — одно из таких правил

Сложение и вычитание матриц

Если в нескольких матрицах совпадает число строк и столбцов, то мы можем их складывать и вычитать. Для вычислений нам нужно поэлементно сложить или вычесть каждый элемент матриц: первый элемент первой матрицы складываем с первым элементом второй матрицы или вычитаем из него и так далее. В результате получаем новую матрицу.

Пример сложения двух прямоугольных матриц с тремя строками и двумя столбцамиПример сложения двух прямоугольных матриц с тремя строками и двумя столбцами Пример вычитания двух матрицПример вычитания двух матриц

Умножение матриц

Матрицы умножаются по принципу строка на столбец. Мы умножаем первую строку первой матрицы, на первый столбец второй матрицы, складываем результаты и получаем первый элемент новой матрицы. По аналогичной схеме вычисляем все остальные элементы. Звучит запутанно, поэтому идём по шагам:

  1. У нас есть две матрицы A и B. Их нужно перемножить, чтобы получить новую матрицу C.
  2. Размер матрицы A два на два: есть две строки и два столбца. Первая строка состоит из элементов А₁₁ и А₁₂; вторая — А₂₁ и А₂₂.
  3. У матрицы B такая же размерность: есть две строки и два столбца. Первая строка состоит из элементов B₁₁ и B₁₂; вторая — B₂₁ и B₂₂.
  4. У нас две одинаковые по размеру матрицы с двумя строками и столбцами. Это значит, что и матрица C будет размером два на два. Первая строка будет состоять из элементов C₁₁ и C₁₂; вторая — C₂₁ и C₂₂.
  5. Считаем элемент C₁₁. Умножаем первый элемент первой строки матрицы А (А₁₁) на первый элемент первого столбика матрицы B (B₁₁). Это первая часть, после которой ставим знак плюс. Вторая часть: умножаем второй элемент первой строчки матрицы А (А₁₂) на второй элемент первого столбика матрицы B (B₂₁). Складываем обе части и получаем первый элемент первой строки матрицы С (C₁₁).
  6. Считаем элемент C₁₂. Умножаем первый элемент первой строки матрицы А (А₁₁) на первый элемент второго столбика матрицы B (B₁₂). Это первая часть. Вторая часть: умножаем второй элемент первой строчки матрицы А (А₁₂) на второй элемент второго столбика матрицы B (B₂₂). Складываем части и получаем второй элемент первой строки матрицы С (C₁₂).
  7. Считаем элемент C₂₁. Умножаем первый элемент второй строки матрицы А (А₂₁) на первый элемент первого столбика матрицы B (B₁₁). Это первая часть. Вторая часть: умножаем второй элемент второй строки матрицы А (А₂₂) на второй элемент первого столбика матрицы B (B₂₁). Складываем части и получаем первый элемент второй строки матрицы С (C₂₁).
  8. Считаем элемент C₂₂. Умножаем первый элемент второй строки матрицы А (А₂₁) на первый элемент второго столбика матрицы B (B₁₂). Это первая часть. Вторая часть: умножаем второй элемент второй строки матрицы А (А₂₂) на второй элемент второго столбика матрицы B (B₂₂). Складываем части и получаем второй элемент второй строки матрицы С (C₂₂).

Если нам нужно найти матрицу в квадрате, то мы умножаем эту матрицу на саму себя. Если нужна матрица в кубе — умножаем её на саму себя три раза и так далее в зависимости от количества степеней. Если в одной из матриц все элементы нули, то она считается нулевой и после умножения на другую матрицу даёт нулевую матрицу — это как нуль умноженный на число всегда даёт нуль.

Формула умножения матрицФормула умножения матриц Пример умножения квадратных матриц размерностью 2×2Пример умножения квадратных матриц размерностью 2×2

Что дальше

В следующий раз продолжим знакомиться с базовыми понятиями, которые нам понадобятся для решения матричных уравнений. А на сегодня Нео свободен

Матрица — виды, операции и действия с примерами решения

Определение: Матрицей называется таблица чисел (выражений), имеющая m строк и n столбцов:Матрица - виды, операции и действия с примерами решения

В дальнейшем будем писать матрицу в сокращенном видеМатрица - виды, операции и действия с примерами решения

Определение: Если матрица содержит 1 строку и n столбцов, то она называется матрицей-строкой Матрица - виды, операции и действия с примерами решения

Определение: Если матрица содержит m строк и 1 столбец, то она называется матрицей-столбцом Матрица - виды, операции и действия с примерами решения

Пример:

Следующие таблицы являются матрицами

Матрица - виды, операции и действия с примерами решения

Определение: Матрица, у которой совпадает количество столбцов с количеством строк, называется квадратной.

Всякой квадратной матрице соответствует определитель, составленный из тех же матричных элементов, который в теории матриц называется детерминантом матрицы Матрица - виды, операции и действия с примерами решения

Определение: Транспонированной к исходной квадратной матрице называется такая матрица, строки которой заменены на соответствующие столбцы, а столбцы — на соответствующие строки.

Замечание: Согласно свойству 1. для определителей (см. Лекцию № 1) для квадратных матриц детерминант исходной матрицы равен детерминанту транспонированной матрицы.

Определение: Матрицу, у которой все элементы, стоящие под главной диагональю равны нулю, будем называть треугольной

Матрица - виды, операции и действия с примерами решения

Определение: Матрица, все элементы которой равны нулю, за исключением элементов, стоящих на главной диагонали, называется диагональной Матрица - виды, операции и действия с примерами решения

Определение: Единичной матрицей называется диагональная матрица, у которой на главной диагонали все элементы равны единице, а остальные элементы равны нулю: Матрица - виды, операции и действия с примерами решения

Действия над матрицами

1. Суммой (разностью) двух матриц Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решенияодинаковой структуры называется матрица той же размерности Матрица - виды, операции и действия с примерами решенияэлементы которой вычисляются по формуле: Матрица - виды, операции и действия с примерами решения

Пример:

Найти сумму (разность) матриц Матрица - виды, операции и действия с примерами решения

Решение:

Из приведенных матриц складывать (вычитать) можно только матрицы А и С, которые имеют одинаковую структуру. Найдем сумму:

Матрица - виды, операции и действия с примерами решения

и разность этих матриц:

Матрица - виды, операции и действия с примерами решения

2. При умножении вещественного числа k на матрицу Матрица - виды, операции и действия с примерами решениявсе элементы матрицы умножаются на это число.

Пример:

Умножить (-2) на матрицу Матрица - виды, операции и действия с примерами решения

Решение:

Результат умножения имеет вид Матрица - виды, операции и действия с примерами решения

3. Произведением матриц Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решенияэлементы которой вычисляются по формуле: Матрица - виды, операции и действия с примерами решения

Замечание: Перемножать можно лишь те матрицы, для которых количество столбцов первой перемножаемой матрицы совпадает с количеством строк второй перемножаемой матрицы. Матрица, получаемая в результате перемножения, имеет количество строк равное количеству строк первой матрицы и количество столбцов равное количеству столбцов второй матрицы.

Пример:

Найти (возможные) произведения матриц

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица А имеет структуру 2×3, матрица В — 2×2, матрица С — 3×2. Согласно определению можно найти произведения Матрица - виды, операции и действия с примерами решенияНе существуют произведения Матрица - виды, операции и действия с примерами решенияВычислим произведение Матрица - виды, операции и действия с примерами решенияПрежде всего, определим структуру результирующей матрицы: имеем размерности Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решенияубирая подчеркнутые цифры, получим структуру результирующей матрицы 2×3. Вычислим ее элементы. Для того чтобы найти элементы возможных произведений, надо просуммировать произведения элементов строки первой матрицы на соответствующие элементы столбца второй матрицы:

Матрица - виды, операции и действия с примерами решения

Остальные возможные произведения найти самостоятельно.

Замечание: Из приведенного примера видно, что в общем случае произведение матриц некоммутативно (неперестановочно), т. е.Матрица - виды, операции и действия с примерами решения

Определение: Обратной матрицей к исходной квадратной матрице Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решениятой же структуры, произведение которой с матрицей А коммутативно и равно единичной матрице, то есть Матрица - виды, операции и действия с примерами решения

Рассмотрим схему построения обратной матрицы Матрица - виды, операции и действия с примерами решения

Замечание: Обращаем внимание на то, что матрица алгебраических дополнений записана в транспонированном виде.

Пример:

Найти обратную матрицу к матрице Матрица - виды, операции и действия с примерами решения

Решение:

Вычислим детерминант данной матрицы Матрица - виды, операции и действия с примерами решенияраскроем этот определитель по элементам первой строки:

Матрица - виды, операции и действия с примерами решения

Вычислим алгебраические дополнения всех элементов определителя: Матрица - виды, операции и действия с примерами решенияЗапишем обратную матрицу Матрица - виды, операции и действия с примерами решения

Проверим правильность нахождения обратной матрицы, для чего воспользуемся ее определением. Умножим найденную матрицу на исходную матрицу, вычислим элементы результирующей матрицы

Матрица - виды, операции и действия с примерами решения

Таким образом, Матрица - виды, операции и действия с примерами решеният.е. найдена верно.

Основные сведения о матрицах

Понятие матрицы и основанный на нем раздел математики — матричная алгебра — имеют чрезвычайно важное значение для экономистов. Объясняется это тем, что значительная часть математических моделей экономических объектов и процессов записывается в достаточно простой, а главное — компактной матричной форме.

Матрицей размера Матрица - виды, операции и действия с примерами решенияназывается прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными (заглавными) буквами латинского алфавита, например, А, В, С, . а для обозначения элементов матрицы используются строчные буквы с двойной индексацией: Матрица - виды, операции и действия с примерами решения, где Матрица - виды, операции и действия с примерами решения— номер строки, Матрица - виды, операции и действия с примерами решения— номер столбца.

Матрица - виды, операции и действия с примерами решения

или, в сокращенной записи, Матрица - виды, операции и действия с примерами решения

Например, Матрица - виды, операции и действия с примерами решенияНаряду с круглыми скобками используются и другие обозначения матрицы:Матрица - виды, операции и действия с примерами решения

Две матрицы А и В одного размера называются равными, если они совпадают поэлементно, т.е. Матрица - виды, операции и действия с примерами решениядля любых Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения

С помощью матриц удобно записывать некоторые экономические зависимости. Например, таблица распределения ресурсов по отдельным отраслям экономики (усл. ед.) Матрица - виды, операции и действия с примерами решения

может быть записана в компактной форме в виде матрицы распределения ресурсов по отраслям: Матрица - виды, операции и действия с примерами решения

В этой записи, например, матричный элемент Матрица - виды, операции и действия с примерами решенияпоказывает, сколько электроэнергии потребляет промышленность, а элемент Матрица - виды, операции и действия с примерами решения— сколько трудовых ресурсов потребляет сельское хозяйство.

Виды матриц

Матрица, состоящая из одной строки, называется матрицей (вектором)-строкой, а из одного столбца — матрицей (вектором)-столбцом: Матрица - виды, операции и действия с примерами решения— матрица-строка;

Матрица - виды, операции и действия с примерами решения— матрица-столбец.

Матрица называется квадратной Матрица - виды, операции и действия с примерами решения-го порядка, если число ее строк равно числу столбцов и равно Матрица - виды, операции и действия с примерами решения.

Например, Матрица - виды, операции и действия с примерами решения— квадратная матрица третьего порядка.

Элементы матрицы Матрица - виды, операции и действия с примерами решения, у которых номер столбца равен номеру строки Матрица - виды, операции и действия с примерами решения, называются диагональными и образуют главную диагональ матрицы. Для квадратной матрицы главную диагональ образуют элементы Матрица - виды, операции и действия с примерами решения

Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной. Например,

Матрица - виды, операции и действия с примерами решения—диагональная матрица третьего порядка.

Если у диагональной матрицы alt=»Матрица — виды, операции и действия с примерами решения» />-го порядка все диагональные элементы равны единице, то матрица называется единичной матрицей alt=»Матрица — виды, операции и действия с примерами решения» />-го порядка, она обозначается буквой Е.

Например,Матрица - виды, операции и действия с примерами решения— единичная матрица третьего порядка.

Матрица любого размера называется нулевой, или нуль-матрицей, если все ее элементы равны нулю:

Матрица - виды, операции и действия с примерами решения

Операции над матрицами

Над матрицами, как и над числами, можно производить ряд операций, причем некоторые из них аналогичны операциям над числами, а некоторые — специфические.

Умножение матрицы на число

Произведением матрицы А на число Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решенияэлементы которой Матрица - виды, операции и действия с примерами решениядля Матрица - виды, операции и действия с примерами решения

Например, если Матрица - виды, операции и действия с примерами решения, то Матрица - виды, операции и действия с примерами решения

Следствие. Общий множитель всех элементов матрицы можно выносить за знак матрицы.

Например, Матрица - виды, операции и действия с примерами решения

В частности, произведение матрицы А на число 0 есть нулевая матрица, т.е. Матрица - виды, операции и действия с примерами решения

Сложение матриц

Суммой двух матриц А и В одинакового размера Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решения, элементы которой Матрица - виды, операции и действия с примерами решениядля Матрица - виды, операции и действия с примерами решения(т.е. матрицы складываются поэлементно).

Матрица - виды, операции и действия с примерами решенияВ частном случае A + 0 = A.

Вычитание матриц

Разность двух матриц одинакового размера определяется через предыдущие операции: Матрица - виды, операции и действия с примерами решения

Умножение матриц

Умножение матрицы А на матрицу В определено, когда число столбцов первой матрицы равно числу строк второйМатрица - виды, операции и действия с примерами решения. Тогда произведением матриц Матрица - виды, операции и действия с примерами решенияназывается такая матрицаМатрица - виды, операции и действия с примерами решения, каждый элемент которой Матрица - виды, операции и действия с примерами решенияравен сумме произведений элементов Матрица - виды, операции и действия с примерами решения-й строки матрицы А на соответствующие элементы Матрица - виды, операции и действия с примерами решения-го столбца матрицы В:

Матрица - виды, операции и действия с примерами решения

Пример №1

Вычислить произведение матриц Матрица - виды, операции и действия с примерами решения, где

Матрица - виды, операции и действия с примерами решения

Решение:

1. Найдем размер матрицы-произведения (если умножение матриц возможно): Матрица - виды, операции и действия с примерами решения

2. Вычислим элементы матрицы-произведения С, умножая элементы каждой строки матрицы А на соответствующие элементы столбцов матрицы В следующим образом:

Матрица - виды, операции и действия с примерами решения

Получаем Матрица - виды, операции и действия с примерами решения

Многие свойства, присущие операциям над числами, справедливы и для операций над матрицами (что следует из определений этих операций):

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решенияэтом случае матрица А называется согласованной с матрицей В.

Однако имеются и специфические свойства матриц. Так, операция умножения матриц имеет некоторые отличия от умножения чисел:

а)Если произведение матриц Матрица - виды, операции и действия с примерами решениясуществует, то после перестановки сомножителей местами произведения матриц Матрица - виды, операции и действия с примерами решенияможет и не существовать. Действительно, в примере 1.1 получили произведение матриц Матрица - виды, операции и действия с примерами решения, а произведения Матрица - виды, операции и действия с примерами решенияне существует, так как число столбцов первой матрицы не совпадает с числом строк второй матрицы.

б)Если даже произведения Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решениясуществуют, то они могут быть матрицами разных размеров.

Пример №2

Найти произведения матриц Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решения:

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения► в) В случае, когда оба произведения Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решениясуществуют и оба — матрицы одинакового размера (это возможно только при умножении квадратных матриц А и В одного порядка), коммутативный (переместительный) закон умножения, вообще говоря, не выполняется, т.е.Матрица - виды, операции и действия с примерами решения

Пример №3

Найти произведения матриц Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решения, где Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решенияВ частном случае коммутативным законом обладает произведение любой квадратной матрицы А Матрица - виды, операции и действия с примерами решения-гo порядка на единичную матрицу Е того же порядка, причем это произведение равно А:

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

Таким образом, единичная матрица играет при умножении матриц ту же роль, что и число 1 при умножении чисел.

г) Произведение двух ненулевых матриц может равняться нулевой матрице, т.е. из того, что Матрица - виды, операции и действия с примерами решения, не следует, что Матрица - виды, операции и действия с примерами решенияили,Матрица - виды, операции и действия с примерами решения. Например, Матрица - виды, операции и действия с примерами решения

Возведение в степень

Целой положительной степенью Матрица - виды, операции и действия с примерами решенияквадратной матрицы Матрица - виды, операции и действия с примерами решенияназывается произведение Матрица - виды, операции и действия с примерами решенияматриц, равных Матрица - виды, операции и действия с примерами решения, т.е.

Матрица - виды, операции и действия с примерами решения

Заметим, что операция возведения в степень определяется только для квадратных матриц.

По определению полагают Матрица - виды, операции и действия с примерами решенияНетрудно показать, что Матрица - виды, операции и действия с примерами решения

Пример №4

Найти Матрица - виды, операции и действия с примерами решения, где Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения

Обращаем внимание на то, что из равенства Матрица - виды, операции и действия с примерами решенияеще не следует, что матрица Матрица - виды, операции и действия с примерами решения

Транспонирование матрицы

Транспонирование матрицы — переход от матрицы Матрица - виды, операции и действия с примерами решенияк матрице Матрица - виды, операции и действия с примерами решения, в которой строки и столбцы поменялись местами с сохранением порядка. Матрица Матрица - виды, операции и действия с примерами решенияназывается транспонированной относительно матрицы Матрица - виды, операции и действия с примерами решения: Матрица - виды, операции и действия с примерами решенияИз определения следует, что если матрица Матрица - виды, операции и действия с примерами решенияимеет размер Матрица - виды, операции и действия с примерами решения, то транспонированная матрица Матрица - виды, операции и действия с примерами решенияимеет размер Матрица - виды, операции и действия с примерами решения.

Например, Матрица - виды, операции и действия с примерами решения

В литературе встречаются и другие обозначения транспонированной матрицы, например, Матрица - виды, операции и действия с примерами решения.

Свойства операции транспонирования:

Матрица - виды, операции и действия с примерами решения

Рекомендуем читателю доказать их самостоятельно. Рассмотренные выше операции над матрицами позволяют упростить решения некоторых экономических задач.

Пример №5

Предприятие выпускает продукцию трех видов: Матрица - виды, операции и действия с примерами решенияи использует сырье двух типов: Матрица - виды, операции и действия с примерами решения. Нормы расхода сырья характеризуются матрицей Матрица - виды, операции и действия с примерами решения

где каждый элемент Матрица - виды, операции и действия с примерами решенияпоказывает, сколько единиц сырья

Матрица - виды, операции и действия с примерами решения-го типа расходуется на производство единицы продукции Матрица - виды, операции и действия с примерами решения-го вида. План выпуска продукции задан матрицей-строкой Матрица - виды, операции и действия с примерами решения, стоимость единицы каждого типа сырья (ден. ед.) — матрицей-столбцом Матрица - виды, операции и действия с примерами решения

Определить затраты сырья, необходимые для планового выпуска продукции, и общую стоимость сырья.

Решение:

Затраты 1-го сырья составляют Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияед. и 2-го — Матрица - виды, операции и действия с примерами решенияед., поэтому матрица-строка затрат сырья Матрица - виды, операции и действия с примерами решенияможет быть записана как произведение Матрица - виды, операции и действия с примерами решения

Тогда общая стоимость сырья Матрица - виды, операции и действия с примерами решенияден. ед. может быть записана в матричном виде Матрица - виды, операции и действия с примерами решенияОбщую стоимость сырья можно вычислить и в другом порядке: вначале вычислим матрицу стоимостей затрат сырья на единицу продукции, т.е. матрицу

Матрица - виды, операции и действия с примерами решенияа затем общую стоимость сырья

Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения

На данном примере мы убедились в выполнении свойства 7 (см. с. 13) — ассоциативного закона произведения матриц: Матрица - виды, операции и действия с примерами решения

Определители квадратных матриц

Необходимость введения определителя — числа, характеризующего квадратную матрицу Матрица - виды, операции и действия с примерами решения, — тесно связана с решением систем линейных уравнений (см. гл. 2). Определитель матрицы Матрица - виды, операции и действия с примерами решенияобозначается Матрица - виды, операции и действия с примерами решенияили Матрица - виды, операции и действия с примерами решения

Определителем матрицы первого порядка Матрица - виды, операции и действия с примерами решения, или определителем первого порядка, называется элемент Матрица - виды, операции и действия с примерами решения:

Матрица - виды, операции и действия с примерами решенияНапример, пусть Матрица - виды, операции и действия с примерами решениятогда Матрица - виды, операции и действия с примерами решения

Определителем матрицы второго порядка Матрица - виды, операции и действия с примерами решения, или определителем второго порядка, называется число, которое вычисляется по формуле:

Матрица - виды, операции и действия с примерами решения

Произведения а Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решенияназываются членами определителя второго порядка. Например, пусть Матрица - виды, операции и действия с примерами решениятогда

Матрица - виды, операции и действия с примерами решения

Пусть дана квадратная матрица третьего порядка: Матрица - виды, операции и действия с примерами решенияОпределителем матрицы третьего порядка Матрица - виды, операции и действия с примерами решения, или определителем третьего порядка, называется число, которое вычисляется по формуле:

Матрица - виды, операции и действия с примерами решения

Это число представляет алгебраическую сумму, состоящую из 6 слагаемых, или 6 членов определителя. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Знаки, с которыми члены определителя входят в формулу (1.4), легко запомнить, пользуясь схемой (рис. 1.1), которая называется правилом треугольников или правилом Сарруса.

Матрица - виды, операции и действия с примерами решения

Пример №6

Вычислить определитель третьего порядка

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения

Для того чтобы ввести понятие определителя более высокого порядка, потребуются некоторые дополнительные понятия. Рассмотрим квадратную матрицу Матрица - виды, операции и действия с примерами решения-гo порядка: Матрица - виды, операции и действия с примерами решения

Из общего числа Матрица - виды, операции и действия с примерами решенияэлементов этой матрицы выберем набор, содержащий Матрица - виды, операции и действия с примерами решенияэлементов, таким образом, чтобы в него входило по одному элементу из каждой строки и каждого столбца. Например, набор элементов Матрица - виды, операции и действия с примерами решенияили Матрица - виды, операции и действия с примерами решениясоответственно главной и побочной диагоналей матрицы.

Любой такой набор можно упорядочить, записав сначала элемент из 1-й строки, затем из 2-й и т.д., т.е.

Матрица - виды, операции и действия с примерами решения

Номера столбцов Матрица - виды, операции и действия с примерами решенияобразуют при этом перестановку Матрица - виды, операции и действия с примерами решенияиз Матрица - виды, операции и действия с примерами решениячисел: Матрица - виды, операции и действия с примерами решенияВсего существует Матрица - виды, операции и действия с примерами решенияразличных перестановок из Матрица - виды, операции и действия с примерами решениянатуральных чисел.

Введем понятие беспорядка, или инверсии, в перестановке Матрица - виды, операции и действия с примерами решенияЭто наличие пары чисел, в которой большее число предшествует меньшему. Например, в перестановке из трех чисел Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияимеется одна инверсия (2; 1), а в перестановке Матрица - виды, операции и действия с примерами решения— три: (3; 2), (3; 1), (2; 1). Обозначим через Матрица - виды, операции и действия с примерами решенияколичество инверсий в перестановке Матрица - виды, операции и действия с примерами решения

Возвращаясь к наборам (1.5) из элементов матрицы Матрица - виды, операции и действия с примерами решениямы можем каждому такому набору поставить в соответствие произведение его элементов:

Матрица - виды, операции и действия с примерами решения

и число Матрица - виды, операции и действия с примерами решения, равное количеству инверсий в перестановке Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияиз номеров соответствующих столбцов.

Определение. Определителем квадратной матрицы Матрица - виды, операции и действия с примерами решения-го порядка, или определителем Матрица - виды, операции и действия с примерами решения-го порядка, называется число, равное алгебраической сумме Матрица - виды, операции и действия с примерами решениячленов, каждый из которых является произведением Матрица - виды, операции и действия с примерами решенияэлементов матрицы, взятых по одному из каждой строки и каждого столбца, причем знак каждого члена определяется как Матрица - виды, операции и действия с примерами решения, где Матрица - виды, операции и действия с примерами решения— число инверсий в перестановке Матрица - виды, операции и действия с примерами решенияиз номеров столбцов элементов матрицы, ест при этом номера строк записаны в порядке возрастания:

Матрица - виды, операции и действия с примерами решениягде сумма берется по всем перестановкам Матрица - виды, операции и действия с примерами решенияПроверим, например, что при Матрица - виды, операции и действия с примерами решениямы получаем введенный ранее определитель третьего порядка (1.4):

Матрица - виды, операции и действия с примерами решения

то же число, что и по формуле (1.4).

Заметим, что с ростом Матрица - виды, операции и действия с примерами решениярезко увеличивается число членов определителя Матрица - виды, операции и действия с примерами решенияпоэтому даже для Матрица - виды, операции и действия с примерами решенияиспользование формулы (1.7) весьма трудоемко (получим 24 слагаемых!).

На практике при вычислении определителей высоких порядков используют другие формулы. Для их рассмотрения необходимо ввести новые понятия.

Пусть дана квадратная матрица Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения-го порядка.

Минором Матрица - виды, операции и действия с примерами решенияэлемента Матрица - виды, операции и действия с примерами решения матрицы Матрица - виды, операции и действия с примерами решения-го порядка называется

определитель матрицы Матрица - виды, операции и действия с примерами решения-го порядка, полученной из матрицы Матрица - виды, операции и действия с примерами решениявычеркиванием Матрица - виды, операции и действия с примерами решения-й строки и Матрица - виды, операции и действия с примерами решенияго столбца.

Например, минором элемента Матрица - виды, операции и действия с примерами решенияматрицы Матрица - виды, операции и действия с примерами решениятретьего порядка будет: Матрица - виды, операции и действия с примерами решенияКаждая матрица Матрица - виды, операции и действия с примерами решения-го порядка имеет Матрица - виды, операции и действия с примерами решенияминоров Матрица - виды, операции и действия с примерами решения-го порядка.

Алгебраическим дополнением Матрица - виды, операции и действия с примерами решенияэлемента Матрица - виды, операции и действия с примерами решенияматрицы Матрица - виды, операции и действия с примерами решения-го порядка называется его минор, взятый со знаком Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

т.е. алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбца Матрица - виды, операции и действия с примерами решения— четное число, и отличается от минора знаком, когда Матрица - виды, операции и действия с примерами решения— нечетное число.

Например, Матрица - виды, операции и действия с примерами решения

Пример №7

Найти алгебраические дополнения всех элементов матрицы (из примера 1.6):

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решенияВажное значение для вычисления определителей имеет следующая теорема.

Теорема Лапласа. Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:

Матрица - виды, операции и действия с примерами решения

(разложение по элементам Матрица - виды, операции и действия с примерами решения-й строки; Матрица - виды, операции и действия с примерами решения);

Матрица - виды, операции и действия с примерами решения

(разложение по элементам Матрица - виды, операции и действия с примерами решения-го столбца; Матрица - виды, операции и действия с примерами решения).

Матрица - виды, операции и действия с примерами решенияУбедимся в справедливости теоремы Лапласа на примере определителя матрицы третьего порядка. Разложим его вначале по элементам первой строки:Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решенияТочнее данная теорема является частным случаем теоремы Лапласа.

После преобразований (представляем их сделать читателю) нетрудно убедиться в том, что полученное выражение совпадает с определением (1.4). Аналогичный результат получаем разложением определителя матрицы по любой строке или столбцу.

Пример №8

Вычислить определитель треугольной матрицыМатрица - виды, операции и действия с примерами решения:

Матрица - виды, операции и действия с примерами решения

Решение:

Раскладывая по первому столбцу, получаем:

Матрица - виды, операции и действия с примерами решения

На частном примере мы убедились в том, что определитель треугольной (и, очевидно, диагональной) матрицы равен произведению элементов главной диагонали.

Значение теоремы Лапласа состоит в том, что позволяет свести вычисление определителей Матрица - виды, операции и действия с примерами решения-го порядка к вычислению более простых определителей Матрица - виды, операции и действия с примерами решения-го порядка.

Свойства определителей

1. Если какая-либо строка (столбец) матрицы состоит из одних нулей, то ее определитель равен 0.

2. Если все элементы какой-либо строки (столбца) матрицы умножить на число Матрица - виды, операции и действия с примерами решения, то ее определитель умножится на это число Матрица - виды, операции и действия с примерами решения.

Пусть определитель исходной матрицы равен Матрица - виды, операции и действия с примерами решения. Для определенности первую строку матрицы умножим на Матрица - виды, операции и действия с примерами решения, получим новый определитель Матрица - виды, операции и действия с примерами решения, который разложим по элементам первой строки:

Матрица - виды, операции и действия с примерами решения

Замечание. За знак определителя можно выносить общий множитель элементов любой строки или столбца в отличие от матрицы, за знак которой можно выносить общий множитель лишь всех ее элементов. Например, Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения, но Матрица - виды, операции и действия с примерами решения

3. При транспонировании матрицы ее определитель не изменяется: Матрица - виды, операции и действия с примерами решения

4. При перестановке двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.

□ Предположим вначале, что переставлены две соседние строки матрицы: Матрица - виды, операции и действия с примерами решенияРазложим определитель исходной матрицы Матрица - виды, операции и действия с примерами решенияпо элементам Матрица - виды, операции и действия с примерами решения-й строки, а определитель новой матрицы (с переставленными строками) Матрица - виды, операции и действия с примерами решения— по элементам Матрица - виды, операции и действия с примерами решения-й строки. Разложения будут отличаться только знаком, так как в формуле (1.9) для Матрица - виды, операции и действия с примерами решениякаждое алгебраическое дополнение будет иметь противоположный знак (множители Матрица - виды, операции и действия с примерами решениясменятся на множители Матрица - виды, операции и действия с примерами решения, поэтому Матрица - виды, операции и действия с примерами решения

Если переставить не соседние строки, а, скажем, Матрица - виды, операции и действия с примерами решения-ю и Матрица - виды, операции и действия с примерами решения-ю, то такую перестановку можно представить как последовательное смещение Матрица - виды, операции и действия с примерами решения-й строки на Матрица - виды, операции и действия с примерами решениястрок вниз (при этом каждый раз знак определителя меняется), Матрица - виды, операции и действия с примерами решения-й строки на Матрица - виды, операции и действия с примерами решениявверх, что тоже сопровождается Матрица - виды, операции и действия с примерами решенияизменением знака, т.е. знак поменяется нечетное число Матрица - виды, операции и действия с примерами решенияраз: Матрица - виды, операции и действия с примерами решения.

Доказательство для столбцов аналогично.Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решенияКвадратная матрица называется треугольной, если все ее элементы, расположенные ниже (или выше) главной диагонали, равны нулю.

5. Если квадратная матрица содержит две одинаковые строки

□Действительно, переставим эти строки (столбцы). С одной стороны, определитель не изменится, но, с другой стороны, по свойству 4 поменяет знак, т.е. Матрица - виды, операции и действия с примерами решения, откуда Матрица - виды, операции и действия с примерами решения

6. Если элементы двух строк (столбцов) матрицы пропорциональны, то ее определитель равен 0.

□ Пусть для определенности пропорциональны первая и вторая строки. Тогда, вынося коэффициент пропорциональности Матрица - виды, операции и действия с примерами решения, получаем по свойству Матрица - виды, операции и действия с примерами решения, где Матрица - виды, операции и действия с примерами решенияимеет две одинаковые строки и по свойству 5 равен 0.

7. Сумма произведений элементов какой-либо строки (столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна 0, т.е.

Матрица - виды, операции и действия с примерами решения

Рассмотрим квадратную матрицу Матрица - виды, операции и действия с примерами решенияи вспомогательную матрицу Матрица - виды, операции и действия с примерами решения, полученную из матрицы Матрица - виды, операции и действия с примерами решениязаменой Матрица - виды, операции и действия с примерами решения-й строки на Матрица - виды, операции и действия с примерами решения-ю:

Матрица - виды, операции и действия с примерами решения

т.е. матрица Матрица - виды, операции и действия с примерами решенияимеет две одинаковые строки, поэтому согласно свойству 5 ее определитель равен 0. Вычисляя его разложением по элементам Матрица - виды, операции и действия с примерами решения-й строки, получаем:

Матрица - виды, операции и действия с примерами решения

Замечание. Объединяя результат теоремы Лапласа и свойство 7, получаем:

Матрица - виды, операции и действия с примерами решения8. Определитель матрицы не изменится, если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца), предварительно умноженные на одно и то же число.

Пусть для определенности к элементам Матрица - виды, операции и действия с примерами решения-Й строки матрицы прибавим элементы Матрица - виды, операции и действия с примерами решения-й строки, умноженные на Матрица - виды, операции и действия с примерами решенияТогда первая строка матрицы имеет вид: Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияОпределитель полученной матрицы вычислим разложением по элементам Матрица - виды, операции и действия с примерами решения-й строки:

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения алгебраические дополнения элементов Матрица - виды, операции и действия с примерами решения-й строки исходной матрицы Матрица - виды, операции и действия с примерами решенияРаскроем скобки и получим после преобразования:

Матрица - виды, операции и действия с примерами решения

Используя формулу (1.12), получаем, что первая сумма равна определителю исходной матрицы, а вторая — 0, т.е.Матрица - виды, операции и действия с примерами решения

9. Сумма произведений произвольных чисел Матрица - виды, операции и действия с примерами решенияна алгебраические дополнения элементов любой строки (столбца) равна определителю матрицы, полученной из данной заменой элементов этой строки (столбца) на числа Матрица - виды, операции и действия с примерами решения.

Свойство вытекает непосредственно из теоремы Лапласа.

10. Определитель произведения двух квадратных матриц равен произведению их определителей: Матрица - виды, операции и действия с примерами решениягде Матрица - виды, операции и действия с примерами решения—матрицы Матрица - виды, операции и действия с примерами решения-го порядка.

Замечание. Из свойства 10 следует, что даже если Матрица - виды, операции и действия с примерами решениято Матрица - виды, операции и действия с примерами решения

Перечисленные свойства определителей позволяют существенно упростить их вычисление, особенно для определителей высоких порядков. При вычислении определителей целесообразно так преобразовать исходную матрицу с помощью свойств 1—9, чтобы преобразованная матрица имела строку (или столбец), содержащую как можно больше нулей, а потом найти определитель разложением по этой строке (столбцу).

Пример №9

Вычислить определитель четвертого порядка:

Матрица - виды, операции и действия с примерами решения

Решение:

Преобразуем матрицу так, чтобы в 3-й строке все элементы, кроме одного, обращались в 0. Для этого умножим, например, элементы 3-го столбца на (-4) и на 2 и прибавим их соответственно к элементам 1-го и 2-го столбцов. Раскладывая полученный определитель по элементам третьей строки, найдем Матрица - виды, операции и действия с примерами решенияПолученный определитель третьего порядка можно вычислить по правилу треугольников или с помощью теоремы Лапласа, однако можно продолжить упрощение матрицы. «Обнулим» в матрице третьего порядка элементы 2-й строки (кроме одного). Для этого элементы 3-го столбца матрицы, предварительно умножив на (—13) и на 4, сложим с элементами 1-го и 2-го столбцов соответственно:Матрица - виды, операции и действия с примерами решения

Раскладывая по элементам множители, получаем: Матрица - виды, операции и действия с примерами решения

Обратная матрица

Для каждого числа Матрица - виды, операции и действия с примерами решениясуществует обратное число Матрица - виды, операции и действия с примерами решениятакое, что произведение Матрица - виды, операции и действия с примерами решенияДля квадратных матриц тоже вводится аналогичное понятие.

Определение. Матрица Матрица - виды, операции и действия с примерами решенияназывается обратной по отношению к квадратной матрице Матрица - виды, операции и действия с примерами решения, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица:

Матрица - виды, операции и действия с примерами решения

Из определения следует, что только квадратная матрица имеет обратную; в этом случае и обратная матрица является квадратной того же порядка.

Однако не каждая квадратная матрица имеет обратную. Если Матрица - виды, операции и действия с примерами решенияявляется необходимым и достаточным условием существования числа Матрица - виды, операции и действия с примерами решениято для существования матрицы Матрица - виды, операции и действия с примерами решениятаким условием является требование Матрица - виды, операции и действия с примерами решения

Если определитель матрицы отличен от нуля Матрица - виды, операции и действия с примерами решениято такая квадратная матрица называется невырожденной, или неособенной; в противном случае (при Матрица - виды, операции и действия с примерами решения)— вырожденной, или особенной.

Теорема (необходимое и достаточное условие существования обратной матрицы). Обратная матрица Матрица - виды, операции и действия с примерами решениясуществует (и единственна) тогда и только тогда, когда исходная матрица невырожденная.

Необходимость. Пусть матрица Матрица - виды, операции и действия с примерами решенияимеет обратную Матрица - виды, операции и действия с примерами решения, т.е Матрица - виды, операции и действия с примерами решения. По свойству 10 определителей имеем

Матрица - виды, операции и действия с примерами решения

Достаточность. Пусть Матрица - виды, операции и действия с примерами решенияРассмотрим квадратную матрицу Матрица - виды, операции и действия с примерами решения-го порядка, Матрица - виды, операции и действия с примерами решенияназываемую присоединенной*, элементы которой являются алгебраическими дополнениями элементов матрицы Матрица - виды, операции и действия с примерами решения, транспонированной к Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияТогда элементы произведения матриц Матрица - виды, операции и действия с примерами решенияопределяются по правилу умножения матриц: Матрица - виды, операции и действия с примерами решенияПоэтому матрица Матрица - виды, операции и действия с примерами решенияявляется диагональной, элементы ее главной диагонали равны определителю исходной матрицы:

Матрица - виды, операции и действия с примерами решения

Аналогично доказывается, что произведение Матрица - виды, операции и действия с примерами решенияна Матрица - виды, операции и действия с примерами решенияравно той же матрице Матрица - виды, операции и действия с примерами решенияОтсюда следует, что если в качестве обратной матрицы взять матрицу.

Матрица - виды, операции и действия с примерами решения

то произведения Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решенияравны единичной матрице Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения-го порядка: Матрица - виды, операции и действия с примерами решения

Докажем единственность обратной матрицы. Предположим, что существуют еще матрицы Матрица - виды, операции и действия с примерами решениятакие, что Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решения, где матрица Матрица - виды, операции и действия с примерами решения получена по формуле (1.14), и выполняются равенства: Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решения. Тогда, умножая наМатрица - виды, операции и действия с примерами решенияслева первое из них, получаем: Матрица - виды, операции и действия с примерами решения, откуда Матрица - виды, операции и действия с примерами решения, т.е. Матрица - виды, операции и действия с примерами решения. Аналогично, умножая второе равенство на Матрица - виды, операции и действия с примерами решения справа, получаем Матрица - виды, операции и действия с примерами решения. Единственность доказана. Матрица - виды, операции и действия с примерами решения

Алгоритм вычисления обратной матрицы:

Пример №10

Найти матрицу, обратную к данной:

Матрица - виды, операции и действия с примерами решения

Решение:

1°. Определитель матрицы Матрица - виды, операции и действия с примерами решения(см. пример 1.6), т.е. матрица Матрица - виды, операции и действия с примерами решения— невырожденная и обратная матрица Матрица - виды, операции и действия с примерами решения существует.

2°. Находим матрицу Матрица - виды, операции и действия с примерами решения, транспонированную к Матрица - виды, операции и действия с примерами решения:

Матрица - виды, операции и действия с примерами решения

3°. Находим алгебраические дополнения элементов матрицы Матрица - виды, операции и действия с примерами решенияи составляем из них присоединенную матрицу Матрица - виды, операции и действия с примерами решения, учитывая, что Матрица - виды, операции и действия с примерами решения

4° . Вычисляем обратную матрицу Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения5°. Проверяем правильность вычисления обратной матрицы по формулам:

Матрица - виды, операции и действия с примерами решения(рекомендуем в этом убедиться самому читателю). ►

Для невырожденных матриц выполняются следующие свойства:

Матрица - виды, операции и действия с примерами решения

Ранг матрицы

Для решения и исследования ряда математических и прикладных задач важное значение имеет понятие ранга матрицы.

В матрице Матрица - виды, операции и действия с примерами решенияразмера Матрица - виды, операции и действия с примерами решениявычеркиванием каких-либо строк и столбцов можно вычленить квадратные подматрицы Матрица - виды, операции и действия с примерами решения-то порядка, где Матрица - виды, операции и действия с примерами решения. Определители таких подматриц называются минорами Матрица - виды, операции и действия с примерами решения-го порядка матрицы Матрица - виды, операции и действия с примерами решения.

Например, из матрицы Матрица - виды, операции и действия с примерами решенияможно получить подматрицы первого, второго и третьего порядков.

Определение. Рангом матрицы Матрица - виды, операции и действия с примерами решенияназывается наивысший порядок отличных от нуля миноров этой матрицы.

Ранг матрицы Матрица - виды, операции и действия с примерами решенияобозначается Матрица - виды, операции и действия с примерами решенияили Матрица - виды, операции и действия с примерами решения

Из определения следует: а) ранг матрицы Матрица - виды, операции и действия с примерами решенияне превосходит меньшего из ее размеров, т.е. Матрица - виды, операции и действия с примерами решения;

б) Матрица - виды, операции и действия с примерами решениятогда и только тогда, когда все элементы матрицы равны нулю, т.е. Матрица - виды, операции и действия с примерами решения;

в) для квадратной матрицы Матрица - виды, операции и действия с примерами решения-го порядка Матрица - виды, операции и действия с примерами решениятогда и только тогда, когда матрица Матрица - виды, операции и действия с примерами решения— невырожденная.

Пример №11

Вычислить ранг матрицы

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица Матрица - виды, операции и действия с примерами решенияимеет четвертый порядок, поэтому Матрица - виды, операции и действия с примерами решенияОднако Матрица - виды, операции и действия с примерами решениятак как матрица Матрица - виды, операции и действия с примерами решениясодержит нулевой столбец, поэтому Матрица - виды, операции и действия с примерами решенияВсе подматрицы третьего порядка тоже содержат нулевой столбец и поэтому имеют нулевые определители, значит Матрица - виды, операции и действия с примерами решенияВсе подматрицы второго порядка либо имеют нулевой столбец (второй или четвертый), либо имеют пропорциональные столбцы (первый и третий), поэтому тоже имеют нулевые определители; таким образом Матрица - виды, операции и действия с примерами решенияПоскольку матрица Матрица - виды, операции и действия с примерами решениясодержит ненулевые элементы, т.е. невырожденные подматрицы первого порядка, то Матрица - виды, операции и действия с примерами решения. ►

Пример №12

Вычислить ранг матрицы

Матрица - виды, операции и действия с примерами решения

Решение:

Для матрицы Матрица - виды, операции и действия с примерами решения.

Проверим, равен ли ранг 3-м, для этого вычислим все миноры третьего порядка, т.е. определители всех подматриц третьего порядка (их всего 4, они получаются при вычеркивании одного из столбцов матрицы):Матрица - виды, операции и действия с примерами решения

Поскольку все миноры третьего порядка нулевые, Матрица - виды, операции и действия с примерами решенияТак как существует ненулевой минор второго порядка, например,

Матрица - виды, операции и действия с примерами решения

В общем случае определение ранга матрицы перебором всех миноров достаточно трудоемко. Для облегчения этой задачи используются преобразования, сохраняющие ранг матрицы.

Назовем элементарными преобразованиями матрицы следующие:

  1. Отбрасывание нулевой строки (столбца).
  2. Умножение всех элементов строки (столбца) матрицы на число, не равное нулю.
  3. Изменение порядка строк (столбцов) матрицы.
  4. Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.
  5. Транспонирование матрицы.

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

Матрица - виды, операции и действия с примерами решенияПри изучении свойств определителей было показано, что при преобразованиях квадратных матриц их определители либо сохраняются, либо умножаются на число, не равное нулю. В результате сохраняется наивысший порядок отличных от нуля миноров исходной матрицы, т.е. ее ранг не изменяется. Матрица - виды, операции и действия с примерами решения

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица Матрица - виды, операции и действия с примерами решенияназывается ступенчатой, если она имеет вид: Матрица - виды, операции и действия с примерами решениягде Матрица - виды, операции и действия с примерами решения.

Замечание. Условие Матрица - виды, операции и действия с примерами решениявсегда может быть достигнуто транспонированием матрицы.

Очевидно, что ранг ступенчатой матрицы равен Матрица - виды, операции и действия с примерами решения, так как имеется минор Матрица - виды, операции и действия с примерами решения-го порядка, не равный нулю:

Матрица - виды, операции и действия с примерами решения

Покажем на примере алгоритм вычисления ранга матрицы с помощью элементарных преобразований.

Пример №13

Найти ранг матрицы

Матрица - виды, операции и действия с примерами решения

Решение:

1°. Если Матрица - виды, операции и действия с примерами решения, то при перестановке строк или столбцов добиваемся того, что Матрица - виды, операции и действия с примерами решения. В данном примере поменяем местами, например, 1-ю и 2-ю строки матрицы (см. ниже).

2°. Если Матрица - виды, операции и действия с примерами решения, то умножая элементы 2-й, 3-й и 4-й строк на подходящие числа (именно на Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения) и прибавляя полученные числа соответственно к элементам 2-й1, 3-й и 4-й строк, добьемся того, чтобы все элементы 1-го столбца (кроме Матрица - виды, операции и действия с примерами решения) равнялись нулю:

Матрица - виды, операции и действия с примерами решения3°. Если в полученной матрице Матрица - виды, операции и действия с примерами решения(у нас Матрица - виды, операции и действия с примерами решения), то умножая элементы 3-й и 4-й строк на подходящие числа (а именно, на Матрица - виды, операции и действия с примерами решения), добьемся того, чтобы все элементы 2-го столбца (кроме Матрица - виды, операции и действия с примерами решения) равнялись нулю. Если в процессе преобразований получаются строки (или столбцы), целиком состоящие из нулей (как в данном примере), то отбрасываем эти строки (или столбцы):

Матрица - виды, операции и действия с примерами решения

Последняя матрица имеет ступенчатый вид и содержит миноры второго порядка, не равные нулю, например,

Матрица - виды, операции и действия с примерами решенияПоэтому ранг полученной ступенчатой, а следовательно, и данной матрицы равен 2. ►

Для рангов матриц справедливы следующие соотношения:

Матрица - виды, операции и действия с примерами решения

5) Матрица - виды, операции и действия с примерами решенияесли Матрица - виды, операции и действия с примерами решения— квадратная матрица и Матрица - виды, операции и действия с примерами решения

6) Матрица - виды, операции и действия с примерами решениягде Матрица - виды, операции и действия с примерами решения— число столбцов матрицы Матрица - виды, операции и действия с примерами решенияили строк матрицы Матрица - виды, операции и действия с примерами решения.

Понятие ранга матрицы тесно связано с понятием линейной зависимости (независимости) ее строк или столбцов.

Матрица - виды, операции и действия с примерами решенияматрице Матрица - виды, операции и действия с примерами решенияобозначим ее строки следующим образом:

Матрица - виды, операции и действия с примерами решения

Две строки матрицы называются равными, если равны их соответствующие элементы: Матрица - виды, операции и действия с примерами решения, если Матрица - виды, операции и действия с примерами решения

Арифметические операции над строками матрицы (умножение строки на число, сложение строк) вводятся как операции, проводимые поэлементно:

Матрица - виды, операции и действия с примерами решения

Строка е называется линейной комбинацией строк Матрица - виды, операции и действия с примерами решенияматрицы, если она равна сумме произведений этих строк на произвольные действительные числа: Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения— любые числа.

Строки матрицы Матрица - виды, операции и действия с примерами решенияназываются линейно зависимыми, если существуют такие числа Матрица - виды, операции и действия с примерами решения.т, не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:

Матрица - виды, операции и действия с примерами решения

где 0 = (0 0. 0).

Линейная зависимость строк матрицы означает, что хотя бы одна строка матрицы является линейной комбинацией остальных.

Матрица - виды, операции и действия с примерами решенияДействительно, пусть для определенности в формуле (1.17) Матрица - виды, операции и действия с примерами решения, тогда Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения

Таким образом, строкаМатрица - виды, операции и действия с примерами решенияявляется линейной комбинацией остальных строк. Матрица - виды, операции и действия с примерами решения

Если линейная комбинация строк (1.17) равна нулю тогда и только тогда, когда все коэффициенты Матрица - виды, операции и действия с примерами решенияравны нулю, т.е. Матрица - виды, операции и действия с примерами решения, то строки Матрица - виды, операции и действия с примерами решенияназываются линейно независимыми.

Теорема о ранге матрицы. Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные ее строки

Матрица - виды, операции и действия с примерами решенияПусть матрица Матрица - виды, операции и действия с примерами решенияразмера Матрица - виды, операции и действия с примерами решенияимеет Матрица - виды, операции и действия с примерами решения

Это означает, что существует отличный от нуля минор alt=»Матрица — виды, операции и действия с примерами решения» />-го порядка. Всякий ненулевой минор alt=»Матрица — виды, операции и действия с примерами решения» />-го порядка будем называть базисным минором. Пусть для определенности это минор

Матрица - виды, операции и действия с примерами решения

Тогда строки матрицы Матрица - виды, операции и действия с примерами решениялинейно независимы. Действительно, предположим противное, т.е. одна из этих строк, например Матрица - виды, операции и действия с примерами решения, является линейной комбинацией остальных:

Матрица - виды, операции и действия с примерами решения

Вычтем из элементов Матрица - виды, операции и действия с примерами решения-й строки элементы 1-й строки, умноженные на Матрица - виды, операции и действия с примерами решения, элементы 2-й строки, умноженные на Матрица - виды, операции и действия с примерами решения, и т.д., наконец, элементы Матрица - виды, операции и действия с примерами решения-й строки, умноженные на Матрица - виды, операции и действия с примерами решения. На основании свойства 8 (см. § 1.4) при таких преобразованиях матрицы ее определитель Матрица - виды, операции и действия с примерами решенияне изменится, но так как теперь г-я строка будет состоять из одних нулей, то Матрица - виды, операции и действия с примерами решения— противоречие, и наше предположение о том, что строки Матрица - виды, операции и действия с примерами решенияматрицы линейно зависимы, неверно.

Строки Матрица - виды, операции и действия с примерами решенияназовем базисными.

Покажем, что любые Матрица - виды, операции и действия с примерами решениястрок матрицы линейно зависимы, т.е. любая строка выражается через базисные.

Рассмотрим минор Матрица - виды, операции и действия с примерами решения-го порядка, который получается

при дополнении рассматриваемого минора элементами еще одной строки Матрица - виды, операции и действия с примерами решенияи столбца Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения

Этот минор равен нулю, так как ранг матрицы равен Матрица - виды, операции и действия с примерами решения, поэтому любой минор более высокого порядка равен нулю.

Раскладывая его по элементам последнего (добавленного) столбца, получаем Матрица - виды, операции и действия с примерами решения, где последнее алгебраическое дополнение Матрица - виды, операции и действия с примерами решениясовпадает с базисным минором Матрица - виды, операции и действия с примерами решенияи поэтому отлично от нуля, т.е. Матрица - виды, операции и действия с примерами решения.

Разделив последнее равенство на Матрица - виды, операции и действия с примерами решения, можем выразить элемент Матрица - виды, операции и действия с примерами решениякак линейную комбинацию:

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения

Фиксируем значение Матрица - виды, операции и действия с примерами решенияи получаем, что для любого Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияэлементы Матрица - виды, операции и действия с примерами решения-й строки Матрица - виды, операции и действия с примерами решениялинейно выражаются через элементы строк Матрица - виды, операции и действия с примерами решеният.е. Матрица - виды, операции и действия с примерами решения-я строка есть линейная комбинация базисных:

Матрица - виды, операции и действия с примерами решения

Теорема о ранге матрицы играет принципиальную роль в матричном анализе, в частности при исследовании систем линейных уравнений.

Матрицы в линейной алгебре

Матрица - виды, операции и действия с примерами решения(9.1)

состоящая из m строк и n столбцов, называется матрицей размера m х n или (n,m)-матрицей.

Матрицу (9.1) будем обозначать А или Матрица - виды, операции и действия с примерами решения. Числа Матрица - виды, операции и действия с примерами решенияназываются элементами матрицы, индекс i обозначает номер строки, а индекс j — номер столбца, на пересечении которых расположен элемент.

Если m = n, то матрица (9.1) называется квадратной матрицей порядка n.

В квадратной матрице n-го порядка диагональ, состоящая из элементов Матрица - виды, операции и действия с примерами решенияназывается главной диагональю, состоящая из элементов а,п, Матрица - виды, операции и действия с примерами решения— побочной диагональю.

Квадратная матрица:Матрица - виды, операции и действия с примерами решения

называется диагональной. Если в диагональной матрице все диагональные элементы равны, т.е. Матрица - виды, операции и действия с примерами решения, то такая матрица называется скалярной. Скалярная матрица, у которой Матрица - виды, операции и действия с примерами решенияназывается единичной и обозначается буквой Е. Например, единичная матрица третьего порядка:

Матрица - виды, операции и действия с примерами решения

Матрица, все элементы которой равны нулю, называется нулевой матрицей и обозначается через 0.

Матрицы А и В называются равными, если их размеры одинаковы и элементы этих матриц, стоящие на одинаковых местах, равны.

Операции над матрицами

Суммой двух матриц Матрица - виды, операции и действия с примерами решенияодинакового размера называется матрица Матрица - виды, операции и действия с примерами решениятого же размера с элементами, равными суммам соответствующих элементов слагаемых матриц, т.е. Матрица - виды, операции и действия с примерами решения

Сложение матриц обладает следующими свойствами:

  1. Коммутативность, т.е. А + В = В + А.
  2. Ассоциативность, т.е. (А + B)+ С = А + (В + С).
  3. Для любых двух матриц А и В одинакового размера существует единственная матрица X такая, что А + X = В. Матрица X обозначается X = В-А и называется разностью матриц В и А. Урав-=нение А + Х = 0 имеет решение Х = 0-А, получающаяся при этом матрица называется противоположной А и обозначается — А.

Произведением матрицы Матрица - виды, операции и действия с примерами решенияна число Матрица - виды, операции и действия с примерами решенияназывается матрица, все элементы которой равны соответствующим элементам матрицы А, умноженным на число Матрица - виды, операции и действия с примерами решения.

Умножение матрицы на действительное число обладает следующими свойствами:

Матрица - виды, операции и действия с примерами решения

Матрица А называется согласованной с матрицей В, если число столбцов матрицы А равно числу строк матрицы В. В этом случае произведением матрицы Матрица - виды, операции и действия с примерами решенияна матрицу Матрица - виды, операции и действия с примерами решенияназывается матрица

Матрица - виды, операции и действия с примерами решения

т.е. элемент, стоящий в n -той строке и j-том столбце матрицы произведения равен сумме произведений элементов n’-той строки матрицы А на соответствующие элементы j -го столбца матрицы В.

Свойства умножения:

  1. Если матрица А согласована с матрицей В, а матрица В согласована с матрицей С, то А • В• С = (А Матрица - виды, операции и действия с примерами решенияВ)- С = А Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияС) — ассоциативность умножения;
  2. (А + ВС = АС + ВС, А-(В + С)= АВ + АС — свойство дистрибутивности;
  3. Умножение матриц не коммутативно, т.е., как правило,Матрица - виды, операции и действия с примерами решения

Транспонированием матрицы А называется операция замены местами строк и столбцов с сохранением порядка их следования, т.е. i-я строка матрицы А становится i -тым столбцом транспонированной матрицы. Матрица, транспонированная к матрице А обозначается Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения

Свойства транспонирования: Матрица - виды, операции и действия с примерами решения

Определитель матрицы

Далее будем рассматривать только квадратные матрицы. Каждой квадратной матрице ставится в соответствие действительное число, называемое определителем матрицы и вычисляемое по определенному правилу.

Определитель матрицы естественно возникает при решении систем линейных уравнений, или в свернутой форме Матрица - виды, операции и действия с примерами решения, или в свернутой форме Матрица - виды, операции и действия с примерами решения

Предыдущая формула получается разложением определителя по первой строке.

Возьмем теперь квадратную матрицу n -го порядка

Матрица - виды, операции и действия с примерами решения

Для записи определителя n-го порядка матрицы А будем применять обозначения Матрица - виды, операции и действия с примерами решения. При n = 1 матрица A состоит из одного элемента и ее определитель равен этому элементу. При n = 2 получаем определитель Матрица - виды, операции и действия с примерами решения

Минором Матрица - виды, операции и действия с примерами решенияэлемента Матрица - виды, операции и действия с примерами решенияматрицы A называют определитель матрицы (n-1)-го порядка, получаемого из матрицы Л вычеркиванием i-той строки и j-го столбца.

Пример №14

Найти минор Матрица - виды, операции и действия с примерами решенияматрицы:

Матрица - виды, операции и действия с примерами решения

По определению, минор Матрица - виды, операции и действия с примерами решенияэлемента Матрица - виды, операции и действия с примерами решенияесть определитель матрицы, получаемой из матрицы А вычеркиванием первой строки и второго столбца. Следовательно, Матрица - виды, операции и действия с примерами решения

Алгебраическим дополнением элемента Матрица - виды, операции и действия с примерами решенияматрицы А называется минор Матрица - виды, операции и действия с примерами решения взятый со знаком Матрица - виды, операции и действия с примерами решенияАлгебраическое дополнение элемента Матрица - виды, операции и действия с примерами решения обозначается Матрица - виды, операции и действия с примерами решенияследовательно, Матрица - виды, операции и действия с примерами решения

Пример №15

Найти алгебраическое дополнение элемента Матрица - виды, операции и действия с примерами решения, матрицы А из примера 7.

Матрица - виды, операции и действия с примерами решения

Определителем квадратной матрицы А n-го порядка Матрица - виды, операции и действия с примерами решенияназывается число:

Матрица - виды, операции и действия с примерами решения

где аи Матрица - виды, операции и действия с примерами решения— элементы первой строки матрицы (9.2), а Матрица - виды, операции и действия с примерами решенияих алгебраические дополнения Матрица - виды, операции и действия с примерами решения.

Запись по формуле (9.3) называется разложением определителя но первой строке.

Рассмотрим свойства определителей.

Свойство 1. При транспонировании матрицы ее определитель не меняется.

Это свойство устанавливает равноправность строк и столбцов определителя, поэтому определение определителя можно сформулировать так:

Определителем квадратной матрицы А n-го порядка Матрица - виды, операции и действия с примерами решенияназывается число:

Матрица - виды, операции и действия с примерами решения(9.4)

где Матрица - виды, операции и действия с примерами решения— элементы первого столбца матрицы (9.2), а Матрица - виды, операции и действия с примерами решенияих алгебраические дополненияМатрица - виды, операции и действия с примерами решения.

Свойство 2. Если поменять местами две строки или два столбца матрицы А, то ее определитель изменит знак на противоположный.

Свойства 1 и 2 позволяют обобщить формулы (9.3) и (9.4) следующим образом:

Определитель квадратной матрицы n-го порядка (будем в дальнейшем говорить определитель n-го порядка) равен сумме попарных произведений любой строки (столбца) на их алгебраические дополнения.

Матрица - виды, операции и действия с примерами решения

Свойство 3. Определитель, y которого две строки или два столбца одинаковы, равен нулю.

Действительно, поменяем в определителе Матрица - виды, операции и действия с примерами решениядве одинаковые сроки местами. Тогда, по свойству 2 получим определитель Матрица - виды, операции и действия с примерами решения, но с другой стороны, определитель не изменится, т.е.Матрица - виды, операции и действия с примерами решения. ОтсюдаМатрица - виды, операции и действия с примерами решения.

Свойство 4. Если все элементы какой-нибудь строки (столбца) определителя Матрица - виды, операции и действия с примерами решенияумножить на число Матрица - виды, операции и действия с примерами решения, то определитель умножится на Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения

Умножим элементы i-той строки на Матрица - виды, операции и действия с примерами решения. Тогда получим определитель:

Матрица - виды, операции и действия с примерами решения

Следствие 1. Если все элементы какой-нибудь строки (столбца) имеют общий множитель, то его можно вынести за знак определителя.

Следствие 2. Если все элементы какой-нибудь строки (столбца) равны нулю, то определитель равен нулю.

Свойство 5. Определитель, у которого две строки (два столбца) пронорциональныу равен нулю.

Пусть i-я строка пропорциональна j-ой строке. Вынося коэффициент пропорциональности за знак определителя, получим определитель с двумя одинаковыми строками, который по свойству 3 равен нулю.

Свойство 6. Если каждый элемент строки (столбца) определителя alt=»Матрица — виды, операции и действия с примерами решения» /> есть сумма двух слагаемых, то определитель alt=»Матрица — виды, операции и действия с примерами решения» />равен сумме двух определителей: у одного из них i-той строкой (столбцом) служат первые слагаемые, а у другого — вторые.

Разложив определитель Матрица - виды, операции и действия с примерами решенияпо i -той строке получим:

Матрица - виды, операции и действия с примерами решения

Свойство 7. Определитель не изменится, если к элементам какой-нибудь строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Прибавив к элементам i-той строки определителя Матрица - виды, операции и действия с примерами решениясоответствующие элементы j-ой строки, умноженные на число Матрица - виды, операции и действия с примерами решения, получим определитель Матрица - виды, операции и действия с примерами решенияОпределитель Матрица - виды, операции и действия с примерами решенияравен сумме двух определителей: первый естьМатрица - виды, операции и действия с примерами решения, а второй равен нулю, так как у него i-тая и j-тая строки пропорциональны.

Свойство 8. Определитель диагональной матрицы равен произведению элементов, стоящих на главной диагонали, т.е.:

Матрица - виды, операции и действия с примерами решения

Свойство 9. Сумма произведений элементов какой-нибудь строки (столбца) определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Рассмотрим вспомогательный определитель Матрица - виды, операции и действия с примерами решения, который получается из данного определителя Матрица - виды, операции и действия с примерами решениязаменой j-той строки i-той строкой. Определитель Матрица - виды, операции и действия с примерами решенияравен нулю, так как у него две одинаковые строки. Разложив его по j-той строке получим:

Матрица - виды, операции и действия с примерами решения

Большое значение имеет следующий критерий равенства определителя нулю. Определитель квадратной матрицы равен нулю тогда и только тогда когда его строки (столбцы) линейно зависимы.

Строки (столбцы) матрицы называются линейно зависимыми, если одна (один) из них является линейной комбинацией с действительными коэффициентами остальных.

Теорема об определителе произведения двух квадратных матриц. Определитель произведения двух квадратных матриц равен произведению определителей этих квадратных матриц, т.е. Матрица - виды, операции и действия с примерами решения.

Ранг матрицы

Рангом матрицы называется наибольший порядок ее миноров, отличных от нуля. Ранг матрицы А обозначают rankA или rА.

Если все миноры порядка к данной матрицы равны нулю, то все миноры более высокого порядка данной матрицы также равны нулю. Это следует из определения определителя. Отсюда вытекает алгоритм нахождения ранга матрицы.

Если все миноры первого порядка (элементы матрицы А) равны нулю, то rankA = 0. Если хотя бы один из миноров первого порядка отличен от нуля, а все миноры второго порядка равны нулю, то rankA = 1. Причем, достаточно просмотреть только те миноры второго порядка, которые окаймляют ненулевой минор первого порядка. Если найдется минор второго порядка отличный от нуля, исследуют миноры третьего порядка, окаймляющие ненулевой минор второго порядка. Так продолжают до тех пор, пока не придут к одному из двух случаев: либо все миноры порядка к, окаймляющие ненулевой минор (A-l)-ro порядка равны нулю, либо таких миноров нет. Тогда rankA = к -1.

Пример №16

Вычислить ранг матрицы Матрица - виды, операции и действия с примерами решения

Минор первого порядка (элемент Матрица - виды, операции и действия с примерами решения) отличен от нуля. Окаймляющий его минор Матрица - виды, операции и действия с примерами решениятоже не равен нулю.

Далее рассмотрим миноры, окаймляющие минор М :

Матрица - виды, операции и действия с примерами решения

Все эти миноры равны нулю, значит rankA = 2. Приведенный алгоритм нахождения ранга матрицы не всегда удобен, поскольку связан с вычислением большого числа определителей. Наиболее удобно пользоваться при вычислении ранга матрицы элементарными преобразованиями, при помощи которых матрица приводится к столь простому виду, что очевидно, чему равен ее ранг.

Элементарными преобразованиями матрицы называют следующие преобразования:

  • > умножение какой-нибудь строки (столбца) матрица на число, отличное от нуля;
  • > прибавление к одной строке (столбцу) другой строки (столбца), умноженной на произвольное число.

Полужордановым преобразованием строк матрицы:

Матрица - виды, операции и действия с примерами решения

с разрешающим элементом Матрица - виды, операции и действия с примерами решенияназывается следующая совокупность преобразований со строками матрицы:

  • > k первой строке прибавить k-ю, умноженную на число Матрица - виды, операции и действия с примерами решенияи т.д.;

> k последней строке прибавить k — го, умноженную на число Матрица - виды, операции и действия с примерами решенияПосле выполнения этих преобразований получается матрица:Матрица - виды, операции и действия с примерами решения

Полужордановым преобразованием столбцов матрицы с разрешающим элементом Матрица - виды, операции и действия с примерами решенияназывается следующая совокупность преобразований со столбцами матрицы:

После выполнения этих преобразований получается матрица:Матрица - виды, операции и действия с примерами решения

Полужорданово преобразование строк или столбцов квадратной матрицы не изменяет ее определителя. Элементарные преобразования матрицы не изменяют ее ранга. Покажем на пример, как вычислить ранг матрицы, пользуясь элементарными преобразованиями.

Пример №17

Вычислить ранг матрицы Матрица - виды, операции и действия с примерами решения

Применим к матрице А элементарные преобразования: первую строку матрицы, умноженную на (-3) прибавим ко второй и третьей и ее же вычтем из последней.

Матрица - виды, операции и действия с примерами решения

Вычитая далее вторую строку из третьей и последней, имеем:

Матрица - виды, операции и действия с примерами решения

Последняя матрица содержит отличный от нуля минор Матрица - виды, операции и действия с примерами решениятретьего порядка, определитель же самой матрицы А равен нулю. Следовательно, Матрица - виды, операции и действия с примерами решения

Отметим два важных свойства ранга матрицы:

  • Ранг матрицы не меняется при ее транспонировании;
  • Если ранг матрицы равен г, то любые ее г + 1 строк (столбцов) линейно зависимы.

Обратная матрица

Пусть А — квадратная матрица порядка n. Матрица В называется обратной матрицей к матрице А, если выполняются равенства А-В = В■ А = Е, где Е — единичная матрица порядка n.

Теорема 1. Если для данной матрицы существует обратная матрица, то она единственная.

Пусть Матрица - виды, операции и действия с примерами решения— матрицы, обратные к матрице А. Тогда Матрица - виды, операции и действия с примерами решенияс другой стороны, Матрица - виды, операции и действия с примерами решения

Откуда Матрица - виды, операции и действия с примерами решения. Обратную матрицу к матрице А обозначают Матрица - виды, операции и действия с примерами решения.

Теорема 2. Матрица А имеет обратную матрицу тогда и только тогда, когда Матрица - виды, операции и действия с примерами решения.

Пусть А имеет обратную матрицу. Тогда Матрица - виды, операции и действия с примерами решенияи, применяя теорему об умножении определителей, получаем Матрица - виды, операции и действия с примерами решенияили Матрица - виды, операции и действия с примерами решения

Следовательно, Матрица - виды, операции и действия с примерами решения.

Пусть Матрица - виды, операции и действия с примерами решения. Укажем явное выражение матрицы Матрица - виды, операции и действия с примерами решениячерез элементы матрицы А, а именно: если Матрица - виды, операции и действия с примерами решения, то:

Матрица - виды, операции и действия с примерами решения

здесь Матрица - виды, операции и действия с примерами решения— алгебраическое дополнение к элементу Матрица - виды, операции и действия с примерами решения. Матрица (9.5) получается из матрицы А следующим образом. Сначала вместо каждого элемента Матрица - виды, операции и действия с примерами решенияпишется его алгебраическое дополнение, затем полученная матрица транспонируется и получается т.н. присоединенная матрица. Для получения обратной матрицы присоединенная матрица умножается на величину, обратную Матрица - виды, операции и действия с примерами решения

Непосредственное умножение А на матрицу (9.5) слева и справа дает единичную матрицу, что подтверждает, что (9.5) — матрица, обратная к А.

Пример №18

Найти обратную матрицу к матрице

Матрица - виды, операции и действия с примерами решения

Так как Матрица - виды, операции и действия с примерами решения, то Матрица - виды, операции и действия с примерами решениясуществует. Вычислим алгебраические дополнения элементов матрицы А: Матрица - виды, операции и действия с примерами решения

Матрицу Матрица - виды, операции и действия с примерами решениянаходим в два приема, согласно формуле (9.5). Сначала запишем матрицу В, состоящую из алгебраических дополнений элементов Матрица - виды, операции и действия с примерами решенияЗатем матрица В транспонируется и умножается на число обратное Матрица - виды, операции и действия с примерами решения, в данном случае — на (-1). Окончательно получаем:

Матрица - виды, операции и действия с примерами решения

Матрица называется неособенной или невырожденной, если ее определитель не равен нулю. Отметим свойства обратных матриц. Если А и В — невырожденные матрицы одинакового порядка, то: Матрица - виды, операции и действия с примерами решения

Матрицы и определители

Определение и типы матриц

Определение 3.1.1. Прямоугольная таблица Матрица - виды, операции и действия с примерами решения(3.1.1) состоящая из m строк и n столбцов, называется матрицей размером Матрица - виды, операции и действия с примерами решения.

Числа Матрица - виды, операции и действия с примерами решенияназываются элементами матрицы. Каждый элемент матрицы имеет два индекса, первый индекс i обозначает номер строки, второй индекс j — номер столбца.

Матрицы удобно обозначать в виде Матрица - виды, операции и действия с примерами решения, при Матрица - виды, операции и действия с примерами решения. Фигурные (круглые) скобки, двойные прямые вертикальные линии показывают, что Матрица - виды, операции и действия с примерами решения— типовой элемент матрицы А, в котором индексы i и j последовательно принимают все значения от 1 до указанных конечных величин.

Превратим в матрице (3.1.1) строки в столбцы, а столбцы в строки, получим матрицу Матрица - виды, операции и действия с примерами решениякоторая называется транспонированной по отношению к А. Если размер А Матрица - виды, операции и действия с примерами решения, то Матрица - виды, операции и действия с примерами решенияразмерности Матрица - виды, операции и действия с примерами решения. Повторное транспонирование приводит к исходной матрице: Матрица - виды, операции и действия с примерами решения.

Пример №19

Матрица - виды, операции и действия с примерами решения

элементы которой характеризуют зависимость средних розничных цен на автомобили от срока их службы в 1998, 1999 и 2000 гг. Строки матрицы соответствуют продолжительности эксплуатации автомобиля, а столбцы — годам. Содержательное значение каждого элемента матрицы определяется его местом в данном массиве чисел. Например, число 3100 во второй строке и втором столбце, элемент с/22> представляет среднюю розничную цену автомобиля прослужившего два года в 1999 г. Следовательно, числа, записанные в строку, характеризуют цены автомобилей, прослуживших один и гот же срок службы в разные годы 1998-2000 гг., а числа в столбце — цены автомобилей различного срока службы в данном году.

В той мере, в какой это связано с характеристикой цен па автомобили, такой выбор строк матрицы полностью произволен, и мы могли бы сразу же поменять местами строки и столбцы без какой-либо потери информации, получив строки для отдельных лет и столбцы для сроков службы, т.е. получили бы транспонированную матрицу по отношению к матрице Р:

Матрица - виды, операции и действия с примерами решения

Хотя элементы матрицы Матрица - виды, операции и действия с примерами решенияте же, что и матрицы Р, обе матрицы не одинаковые. Взаимосвязь этих матриц проявляется в том, что строки матрицы Р являются столбцами матрицы Матрица - виды, операции и действия с примерами решения.

Если, элементы Матрица - виды, операции и действия с примерами решенияматрицы А неотрицательные (положительные) действительные числа Матрица - виды, операции и действия с примерами решения, то матрица А называется неотрицательной (положительной) и записывается Матрица - виды, операции и действия с примерами решения.

Матрица Р в примере 3.1.1 является положительной матрицей, так как её элементы положительные действительные числа.

Матрица, состоящая из одной строки Матрица - виды, операции и действия с примерами решения, называется матрицей-строкой. Матрица, состоящая из одного столбца

Матрица - виды, операции и действия с примерами решения

называется матрицей-столбцом. Транспонированием переводят матрицу-строку в матрицу-столбец, и наоборот.

Если m=n, то матрица называется квадратной, при этом число строк (столбцов) называется порядком квадратной матрицы.

Рассмотрим некоторые виды квадратных матриц.

Квадратная матрица, у которой все элементы, не стоящие на главной диагонали, равны нулю, называется диагональной. Она обозначается символомМатрица - виды, операции и действия с примерами решения:Матрица - виды, операции и действия с примерами решения

Если в диагональной матрице Матрица - виды, операции и действия с примерами решениято она называется скалярной. Скалярная матрица, у которой диагональные элементы равны 1, называется единичной:

Матрица - виды, операции и действия с примерами решенияКвадратная матрица, у которой все элементы, стоящие ниже главной диагонали, равны нулю, называется верхнетреугольной («матрица А). Аналогично, если в квадратной матрице нулю равны все элементы, стоящие выше главной диагонали, то она называется нижнетреугольной (матрица В).

Матрица - виды, операции и действия с примерами решения

Например, Матрица - виды, операции и действия с примерами решения

Матрица A — верхнеугольная, а В — нижнетреугольная. Квадратная матрица называется ленточной, если все её элементы, не стоящие на главной диагонали и в соседних с ней косых строках, равны нулю. Например,Матрица - виды, операции и действия с примерами решения

В ленточной матрице не равные нулю элементы заполняют «ленту», осью которой служит главная диагональ. Ленточная матрица называется модулированной, если в каждой косой строке стоят одинаковые элементы:Матрица - виды, операции и действия с примерами решения

Квадратная матрица называется симметрической, если её элементы, расположенные симметрично относительно главной диагонали, одинаковы: Матрица - виды, операции и действия с примерами решения; если жеМатрица - виды, операции и действия с примерами решения, то матрица А называется кососимметрической. Симметрическая матрица совпадает с транспонированной матрицей, т.е. Матрица - виды, операции и действия с примерами решения.

Например, матрица, характеризующая влияние факторов на инвестиции и запасы, является симметрической матрицей вида:

Матрица - виды, операции и действия с примерами решения

Элемент Матрица - виды, операции и действия с примерами решения=0,29, характеризующий зависимость использования мощностей и изменения объёмов запасов, совпадает с элементом Матрица - виды, операции и действия с примерами решения=0,29, характеризующим зависимость между изменением объёмов запасов и использованием мощностей; элемент Матрица - виды, операции и действия с примерами решения=0,15, характеризующий зависимость между изменением общей величины хозяйственных запасов и суммой совокупного оборота с поправкой на сезонность, совпадает с элементом Матрица - виды, операции и действия с примерами решения=0,15, характеризующим зависимость между суммой совокупного оборота с поправкой на сезонность и изменением общей величины хозяйственных запасов; элемент Матрица - виды, операции и действия с примерами решения=0,71, характеризующий зависимость между степенью использования производственных мощностей и суммой совокупного оборота с поправкой на сезонность, совпадает с элементом Матрица - виды, операции и действия с примерами решения=0,71, характеризующим зависимость между суммой совокупного оборота с поправкой на сезонность и степенью использования производственных мощностей.

Очевидно, что транспонированная симметричная матрица равна самой матрице.

Квадратная матрица, у которой на главной диагонали стоит одно и го же число Матрица - виды, операции и действия с примерами решенияи все элементы одного ряда выше диагонали равны единице, а все другие элементы равны нулю, называется клеткой Жордана:

Матрица - виды, операции и действия с примерами решения

Матрица, у которой на главной диагонали стоят любые клетки Жордана, а все элементы вне этих клеток равны нулю, называется Жордаповой матрицей. Например, матрица является Жордановой.

Матрица - виды, операции и действия с примерами решения

Она содержит четыре клетки Жордана: две клетки второго порядка с числом 3 на диагонали, одну клетку третьего порядка с числом нуль на диагонали и одну клетку первого порядка с числом нуль на диагонали.

Из приведенных примеров следует, что понятие матрицы широко используется в экономике. Кроме того, можно подчеркнуть, что планирование производства должно основываться на надлежащим образом упорядоченной системе информации, записанной в виде матрицы, с помощью которой просто и сжато описываются зависимости, имеющие место в материальном производстве. Так, например, планирование на предприятии основывают, пользуясь нормами как системой информации. Если на предприятии производится четыре продукта Матрица - виды, операции и действия с примерами решенияи для их производства используются материалы Матрица - виды, операции и действия с примерами решения, то система норм материальных затрат, которая представляет собой основу плана снабжения, может быть представлена в виде таблицы (матрицы):

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решенияесть норма расхода Матрица - виды, операции и действия с примерами решенияi-го материала на производство единицы Матрица - виды, операции и действия с примерами решенияj-го продукта. Так норма расхода материала Матрица - виды, операции и действия с примерами решенияна производство единицы продукта Матрица - виды, операции и действия с примерами решениясоответственно равна Матрица - виды, операции и действия с примерами решенияи т.д.

Можно привести следующий пример использования матриц: два предприятия передают свою продукцию на три оптовых склада, причём расходы на перевозку единицы продукции с предприятия 1 на отдельные склады соответственно равняются 2,3,4; а с предприятия 2 они составляют 1,5,2. Тогда матрицаМатрица - виды, операции и действия с примерами решения

есть матрица удельных транспортных расходов.

Следует отметить использование матриц в межотраслевом балансе производства (матрица технологических коэффициентов производства), в определении совокупных затрат труда (матрица коэффициентов материальных затрат) и т.д.

Пример №20

Продавец мороженого решает вопрос о том, сколько пакетов мороженого ему следует закупить. К покупке пакетов мороженого он может прибегнуть один раз. Каждый пакет стоит 10 ден.ед. и может быть продан за 12 ден.ед. Пакеты мороженого, оставшиеся не распроданными, никакой стоимости не представляют. Известно, что количество пакетов мороженого, которое он сможет продать, колеблется от 1 до 5. Составим матрицу денежных сумм, выручаемых в зависимости от его решения и от результатов продажи. По строкам расположим результаты того или иного решения продавца мороженого, а по столбцам — возможный исход продаж.

Решение:

Предположим, что продавец мороженого закупает один пакет. Тогда он его продаст и получает прибыль в 2 ден.ед.

Следовательно, первая строка матрицы будет иметь вид: 2 2 2 2 2. Сели он закупит 2 пакета, то продав один, он потеряет 8 ден.ед.; продав 2 пакета, он получит прибыль 4 ден.ед. Следовательно, вторая строка примет вид: -8 4 4 4 4. Рассуждая аналогичным образом, получаем матрицу:Матрица - виды, операции и действия с примерами решения

Арифметические операции над матрицами

Матрицы А и В считаются равными, если они одинаковой размерности и всс элементы Матрица - виды, операции и действия с примерами решенияматрицы А совпадают с соответствующими элементами Матрица - виды, операции и действия с примерами решенияматрицы В, т.е. выполняются Матрица - виды, операции и действия с примерами решенияскалярные равенства Матрица - виды, операции и действия с примерами решения, которые равносильны равенству А=В.

Определение 3.2.1. Суммой матриц А а В размерности Матрица - виды, операции и действия с примерами решенияназывается матрица S=A+B той же размерности, элементы которой Sik равны суммам соответствующих элементов матриц А и В: Матрица - виды, операции и действия с примерами решения

Из определения следует, что складывают матрицы с одинаковыми размерами, при этом сумма будет матрицей с теми же размерами.

Матрица - виды, операции и действия с примерами решения

Определение 3.2.2. Произведением матрицы А на скаляр Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решениятой же размерности, что и А, элементы которой получены из элементов матрицы А умножением на Матрица - виды, операции и действия с примерами решения. Например,

Матрица - виды, операции и действия с примерами решения

Матрица (-1)A записывается -А и называется матрицей, противоположной матрице А. Если все элементы матрицы равны нулю, го она называется нуль-матрицей и обозначается 0.

Введенные операции сложения матриц и умножения матрицы на скаляр Матрица - виды, операции и действия с примерами решенияобладают свойствами:

  1. А + В = В + А — (перемсстительный) коммутативный закон.
  2. (А + В) + С = А + (B + C);
  3. Матрица - виды, операции и действия с примерами решения.
  4. Матрица - виды, операции и действия с примерами решения.
  5. Матрица - виды, операции и действия с примерами решения.
  6. Матрица - виды, операции и действия с примерами решения.

Определение 3.2.3. Разностью матриц одинаковой размерности называется матрица той же размерности: Матрица - виды, операции и действия с примерами решения, её элементы равны разностям соответствующих элементов матриц А и В: Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения

Как и при операции сложения, можно вычитать друг из друга только те матрицы, которые имеют одинаковую размерность.

Прежде чем вводить произведение матриц, рассмотрим произведение векторов. И для пояснения общего метода воспользуемся числовыми примерами.

Предположим, что объем различных продаж за месяц некоторого товара некоторой компании «а» составил 58, 26, 12, 25 единиц за первую, вторую, третью и четвертую недели соответственно, и что цена этого товара по неделям соответственно равна 3, 5, 10, 4 ден.ед. Следовательно, общий доход за месяц от продажи товара равен 58-3 + 26-5+ 12-10 + 25-4 = 524ден.ед. Представим данные

о продажах при помощи матрицы-строки:

Матрица - виды, операции и действия с примерами решения

а соответствующие цены с помощью матрицы-столбца:

Матрица - виды, операции и действия с примерами решения

Тогда общий доход от продажи товара, равный 524 ден.ед., представляет собой сумму произведений элементов матрицы-строки A (количество проданного товара по неделям) на соответствующие элементы матрицы-столбца В (цены по неделям на товар): Матрица - виды, операции и действия с примерами решения

Приведенный пример помогает уяснить общую методику вычисления произведения матрицы-строки на матрицу-столбец: для этого каждый элемент матрицы-строки А нужно умножить на соответствующий элемент матрицы-столбца В и сложить полученные произведения.

Предположим теперь, что компания «а» имеет отделения в трёх различных регионах. Данные о количестве проданного товара по регионам запишем в виде матрицы С:

Матрица - виды, операции и действия с примерами решения

Цена по неделям за месяц была такой же. Доход от розничной продажи в первом регионе был вычислен; аналогичные расчёты могут быть произведены и по двум другим регионам:

Матрица - виды, операции и действия с примерами решения

Представим итоговые данные по выручке в виде матрицы-столбца:

Матрица - виды, операции и действия с примерами решения

Взглянув на вычисления, можно убедиться в том, что элементы этой матрицы-столбца получаются так же, как и описанное ранее произведение матрицы-строки А на матрицу-столбец В, причем в качестве матрицы-строки А в каждом случае взята последующая строка матрицы С. Полученный результат представляет произведение СВ:

Матрица - виды, операции и действия с примерами решения

В общем случае произведение матрицы С на матрицу-столбец В, это вектор-столбец,i-Й элемент которого представляет сумму произведений каждого из элементов i-й строки матрицы С на соответствующие элементы вектора-столбца В.

Из этого примера следует, что произведение Матрица - виды, операции и действия с примерами решениясуществует только в том случае, когда число элементов в строках матрицы С (т.е. число столбцов) равно числу элементов, составляющих вектор-столбец В (т.е. числу строк). При соблюдении этого равенства, произведение Матрица - виды, операции и действия с примерами решенияобразует вектор-столбец, содержащий столько элементов, сколько строк насчитывается в матрице С. Следовательно, если в матрице С содержится т строк и q столбцов и порядок матрицы-столбца В равен q, тогда произведение Матрица - виды, операции и действия с примерами решенияпредставляет собой матрицу-столбец порядка т, причем i-й элемент этого вектора равен

Матрица - виды, операции и действия с примерами решения

Аналогичным образом определяется произведение матрицы-строки Матрица - виды, операции и действия с примерами решенияна матрицу Р. Оно существует в том случае,

если число элементов матрицы-строки D равно числу элементов в столбцах матрицы Р (т.е. равно числу строк этой матрицы). В этом случае произведении Матрица - виды, операции и действия с примерами решенияобразует матрицу-строку, содержащую столько же элементов, сколько столбцов насчитывается в матрице Р. При этом произведение Матрица - виды, операции и действия с примерами решенияравно Матрица - виды, операции и действия с примерами решения, произведение Матрица - виды, операции и действия с примерами решенияможет к не существовать, несмотря на то что, существует произведение Матрица - виды, операции и действия с примерами решения, и наоборот.

Пример №21

Матрица - виды, операции и действия с примерами решения

характеризует переход подписчика от одной газеты к другой в зависимости от продолжительности подписки. В этой матрице перехода данные сгруппированы по строкам и столбцам в соответствии с продолжительностью подписки: до одного года, от одного года до двух лет, более двух лет и, наконец, аннулирование подписки. Элементы первой строки характеризуют состояние подписчиков газет с продолжительностью подписки до одного года; второй строки — с продолжительностью подписки от одного года до двух лет; третья строка — с продолжительностью подписки более двух лет; элементы четвертой строки характеризуют аннулирование подписки. Элементы первого столбца характеризуют возможность остаться в категории подписчиков до одного года; элементы второго столбца — возможность продолжить подписку от одного до двух лет, если подписчик имеет продолжительность подписки до одного года; элементы третьего столбца- возможность продолжить подписку более двух лет: элементы четвертого столбца — возможность аннулировать подписку.

Предположим, что известно распределение 5000 подписчиков по продолжительности подписки на газеты: 3000 имеют продолжительность подписки до одного года (категория 1), 800 — имеют продолжительность подписки от одного до двух лет (категория 2), 1200 подписчиков имеют, продолжительность подписки более двух лет (категория 3). Представим эти данные в виде матрицы-строки Q =Матрица - виды, операции и действия с примерами решения.

Для того чтобы определить возможное количество подписчиков в каждой из этих категорий через год, умножим матрицу-строку Q на матрицу Р:

Матрица - виды, операции и действия с примерами решения

Матрица-строка, полученная в результате умножения, показывает, что из I категории через год возможно 2100 подписчиков будут принадлежать к категории II, 1720- к категории III, и 1180 возможно аннулируют подписку.

Учитывая введенные операции, умножение двух матриц А и В можно представить как многократное умножение матрицы А на матрицы-столбцы, рассматривая вторую матрицу В как набор мат-риц-столбцов. При этом произведение матриц А и В может иметь смысл только в том случае, когда j-й столбец матрицы В (а, следовательно, и все ее столбцы) насчитывают тоже число элементов, что и i-я строка матрицы А (а, следовательно, и все ее строки). Поскольку количество элементов в столбце матрицы равно числу строк в ней (а количество элементов в строке равно количеству столбцов) это означает, что в матрице В должно быть столько же строк, сколько столбцов содержит матрица А.

Таким образом, произведение матрицы Матрица - виды, операции и действия с примерами решенияопределено, когда число столбцов в А равно числу строк в В. Тогда произведение Матрица - виды, операции и действия с примерами решениясодержит то же количество строк, что и матрица А, и то же количество столбцов, что и матрица В.

Если число столбцов в А равно числу строк в В, то матрицы называются согласованными для умножения А на В. При этом если А размерности т * п, а В размерность Матрица - виды, операции и действия с примерами решения, то произведение Матрица - виды, операции и действия с примерами решенияявляется матрицей размерности Матрица - виды, операции и действия с примерами решения, т. е.:

Матрица - виды, операции и действия с примерами решения

Определение 3.2.4. Произведением матрицы А размерности Матрица - виды, операции и действия с примерами решенияна матрицу В размерности Матрица - виды, операции и действия с примерами решенияназывается матрица Р размерности Матрица - виды, операции и действия с примерами решения, элементы которой Матрица - виды, операции и действия с примерами решенияопределяется формулами:

Матрица - виды, операции и действия с примерами решения

, при Матрица - виды, операции и действия с примерами решения, т.е. Матрица - виды, операции и действия с примерами решенияэлемент равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-ого столбца матрицы В.

Пример №22

Пусть Матрица - виды, операции и действия с примерами решенияМатрица А содержит три столбца, а В содержит три строки. Следовательно, матрицы А и В согласованные для умножения. Тогда Матрица - виды, операции и действия с примерами решения

Произведение матриц, вообще говоря, не коммутативно, т.е. А В не всегда равно Матрица - виды, операции и действия с примерами решения. Например, Матрица - виды, операции и действия с примерами решения

Из приведенного примера следует, что, перемножая матрицы А и В, можно получить два произведения Матрица - виды, операции и действия с примерами решенияк Матрица - виды, операции и действия с примерами решения. Если размеры матрицы A равны Матрица - виды, операции и действия с примерами решения, то оба произведения существуют только в том случае, когда размеры матрицы В равны Матрица - виды, операции и действия с примерами решения. Тогда произведение Матрица - виды, операции и действия с примерами решенияобразует квадратную матрицу порядка m, а произведение Матрица - виды, операции и действия с примерами решения— квадратную матрицу n. Поэтому размеры АВ могут быть равны ВА в том случае, когда m = n, т.е. когда обе матрицы квадратные и имеют один и тот же порядок равный m. При этом указанные произведения матриц могут не иметь ни одного одинакового элемента, полученного в результате суммирования произведений соотвстствующих элементов исходных матриц. Поэтому, если даже существуют оба произведения АВ и ВА и оба они имеют одинаковый порядок, вообще говоря, они не обязательно должны быть равны между собой, что и показывает приведенный выше пример.

Из сказанного не следует, что АВ и ВА всегда должны различаться между собой, в отдельных случаях они могут быть равны. Например, Матрица - виды, операции и действия с примерами решения

В двух случаях, имеющих особо важное значение, произведение матриц обладает свойством коммутативности:

1) в случае умножения на нулевую матрицу: если Матрица - виды, операции и действия с примерами решенияпредставляет собой квадратную матрицу п-ого порядка, а Матрица - виды, операции и действия с примерами решения— аналогичную матрицу, все элементы которой составляют нули, тогда

Матрица - виды, операции и действия с примерами решения

Нулевая матрица выполняет роль нуля в матричной алгебре;

2) в случае умножения на единичную матрицу: если Матрица - виды, операции и действия с примерами решенияпредставляет собой квадратную матрицу n-ого порядка, а Матрица - виды, операции и действия с примерами решения— аналогичную единичную матрицу, то

Матрица - виды, операции и действия с примерами решения

Единичная матрица того же порядка служит единицей в матричной алгебре. Например, Матрица - виды, операции и действия с примерами решения

Отметим, что произведение матрицы на скалярную величину так же коммутативно: Матрица - виды, операции и действия с примерами решения

Матрицу А можно умножить саму на себя тогда и только тогда, когда она квадратная. Если n — натуральное число, больше единицы, то Матрица - виды, операции и действия с примерами решенияесть произведение n матриц равных А. Для действий со степенями матриц справедливы следующие правила: Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения,если АВ = ВА.

Матрица - виды, операции и действия с примерами решения

с числовыми коэффициентами Матрица - виды, операции и действия с примерами решенияот матрицы А или значением многочлена Матрица - виды, операции и действия с примерами решенияпри х = А называется матрицаМатрица - виды, операции и действия с примерами решения

где Е- единичная матрица.

Многочленной матрицей называется прямоугольная (в частности квадратная) матрица А, элементы которой являются многочленами от одной переменной х с числовыми коэффициентами. Матричным многочленом называется выражение вида

Матрица - виды, операции и действия с примерами решения

где х- переменное и Матрица - виды, операции и действия с примерами решения— квадратные матрицы с числовыми элементами одного и того же порядка n. Число n называется порядком многочлена F(x). Если Матрица - виды, операции и действия с примерами решения, то число m называется степенью матричного многочлена F не вырождена, т.е. Матрица - виды, операции и действия с примерами решения, то матричный многочлен F(x) называется регулярным.

Два матричных многочлена одинакового порядка можно складывать, вычитать и умножать аналогично обычным многочленам с числовыми коэффициентами, с той разницей, что умножение числовых матриц, а потому и матричных многочленов не обязательно коммутативно.

Операцию умножения для матриц можно ввести иначе. Пусть задана матрица размерности Матрица - виды, операции и действия с примерами решения: Матрица - виды, операции и действия с примерами решения

Обозначим столбцы матрицы А следующим образом: Матрица - виды, операции и действия с примерами решения

их называют векторами-столбцами; а строки:

Матрица - виды, операции и действия с примерами решения

которые называют векторами-строками.

Пример №23

Пусть число трёх типов игрушек, которые нужно изготовить, равно соответственно 20, 30, 40. Определим число деталей каждого вида, необходимых для сборки игрушек при полном удовлетворении заказа на них.

Решение:

Составим матрицу А, в которой по строкам укажем число деталей одного вида, необходимых для производства трёх типов игрушек, а по столбцам — число деталей трех видов, необходимых для производства одной игрушки трёх типов:

Матрица - виды, операции и действия с примерами решения

Число деталей каждого вида, необходимых для сборки игрушек при полном удовлетворении заказа определим умножением матрицы А на матрицу-столбец, характеризующую число игрушек:

Матрица - виды, операции и действия с примерами решения

Зная количество деталей, необходимых для производства одной игрушки, можно определить потребность в сырье для производства одной игрушки, если известны нормы расхода сырья для производства одной детали, которые приведены в таблице 3.2.2.

Матрица - виды, операции и действия с примерами решения

Эти потребности в сырье определяются умножением матриц

Матрица - виды, операции и действия с примерами решения

Умножив результат произведения матриц на количество игрушек, определим потребности в сырье для выполнения заказа

Матрица - виды, операции и действия с примерами решения

Приведенный пример иллюстрирует простоту решения задачи при помощи умножения матриц.

Пример №24

Предположим, что затраты рабочего времени в часах на каждом рабочем месте и на каждое изделие заданы в таблице 3.2.3. Количество изделий (в штуках) в каждом заказе задано в таблице 3.2.4. Часовая заработная плата (в рублях) на каждом рабочем месте задана в таблице 3.2.5

Решение:

Рассчитаем заработную плату, приходящуюся при производстве различных изделий на каждый заказ. Матрица - виды, операции и действия с примерами решения

Решение. Введем в рассмотрение следующие матрицы:

Матрица - виды, операции и действия с примерами решениягде А — матрица затрат, В — матрица спроса, С — матрица почасовой зарплаты.

Так как матрица С задает зависимость между величиной заработной платы и затратами рабочего времени на каждом рабочем месте, а матрица А — между затратами времени на каждом рабочем месте и выпуском изделий, то произведение АС задает линейную зависимость между выпуском одного изделия и величиной заработной платы. Поскольку матрица В определяет количество изделий в каждом заказе, то произведение В(АС) определяет выполнение каждого заказа. Поэтому, вычислив произведение В (АС):

Матрица - виды, операции и действия с примерами решениянаходим заработную плату, приходящуюся на заказ Матрица - виды, операции и действия с примерами решенияравную 23920 руб., на заказ Матрица - виды, операции и действия с примерами решения— 23640 руб. и на заказ Матрица - виды, операции и действия с примерами решения— 24850 руб.

Блочные матрицы и действия над ними

Для упрощения действий над матрицами больших размеров выполняют переход к матрицам меньших размеров путём разбиения их на клетки горизонтальными и вертикальными прямыми, пересекающими всю матрицу.

Например, проведём в матрице А две горизонтальные и две вертикальные прямые: Матрица - виды, операции и действия с примерами решения

Получим 9 клеток, каждая из которых будет некоторой матрицей. Введём для них обозначения:

Матрица - виды, операции и действия с примерами решения

Тогда матрицу А можно записать в виде:

Матрица - виды, операции и действия с примерами решения

Полученную матрицу называют блочной, или клеточной. Любую матрицу множеством способов можно представить в блочной форме. Особый интерес представляют блочные матрицы, имеющие квадратные диагональные клетки. Например, Матрица - виды, операции и действия с примерами решения

В матрице В клетки Матрица - виды, операции и действия с примерами решения— квадратные матрицы третьего, второго и первого порядка соответственно.

Если у блочных матриц число диагональных клеток одинаково, причём соответственные диагональные клетки имеют один и тот же порядок, то такие матрицы называются конформными.

Блочная матрица, у которой все клетки, кроме стоящих на главной диагонали, являются нуль-матрицами, называется квазидиагональной. Примером квазидиагональной матрицы является матрица

вида: Матрица - виды, операции и действия с примерами решенияКвазидиагональная матрица обозначается Матрица - виды, операции и действия с примерами решения, где

Матрица - виды, операции и действия с примерами решения— её диагональные квадратные клетки.

Если к квадратной матрице а добавить снизу матрицу-строку, справа — матрицу-столбец и в правом нижнем углу добавить элемент, то полученная блочная матрица называется окаймлённой.

Матрица - виды, операции и действия с примерами решения

Арифметические операции над блочными матрицами выражаются через операции над клетками матриц. Такое выражение возможно для конформных матриц.

1) Сложение блочных матриц производится аналогично правилу сложения обычных матриц: Матрица - виды, операции и действия с примерами решенияПодчеркнем, что можно складывать только конформные матрицы. В противном случае равенство не имеет смысла.

2) При умножении блочной матрицы на скаляр все клетки блочной матрицы умножаются на этот скаляр: Матрица - виды, операции и действия с примерами решения

3) Произведение конформных блочных матриц формально совпадает с правилом умножения обычных матриц:

Матрица - виды, операции и действия с примерами решения

При умножении матриц соответственные диагональные клетки умножаемых матриц должны иметь одинаковый порядок. В противном случае блочные матрицы не будут конформными и их умножать нельзя.

Произведением конформных квазидиагональных матриц является квазидиагональная матрица с той же структурой, причём каждая диагональная клетка произведения является произведением соответствующих диагональных клеток сомножителей:

Матрица - виды, операции и действия с примерами решения

При транспонировании квазидиагональной матрицы получаем квазидиагональную матрицу, диагональные клетки которой являются транспонированными матрицами:

Матрица - виды, операции и действия с примерами решения

Матрица А, которую одновременной перестановкой строк и столбцов можно привести к блочному виду

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения— квадратные блоки, включающие ненулевые элементы; О — блок, состоящий только из нулей; В — блок, элементы которого могут принимать любые значения, называется разложимой матрицей.

Матрица неразложима если для неё не существует таких одновременных перестановок строк и столбцов, которые приводили бы сё к разложимой форме.

Оператор суммирования и его свойства

В экономических исследованиях часто употребляются переменные, определенные на дискретных множествах Матрица - виды, операции и действия с примерами решения

или Матрица - виды, операции и действия с примерами решенияи рассматриваются их суммы. Символом операции

суммирования служит заглавная греческая буква Матрица - виды, операции и действия с примерами решения(сигма). Тогда,

например, сумму Матрица - виды, операции и действия с примерами решенияможно записать в видех Матрица - виды, операции и действия с примерами решения. Числа сточщие под знаком Матрица - виды, операции и действия с примерами решенияи над ним, называются пределами суммирования и указывают наибольшие и наименьшие значения индекса суммирования, между которыми расположены его промежуточные значения.

Для оператора суммирования справедливы следующие тождества:

Существует также способ записи операции умножения с помощью прописной греческой буквы «пи» — П : Так, например, произ-ведение пяти множителей можно сокращенно записать:

Матрица - виды, операции и действия с примерами решения

Перестановки

Рассмотрим n целых чисел (элементов) Матрица - виды, операции и действия с примерами решения. Их можно располагать в различном порядке. Всевозможные расположения этих чисел называются перестановками. Перестановка Матрица - виды, операции и действия с примерами решения, в которой числа идут в порядке возрастания, называется натуральной. Например, из трех чисел можно составить 6 перестановок: (123), (132), (213), (231), (312), (321). Справедливо следующее утверждение: «Из n чисел можно составить n! перестановок». Символ n! читается юн факториал» и обозначает произведение последовательных натуральных чисел: 0!=1; 1!=1; Матрица - виды, операции и действия с примерами решения; Матрица - виды, операции и действия с примерами решения; . Матрица - виды, операции и действия с примерами решения.

Назовем беспорядком (или инверсией) в перестановке тот факт, что большее число стоит перед меньшим. Если перестановка имеет четное число инверсий, то она называется четной, в противном случае — нечетной. Обмен местами двух элементов в перестановке называется транспозицией. Например:

Матрица - виды, операции и действия с примерами решения

Транспозиция переводит одну перестановку в другую и меняет четность перестановки.

Определение определителя

Рассмотрим квадратную матрицу размерности п и составим из ее элементов таблицу вида

Матрица - виды, операции и действия с примерами решения

или более компактно: Матрица - виды, операции и действия с примерами решения. Каждый элемент Матрица - виды, операции и действия с примерами решенияимеет два индекса, первый из которых указывает, какой строке принадлежит элемент, а второй — какому столбцу.

Этой таблице соотнесем число, называемое определителем, вычисляемое по правилу, сформулированному в следующем определении.

Определение 3.6.1. Определителем n-го порядка называется алгебраическая сумма n! членов, каждый из которых представляет собой произведение n элементов Матрица - виды, операции и действия с примерами решения, взятых по одному из каждой

строки и каждого столбца; при этом член определителя берется со знаком «+», если вторые индексы его элементов образуют чётную перестановку, и со знаком «—», если эта перестановка нечетная, а первые индексы образуют натуральную перестановку.

Определитель n-то порядка обозначается в виде таблицы (3.6.1), где горизонтали — строки, а вертикали — столбцы.

Матрица - виды, операции и действия с примерами решения

Тогда в силу определения 3.6.1 определитель n-то порядка запишется в виде:

Матрица - виды, операции и действия с примерами решения

Суммирование распространяется на все перестановки Матрица - виды, операции и действия с примерами решенияиз n чисел 1,2. n, что условно обозначили символом n!

В частности, определителем второго порядкаМатрица - виды, операции и действия с примерами решенияназывается алгебраическая сумма двух слагаемых Матрица - виды, операции и действия с примерами решения, каждое из которых равно произведению двух элементов. Согласно определению 3.6.1, первое слагаемое имеет знак «+», а второе — знак «-». Следовательно, для нахождения определителя второго порядка, нужно из произведения элементов, стоящих на главной диагонали вычесть произведение элементов стоящих на побочной диагонали:

Матрица - виды, операции и действия с примерами решения

Таким образом, каждой квадратной матрице А можно поставить в соответствие некоторое число, называемое определителем матрицы и обозначаемое Матрица - виды, операции и действия с примерами решения.

Свойства определителя n-го порядка

Свойствами, сформулированными ниже, обладают определители любого порядка, в частности второго и третьего порядков.

Матрица - виды, операции и действия с примерами решения. Величина определителя при его транспонировании (т. е. при замене его строк соответствующими столбцами) не меняется.

Доказательство. Рассмотрим определитель Матрица - виды, операции и действия с примерами решения. Протранспонируем его; получим определитель Матрица - виды, операции и действия с примерами решения, т. е. элементы строки и i-го столбца определителя Матрица - виды, операции и действия с примерами решениясовпадают с элементами из i-й строки и k-го столбца определителя D. Тогда по определению

Матрица - виды, операции и действия с примерами решения

В каждом слагаемом формулы (4.1) переставим сомножители таким образом, чтобы их первые индексы составили натуральную перестановку; вторые индексы образуют произвольную перестановку:

Матрица - виды, операции и действия с примерами решения

Перестановки Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решенияразные, но обладают одинаковой четностью, так как одним и тем же числом транспозиций перестановка Матрица - виды, операции и действия с примерами решенияпереводится в натуральную, а перестановку Матрица - виды, операции и действия с примерами решенияполучаем из натуральной. Поэтому Матрица - виды, операции и действия с примерами решения, и равенство (3.7.1) принимает вид:

Матрица - виды, операции и действия с примерами решения

Так как Матрица - виды, операции и действия с примерами решениято Матрица - виды, операции и действия с примерами решениячтo и требовалось доказать.

Из свойства Матрица - виды, операции и действия с примерами решениявытекает, что строки и столбцы определителя равноправны. Поэтому любое свойство доказанное для строк, справедливо и для столбцов.

Матрица - виды, операции и действия с примерами решения. Если в определителе поменять местами две строки (столбца), то у него изменится только знак, а абсолютная величина останется прежней.

Доказательство. Рассмотрим определитель Матрица - виды, операции и действия с примерами решения, в котором переставим l-ую и m-ую строки. При этом считаем, что Матрица - виды, операции и действия с примерами решения. Получим определитель Матрица - виды, операции и действия с примерами решения, элементы которого связаны с элементами определителя Матрица - виды, операции и действия с примерами решениясоотношениями

Матрица - виды, операции и действия с примерами решения

В силу равенств (3.7.2) преобразуем определитель

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

Выполним в перестановке Матрица - виды, операции и действия с примерами решенияодну транспозицию Матрица - виды, операции и действия с примерами решения, в результате четность перестановки изменится на противоположную:

Матрица - виды, операции и действия с примерами решения

Затем поменяем местами сомножители Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решенияв произведении Матрица - виды, операции и действия с примерами решения. Произведение при этом не изменится, а равенство (3.7.3) примет вид

Матрица - виды, операции и действия с примерами решения

В равенстве (3.7.4) первые индексы элементов образуют натуральную перестановку Матрица - виды, операции и действия с примерами решения, т. к. Матрица - виды, операции и действия с примерами решения, а перестановка из

вторых индексов такая же, как и в выражении Матрица - виды, операции и действия с примерами решения. Поэтому сумма правой части формулы (3.7.4) равна определителю Матрица - виды, операции и действия с примерами решения, т. е. Матрица - виды, операции и действия с примерами решения. что и требовалось доказать.

Матрица - виды, операции и действия с примерами решения. Определитель с двумя одинаковыми строками (столбцами) равен нулю.

Доказательство. Так как по условию две строки одинаковы, то их перестановка не меняет величины Матрица - виды, операции и действия с примерами решенияопределителя. С другой стороны, по свойству Матрица - виды, операции и действия с примерами решенияв результате перестановки знак определителя изменится, т. с. Матрица - виды, операции и действия с примерами решения. Следовательно, Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения. Если все элементы строки (столбца) содержат общий множитель, то его можно вынести за знак определителя.

Доказательство. Пусть в определителе Матрица - виды, операции и действия с примерами решенияl-тая строка содержит общий множитель, тогда по определению его можно записать в виде:

Матрица - виды, операции и действия с примерами решения

Из (3.7.5) следует, что каждое слагаемое содержит множителем число Матрица - виды, операции и действия с примерами решения, его можно вынести за знак суммы, т. с. преобразовать

Матрица - виды, операции и действия с примерами решения

Из свойства Матрица - виды, операции и действия с примерами решениявытекает:

Следствие 3.7.1. Определитель с двумя пропорциональными строками (столбцами) равен нулю.

Действительно, по свойству Матрица - виды, операции и действия с примерами решенияобщий множитель у одной из строк, пропорциональной другой, можно вынести за знак определителя. Получим определитель с двумя одинаковыми строками, а в силу свойства Матрица - виды, операции и действия с примерами решенияон равен нулю.

Матрица - виды, операции и действия с примерами решения. Если все элементы строки (столбца) являются суммами из одинакового числа слагаемых, то определитель равен сумме определителей, у которых элементами этой строки (столбца) служат отдельные слагаемые.

Доказательство. Пусть все элементы Матрица - виды, операции и действия с примерами решенияi-той строки определителя Матрица - виды, операции и действия с примерами решенияявляются суммами из одинакового числа слагаемых: Матрица - виды, операции и действия с примерами решения. Тогда определитель имеет вид:

Матрица - виды, операции и действия с примерами решения

В силу определения его можно записать:

Матрица - виды, операции и действия с примерами решения

но так как Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

что и требовалось доказать.

Следствие 3.7.2. Величина определителя не изменится, если /с элементам любой его строки (столбца) прибавить соответствующие элементы другой строки (столбца), умножив их предварительно на один и тот же множитель.

Действительно, если мы рассмотрим определитель

Матрица - виды, операции и действия с примерами решенияполученный из Матрица - виды, операции и действия с примерами решенияприбавляем к элементам l строки соответствующие элементы m строки, то в силу свойства Матрица - виды, операции и действия с примерами решенияего можно представить в виде суммы двух определителей, т. е.

Матрица - виды, операции и действия с примерами решения

так как второе слагаемое равно 0 как определитель с двумя пропорциональными строками.

Миноры и алгебраические дополнения

Определение 3.8.1. Если в определителе n-го порядка вычеркнем i-ую строку и k-ый столбец, на пересечении которых находится элемент Матрица - виды, операции и действия с примерами решения, то полученный определитель (n-1)-го порядка называется минором исходного определителя Матрица - виды, операции и действия с примерами решения, соответствующего элементу Матрица - виды, операции и действия с примерами решения, и обозначается Матрица - виды, операции и действия с примерами решения. Например, если

Матрица - виды, операции и действия с примерами решения

Определение 3.8.1. Минор Матрица - виды, операции и действия с примерами решенияс определенным знаком, зависящим от четности суммы i+k номеров строки и столбца, на пересечении которых находится элемент Матрица - виды, операции и действия с примерами решенияназывается алгебраическим дополнением элемента Матрица - виды, операции и действия с примерами решенияв определителе Матрица - виды, операции и действия с примерами решенияи обозначается

Матрица - виды, операции и действия с примерами решения.

С помощью алгебраических дополнений определитель порядка п может быть выражен через определители порядка n-1. Этот факт справедлив для определителей имеющих специальную структуру, т. е. имеют место

Лемма 3.8.1. Если в определителе порядка n все элементы последней строки (столбца), кроме элемента, стоящего в правом нижнем углу, равны нулю, то определитель равен произведению этого элемента на соответствующий ему минор.

Лемма 3.8.2. Если в определителе порядка n все элементы какой-либо строки (столбца), кроме одного, равны нулю, то определитель равен произведению этого элемента на его алгебраическое дополнение.

Из сформулированных лемм вытекают следующие теоремы:

Теорема 3.8.1. (теорема разложения). Определитель порядка п равен сумме парных произведений элементов любой строки (столбца) на их алгебраические дополнения: Матрица - виды, операции и действия с примерами решения.

Доказательство. Так как строки и столбцы равносильны, то достаточно проверить справедливость равенства: Матрица - виды, операции и действия с примерами решения

Представим каждый элемент i-й строки определителя Матрица - виды, операции и действия с примерами решенияв виде суммы n слагаемых, из которых n-1 слагаемое равно нулю

Матрица - виды, операции и действия с примерами решения

тогда его можно представить в виде суммы определителей (по свойству Матрица - виды, операции и действия с примерами решения):

Матрица - виды, операции и действия с примерами решения

Определитель Матрица - виды, операции и действия с примерами решенияпо лемме 2 равен произведению элемента Матрица - виды, операции и действия с примерами решенияна его алгебраическое дополнение в этом определителе. Но так как определитель Матрица - виды, операции и действия с примерами решенияотличается от Матрица - виды, операции и действия с примерами решениялишь элементами i-й строки, го это алгебраическое дополнение совпадает с алгебраическим дополнением Матрица - виды, операции и действия с примерами решенияэлемента Матрица - виды, операции и действия с примерами решения, определителя Матрица - виды, операции и действия с примерами решения, так как эта строка и столбец будут вычеркнуты, а все остальные элементы определителя Матрица - виды, операции и действия с примерами решения, и Матрица - виды, операции и действия с примерами решениясовпадают.

Следовательно,Матрица - виды, операции и действия с примерами решения.

Аналогично Матрица - виды, операции и действия с примерами решенияи поэтому (т. к. Матрица - виды, операции и действия с примерами решения

Теорема 3.8.2. (теорема аннулирования). Сумма парных произведений элементов любой строки (столбца) определителя на алгебраические дополнения параллельной строки (столбца) равна нулю:

Матрица - виды, операции и действия с примерами решения, где i, j — строки определителя Матрица - виды, операции и действия с примерами решения.

Вычисление определителей

Укажем некоторые способы вычисления определителей.

1) По теореме 3.8.1 определитель любого порядка п выражается через n определителей (n-1)-го порядка. Применяя эту теорему несколько раз, можно преобразовать исходный определитель к некоторому числу определителей третьего порядка, вычисление которых не представляет труда. Однако для упрощения вычислений целесообразно предварительно преобразовать определитель так, чтобы в одном из его рядов все элементы, кроме одного, обратились в нуль. Тогда данный определитель сведется к определителю более низкого порядка, и т. д.

2) Пользуясь свойствами определителя, приводят его к треугольному виду, когда все элементы, стоящие по одну сторону от главной диагонали, равны нулю. Полученный определитель треугольного вида равен произведению элементов главной диагонали, т. е. Матрица - виды, операции и действия с примерами решения

Если удобнее получить нули по одну сторону от побочной диагонали, то Матрица - виды, операции и действия с примерами решениягде Матрица - виды, операции и действия с примерами решенияприведен уже к треугольному виду.

3) Если определитель Матрица - виды, операции и действия с примерами решенияпорядка n после разложения по строке или столбцу и после преобразования, выражается через определители того же вида, но более низких порядков, то полученное равенство называется рекуррентным. Вычисляют столько определителей данного вида начальных порядков, сколько их входит в правую часть рекуррентного соотношения. Далее вычисляют определители высших порядков, используя рекуррентные соотношения, до тех пор, пока не удастся заметить общую закономерность для получаемых выражений. Для общего случая доказывают индукцией по п эту закономерность.

Определитель квазидиагональной матрицы равен произведению определителей её диагональных клеток:

Матрица - виды, операции и действия с примерами решения.

Определитель второго порядка, согласно определению 3.6.1 равен произведению диагональных элементов минус произведение элементов побочной диагонали. Например,

Матрица - виды, операции и действия с примерами решения.

Определитель третьего порядка по определению 3.6.1. равен алгебраической сумме шести слагаемых. Построение этой суммы можно выполнить по правилу Саррюса. Со знаком «+» и рассматривая произведение элементов определителя, обозначенных на схеме точками

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

Определители выше третьего порядков вычисляются либо сведением к треугольному виду, либо используя теорему разложения или используя рекуррентную формулу. Например,

Матрица - виды, операции и действия с примерами решения

(последовательно умножим первую строку на 2; 4; 3 и вычтем получающиеся при этом строки из второй, третьей и четвертой строк)

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

(умножим третью строку на 20/34 и вычтем из четвертой строки; сомножитель четвертой строки 1/34 вынесем за знак определителя; в результате получим определитель верхнетреуголыюго вида, который равен произведению элементов, стоящих на главной диагонали) .

Матрица - виды, операции и действия с примерами решения

Матрицы и операции над матрицами

Матрицей размера Матрица - виды, операции и действия с примерами решенияназывается прямоугольная таблица чисел Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решениявида Матрица - виды, операции и действия с примерами решениясостоящая из m строк и n столбцов. Числа Матрица - виды, операции и действия с примерами решенияназываются элементами матрицы, где i — индекс строки, j — индекс столбца. Обозначение: Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения

Например, элемент Матрица - виды, операции и действия с примерами решения(читается «а три пять») в таблице будет расположен в третьей строке и пятом столбце.

Суммой двух матриц одинакового размера Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решениятого же порядка, каждый элемент которой равен сумме соответствующих элементов матриц Матрица - виды, операции и действия с примерами решенияи Матрица - виды, операции и действия с примерами решения

Например,Матрица - виды, операции и действия с примерами решения

Произведением матрицы Матрица - виды, операции и действия с примерами решенияна действительное число Матрица - виды, операции и действия с примерами решения. называется такая матрица Матрица - виды, операции и действия с примерами решениячто Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решенияЕсли количество столбцов первой матрицы (множимой) равно количеству строк второй матрица (множителя), то матрицы называются согласованными.

Внимание! Умножаются только согласованные матрицы.

Произведением матрицы А размера Матрица - виды, операции и действия с примерами решения(n столбцов) на матрицу В размера Матрица - виды, операции и действия с примерами решения(n строк) называется матрица С размера Матрица - виды, операции и действия с примерами решениякаждый элемент которой Матрица - виды, операции и действия с примерами решенияравен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-ro столбца матрицы В, т.е. Матрица - виды, операции и действия с примерами решения(«i-ю строку первой матрицы умножаем на j-й столбец второй матрицы»). Число строк матрицы произведения С равно числу строк матрицы А, а число столбцов матрицы С равно числу столбцов матрицы В.

Пример:

Матрица - виды, операции и действия с примерами решения

Найти то из произведений АВ, В А, которое существует.

Решение:

Найдем произведение матриц АВ. Оно существует, т.к. количество столбцов матрицы А равно количеству строк матрицы В и равно двум.

Например, элемент произведения матриц с индексом 12 равен по определению сумме произведений элементов 1-й строки матрицы А на соответствующие элементы 2-го столбца матрицы В:

Матрица - виды, операции и действия с примерами решения

Тогда Матрица - виды, операции и действия с примерами решения

Рассмотрим произведение матриц ВА. Число столбцов матрицы В (n=3) не совпадает с числом строк матрицы А (m=2). Произведение матриц ВА не существует.

Вывод. В общем случае произведение матриц не коммутативно, т.е. не всегда АВ=ВА.

Если АВ=ВА, то матрицы А и В называются перестановочными.

Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется матрицей, транспонированной к данной. Обозначение: Матрица - виды, операции и действия с примерами решенияили Матрица - виды, операции и действия с примерами решения

Например, Матрица - виды, операции и действия с примерами решения

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Понравилась статья? Поделить с друзьями:
  • Как составить техническое задание на оказание услуг образец
  • Как найти женщину после расставания
  • Как найти автосохраненную копию ворда
  • Как найти темы для разговора с мужчиной
  • Как найти минимальную стоимость товара