Как найти размерность суммы линейных оболочек

Векторное пространство: размерность и базис, разложение вектора по базису

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e ( 1 ) = ( 1 , 0 , . . . , 0 ) e ( 2 ) = ( 0 , 1 , . . . , 0 ) e ( n ) = ( 0 , 0 , . . . , 1 )

Используем эти векторы в качестве составляющих матрицы A : она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e ( 1 ) , e ( 2 ) , . . . , e ( n ) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e ( 2 ) , e ( 1 ) , . . . , e ( n ) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e ( 2 ) , e ( 1 ) , . . . , e ( n ) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 )

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 — 2 1 — 1 1 2 — 2 A = 3 — 2 1 2 1 2 3 — 1 — 2 = 3 · 1 · ( — 2 ) + ( — 2 ) · 2 · 3 + 1 · 2 · ( — 1 ) — 1 · 1 · 3 — ( — 2 ) · 2 · ( — 2 ) — 3 · 2 · ( — 1 ) = = — 25 ≠ 0 ⇒ R a n k ( A ) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 ) d = ( 0 , 1 , 2 )

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = ( 3 , — 2 , 1 ) , b = ( 2 , 1 , 2 ) , c = ( 3 , — 1 , — 2 ) является базисом.

Ответ: указанная система векторов не является базисом.

Исходные данные: векторы

a = ( 1 , 2 , 3 , 3 ) b = ( 2 , 5 , 6 , 8 ) c = ( 1 , 3 , 2 , 4 ) d = ( 2 , 5 , 4 , 7 )

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

1 2 3 3 0 1 0 2 0 1 — 1 1 0 1 — 2 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 — 2 — 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 0 1 ⇒ ⇒ R a n k ( A ) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Исходные данные: векторы

a ( 1 ) = ( 1 , 2 , — 1 , — 2 ) a ( 2 ) = ( 0 , 2 , 1 , — 3 ) a ( 3 ) = ( 1 , 0 , 0 , 5 )

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Докажем эту теорему:

зададим базис n -мерного векторного пространства — e ( 1 ) , e ( 2 ) , . . . , e ( n ) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e :

x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) , где x 1 , x 2 , . . . , x n — некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) . Получим:

1 — x 1 ) · e ( 1 ) + ( x

2 — x 2 ) · e ( 2 ) + . . . ( x

Система базисных векторов e ( 1 ) , e ( 2 ) , . . . , e ( n ) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты ( x

2 — x 2 ) , . . . , ( x

n — x n ) будут равны нулю. Из чего справедливым будет: x 1 = x

n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e ( 1 ) , e ( 2 ) , . . . , e ( n ) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = ( x 1 , x 2 , . . . , x n ) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

а также задан вектор x = ( x 1 , x 2 , . . . , x n ) .

Векторы e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) , обозначаемые как x

Вектор x → будет представлен следующим образом:

2 · e ( 2 ) + . . . + x

Запишем это выражение в координатной форме:

( x 1 , x 2 , . . . , x n ) = x

1 · ( e ( 1 ) 1 , e ( 1 ) 2 , . . . , e ( 1 ) n ) + x

2 · ( e ( 2 ) 1 , e ( 2 ) 2 , . . . , e ( 2 ) n ) + . . . + + x

n · ( e ( n ) 1 , e ( n ) 2 , . . . , e ( n ) n ) = = ( x

2 e 1 ( 2 ) + . . . + x

2 e 2 ( 2 ) + + . . . + x

n e 2 ( n ) , . . . , x

2 e n ( 2 ) + . . . + x

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x

n e 2 n ⋮ x n = x

Матрица этой системы будет иметь следующий вид:

e 1 ( 1 ) e 1 ( 2 ) ⋯ e 1 ( n ) e 2 ( 1 ) e 2 ( 2 ) ⋯ e 2 ( n ) ⋮ ⋮ ⋮ ⋮ e n ( 1 ) e n ( 2 ) ⋯ e n ( n )

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x

n вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) .

Применим рассмотренную теорию на конкретном примере.

Исходные данные: в базисе трехмерного пространства заданы векторы

e ( 1 ) = ( 1 , — 1 , 1 ) e ( 2 ) = ( 3 , 2 , — 5 ) e ( 3 ) = ( 2 , 1 , — 3 ) x = ( 6 , 2 , — 7 )

Необходимо подтвердить факт, что система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e ( 1 ) , e ( 2 ) , e ( 3 ) .

Используем метод Гаусса:

A = 1 — 1 1 3 2 — 5 2 1 — 3

1 — 1 1 0 5 — 8 0 3 — 5

1 — 1 1 0 5 — 8 0 0 — 1 5

R a n k ( A ) = 3 . Таким образом, система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x

3 . Связь этих координат определяется уравнением:

3 e 1 ( 3 ) x 2 = x

3 e 2 ( 3 ) x 3 = x

Применим значения согласно условиям задачи:

Решим систему уравнений методом Крамера:

∆ = 1 3 2 — 1 2 1 1 — 5 — 3 = — 1 ∆ x

1 = 6 3 2 2 2 1 — 7 — 5 — 3 = — 1 , x

1 ∆ = — 1 — 1 = 1 ∆ x

2 = 1 6 2 — 1 2 1 1 — 7 — 3 = — 1 , x

2 ∆ = — 1 — 1 = 1 ∆ x

3 = 1 3 6 — 1 2 2 1 — 5 — 7 = — 1 , x

Так, вектор x → в базисе e ( 1 ) , e ( 2 ) , e ( 3 ) имеет координаты x

Ответ: x = ( 1 , 1 , 1 )

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c ( 1 ) = ( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) c ( 2 ) = ( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) ⋮ c ( n ) = ( c 1 ( n ) , e 2 ( n ) , . . . , c n ( n ) )

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

Указанные системы являются также базисами заданного пространства.

n ( 1 ) — координаты вектора c ( 1 ) в базисе e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) , тогда связь координат будет задаваться системой линейных уравнений:

1 ( 1 ) e 1 ( 1 ) + c

2 ( 1 ) e 1 ( 2 ) + . . . + c

n ( 1 ) e 1 ( n ) с 2 ( 1 ) = c

1 ( 1 ) e 2 ( 1 ) + c

2 ( 1 ) e 2 ( 2 ) + . . . + c

n ( 1 ) e 2 ( n ) ⋮ с n ( 1 ) = c

1 ( 1 ) e n ( 1 ) + c

2 ( 1 ) e n ( 2 ) + . . . + c

В виде матрицы систему можно отобразить так:

( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) = ( c

n ( 1 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Сделаем по аналогии такую же запись для вектора c ( 2 ) :

( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) = ( c

n ( 2 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

И, далее действуя по тому же принципу, получаем:

( c 1 ( n ) , c 2 ( n ) , . . . , c n ( n ) ) = ( c

n ( n ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Матричные равенства объединим в одно выражение:

c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n ) = c

n ( n ) · e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n )

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) через базис c ( 1 ) , c ( 2 ) , . . . , c ( n ) :

e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n ) = e

n ( n ) · c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n )

Дадим следующие определения:

n ( n ) является матрицей перехода от базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 )

к базису c ( 1 ) , c ( 2 ) , . . . , c ( n ) .

n ( n ) является матрицей перехода от базиса c ( 1 ) , c ( 2 ) , . . . , c ( n )

к базису e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) .

Линейные оболочки и подпространства

Определение. Подпространством линейного пространства называется множество векторов из такое, что для любых двух векторови из и любых двух вещественных чисел и линейная комбинация также принадлежит .

Утверждение. Подпространство само является линейным про­странством.

Определение. Линейной оболочкой системы векторов называется множество всех линейных комбинаций векторов . Обозначается .

Утверждение. Линейная оболочка системы векторов является подпространством.

Определение. Пересечением двух подпространств и на­зывается множество всех векторов, принадлежащих одновре­менно и ,и . Обозначается .

Определение. Суммой двух подпространств и называется множество всех векторов , представимых в виде , где , . Обозначается .

Утверждение. Сумма и пересечение подпространств и являются линейными пространствами, и их размерности связаны равенством

+ = + .

Определение. Сумма двух подпространств называется прямой суммой, если пересечение этих подпространств состо­ит только из нулевого вектора.

Примеры

1. Найти размерность и какой-нибудь базис суммы и пересечения подпространств, порождённых векторами .

Решение. Вычислим вначале размерность подпространств. С этой целью установим, являются ли линейно независимыми векторы, порождающие данные подпространства. Для подпространства , порождённого векторами , равенство нулю линейной комбинации , эквивалентное системе уравнений , достигается лишь при условии . Следовательно, векторы линейно

независимы и размерность подпространства равна 2: . Для подпространства , порождённого векторами , проводя аналогичный анализ, получим .

Вычислим теперь размерность пересечения подпространств и . По определению векторы, составляющие пересечение, принадлежат одновременно обоим подпространствам. Произвольный вектор подпространства является линейной комбинацией базисных векторов : . Аналогично для подпространства имеем , тогда условие принадлежности пересечению есть или .

Это условие представляет собой систему уравнений относительно коэффициентов . Составим матрицу системы и упростим её с помощью элементарных преобразований:

Как видно ранг системы равен 3. Значит ФСР состоит из одного линейно независимого вектора. Найдём его, решив систему уравнений, соответствующих последней матрице, получим ,

откуда .

Полагая свободное неизвестное , для остальных имеем

. Итак, пересечение подпространств имеет один базисный вектор

.

Размерность пересечения . Следовательно, в соответствии с равенством

размерность суммы подпространств . В качестве базиса суммы подпространств можно взять, например, векторы , дополненные вектором . В линейной независимости векторов убедиться нетрудно.

Задачи

3.39. Найти размерность и какой-нибудь базис подпространства, порожденного векторами , , , , .

3.40. Найти размерность и какой-либо базис линейной оболочки векторов , , , , .

3.41. Является ли подпространством в указанном пространстве множество

а) векторов, выходящих из начала координат и заканчиваю­щихся на фиксированной прямой, в пространстве R 2 ;

б) бесконечно малых числовых последовательностей в про­странстве сходящихся последовательностей;

в) сходящихся к числу последовательностей в простран­стве сходящихся последовательностей;

г) диагональных матриц в пространстве квадратных матриц того же порядка;

д) невырожденных матриц в пространстве симметричных мат­риц того же порядка;

е) дифференцируемых на интервале функций в простран­стве функций, непрерывных на отрезке .

3.42. Почему не является подпространством в указанном про­странстве множество

а) векторов, каждый из которых лежит на одной из коорди­натных плоскостей, в пространстве R 3 ;

б) векторов из пространства R n , координаты которых удовлетворяют уравнению ;

в) расходящихся числовых последовательностей в простран­стве ограниченных последовательностей;

г) вырожденных матриц в пространстве квадратных матриц того же порядка;

д) монотонно возрастающих и ограниченных на множестве функций в пространстве функций, ограниченных на том же множестве.

3.43. Найти размерность и какой-либо базис подпространства ре­шений однородной системы:

а) ; б) ;

в) .

3.44. Доказать, что данное множество является подпространством в R n , найти его размерность и какой-либо базис:

а) все n-мерные векторы, координаты которых удовлетворя­ют уравнению ;

б) все n-мерные векторы, у которых первая координата равна нулю;

в) все n-мерные векторы, у которых первая и последняя координаты равны между собой;

г) все n-мерные векторы, у которых координаты с четными номерами равны нулю;

д) все n-мерные векторы, у которых координаты с нечетны­ми номерами равны между собой.

3.45. Найти размерность суммы и пересечения подпространств, порожденных векторами , и , . Является ли эта сумма прямой суммой?

3.46. Найти размерность суммы и пересечения линейных оболочек векторов , , и , , . Является ли их cумма прямой?

3.47. Найти базис суммы и пересечения двух подпространств, порожденных соответственно векторами и , если

а) , , , , , ;

б) , , , , , .

3.48. Найти базис суммы и пересечения линейных оболочек и , если

а) , , , ;

б) , , , , , .

Является ли прямой сумма этих подпространств?

источники:

http://lektsii.org/10-6017.html

Сообщения без ответов | Активные темы | Избранное

Правила форума

В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте

его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву

, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения

и указать конкретные затруднения.

Обязательно просмотрите тему

Правила данного раздела, иначе Ваша тема может быть удалена

или перемещена в Карантин, а Вы так и не узнаете, почему.

 

 Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 12:19 


07/04/15
244

Найти размерность суммы и пересечения линейных оболочек
$S=operatorname{span}{(1,1,1,1);(1,-1,1,-1);(1,3,1,3)}$
$T=operatorname{span}{(1,2,0,2);(1,2,1,2);(3,1,3,1)}$

Если вектор $x$ лежит в пересечении подпространств, то его можно представить ввиде: $sumlimits_{i=1}^{3}alpha_i s_i=x=sumlimits_{i=1}^{3}beta_i t_i$ и тогда $sumlimits_{i=1}^{3}alpha_i s_i-sumlimits_{i=1}^{3}beta_i t_i = 0$

Преобразуя методом Гаусса матрицу
$$A=
begin{pmatrix}
1 &1 &1  &-1  &-1  &-3 \ 
1 &-1&3  &-2  &-2  &-1 \ 
1 &1&1 &0  &-1  &-3 \ 
1 &-1&3  &-2  &-2  &-1 
end{pmatrix}$$
,
я получаю $operatorname{rank}{A}=3=dim{(S+T)}$ и $dimker{A}=3$.
Тут я немного расстроился, т.к. сначала думал, что размерность ядра и пересечения подпространств должны совпасть, т.к. каждому набору координат должен однозначно соответствовать вектор…Но, насколько я понял, раз матрица из векторов линейной оболочки (например $S$) вырожденная, то биекции не будет, значит нужно умножать её на матрицу из базисных векторов ядра усеченных до $alpha_i$и смотреть.

$$begin{pmatrix}
1 &1 &1 \ 
1 &-1&3\ 
1 &1&1  \ 
1 &-1&3 
end{pmatrix}
begin{pmatrix}
5 &-3 &-3 \ 
0 &1&0\ 
0 &0&1  \ 
end{pmatrix}
$$

И получаем матрицу рангом 2, значит и размерность пересечения 2. Вроде все сошлось

Правильно я вообще делаю?

Профиль  

Munin 

Re: Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 12:34 

Заслуженный участник
Аватара пользователя


30/01/06
72407

Навскидку видно, что вы векторы с ошибками в матрицу переписали.

Профиль  

ewert 

Re: Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 12:39 

Заслуженный участник


11/05/08
32162

Вообще искать размерность пересечения — занятие несколько противное. Зато легко и приятно ищется размерность суммы. И поскольку Вам всё равно она нужна — найдите сначала её, а потом размерности каждой оболочки по отдельности, отсюда и размерность пересечения получится.

Профиль  

2old 

Re: Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 12:44 


07/04/15
244

Munin

Вроде поправил. Наверное можно было вообще сразу без минусов переписать, оболочка осталось бы такой же, но я как-то не сообразил.

ewert

Я так себя проверял. Но там в следующем задании еще и базис просят все равно…

Профиль  

iifat 

Re: Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 14:00 

Заслуженный участник


16/02/13
3986
Владивосток

Профиль  

svv 

 Re: Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 18:39 

Заслуженный участник


23/07/08
10081
Crna Gora

2old

По поводу первого сообщения. Нормальный метод, только матрицу $A$ надо составлять из базисных векторов $S$ и базисных $T$. (Тем более, что в таких заданиях обычно требуется сначала найти эти базисы.) Тогда «фальшивых» решений, вроде $alpha_1=-2, alpha_2=alpha_3=1$, все $beta_i=0$, не будет.

(Я считал, что у Вас $alpha_i$ и $beta_i$ — коэффициенты, а $s_i, t_i$ — векторы, если всё наоборот, то, соответственно).

Профиль  

ex-math 

Re: Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 19:00 

Заслуженный участник
Аватара пользователя


24/02/12
1842
Москва

Если Вы умеете записывать Ваши линейные оболочки в виде систем линейных уравнений (что само по себе полезно), то пересечение тоже найдется легко и приятно.

Профиль  

2old 

Re: Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 20:05 


07/04/15
244

iifat

Спасибо!

svv

Ура) Если без фальшивых, то слишком много придется гауссить :( Я лучше поперемножаю, у меня строчки путаются из-за зрения очень медленный процесс выходит))

ex-math

Надо научиться. Ссылка iffat

вроде тоже как раз об этом.

Профиль  

Brukvalub 

Re: Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 20:58 

Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва

Все эти «фокусы-покусы» давно разобраны по косточкам в учебной литературе:
1.Шевцов «Линейная алгебра»
2. Кряквин «Линейная алебра в задачах и упражнениях»
3.Свежачок от кафедры ВГТ: Гайфуллин, Пенский Смирнов «Задачи по линейной алгебре и геометрии» (продается в МЦНМО — не сочтите за рекламу, реально полезная книга!)
Во всех трех книгах все нужные алгоритмы расписаны буквально по шагам. :D

Профиль  

svv 

 Re: Размерность суммы и пересечения линейных оболочек

Сообщение29.05.2015, 23:24 

Заслуженный участник


23/07/08
10081
Crna Gora

то слишком много придется гауссить

К сведению: и Кряквин (стр. 112 книги «Линейная алгебра. Пособие к решению задач…»), и Шевцов (стр. 150 книги «Линейная алгебра») ссылаются на одну и ту же задачу 1319 из книги Проскурякова «Сборник задач по линейной алгебре», в которой для нахождения базиса пересечения подпространств применяется метод, близкий к Вашему.

Об этом алгоритме Кряквин пишет, что

Цитата:

По вычислительной сложности он приблизительно такой же, как и используемый здесь.

(«Используемый здесь» — это через объединение однородных систем уравнений.)

Профиль  

Модераторы: Модераторы Математики, Супермодераторы

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Нахождение дополнения, суммы и пересечения подпространств

Нахождение алгебраического дополнения подпространства

Для заданного подпространства Ltriangleleft mathbb{R}^n требуется найти алгебраическое дополнение подпространства L^{+}, т.е. такое подпространство L^{+} triangleleftmathbb{R}^n, что mathbb{R}^n=Loplus L^{+}.

В зависимости от способа описания подпространства L, используем одно из следующих двух утверждений.

1. Если подпространство Ltriangleleft mathbb{R}^n задано как линейная оболочка L=operatorname{Lin}(a_1,ldots,a_k) столбцов матрицы A=begin{pmatrix} a_1&cdots&a_kend{pmatrix}, то множество решений однородной системы A^Tx=o является его алгебраическим дополнением L^{+}triangleleft mathbb{R}^n, т.е.

L=operatorname{Lin}(a_1,a_2,ldots,a_k)quad Rightarrowquad L^{+}= Bigl{A^Tx=oBigr}.

(8.16)

2. Если подпространство Ltriangleleft mathbb{R}^n задано как множество решений однородной системы Ax=o m уравнений с n неизвестными, то линейная оболочка столбцов a_1^{tau},ldots, a_m^{tau} транспонированной матрицы A^T=begin{pmatrix}a_1^{tau}&cdots& a_m^{tau}end{pmatrix} является его алгебраическим дополнением L^{+}triangleleft mathbb{R}^n, т.е.

L={Ax=o}quad Rightarrowquad L^{+}=operatorname{Lin} (a_1^{tau},ldots,a_m^{tau}),

(8.17)

где a_i^{tau} — i-й столбец матрицы A^T.

Разумеется, в (8.16) и (8.17) указано одно из возможных алгебраических дополнений подпространства L^{+} (см. свойство 3 алгебраических дополнений подпространств).

Докажем сначала справедливость (8.16) в одномерном случае (k=1), а потом в общем. Пусть L=operatorname{Lin}(a) — одномерное подпространство R^n, a=begin{pmatrix}alpha_1&cdots&alpha_nend{pmatrix}^T — ненулевой столбец. Найдем алгебраическое дополнение подпространства L. Рассмотрим уравнение a^Tx=o в координатной форме: alpha_1x_1+ldots+ alpha_nx_n=0. Множество {a^Tx=o} решений однородной системы, состоящей из одного уравнения, образует подпространство L' размерности (n-1). Найдем пересечение Lcap L'. Подставляя элемент x=lambda a линейной оболочки L в уравнение a^Tx=o, получаем lambda[(alpha_1)^2+ (alpha_2)^2+ldots+(alpha_n)^2]=0, что возможно только при lambda=0, так как ane o. Следовательно, элемент x из L принадлежит подпространству L' только тогда, когда x — нулевой столбец, т.е. Lcap L'={o}. Учитывая, что dim{L}+dim{L'}=n, заключаем, что L' — алгебраическое дополнение подпространства L в mathbb{R}^ncolon, Loplus L'=mathbb{R}^n.Таким образом,

operatorname{Lin}(a)oplus{a^Tx=o}=mathbb{R}^n.

(8.18)

Учитывая (8.18), докажем (8.16) в общем случае (kgeqslant1). Представим L=operatorname{Lin}(a_1,ldots,a_k) в виде суммы L=L_1+ldots+L_k, где L_i=operatorname{Lin}(a_i), i=1,ldots,k. Из (8.15) следует, что (L_1+ldots+L_k)oplus (L_1^{+}+ldots+L_k^{+})= mathbb{R}^n. Согласно (8.18), множество L_1^{+}={(a_i)^Tx=o} решений однородной системы, состоящей из одного уравнения, дополняет L_i до всего пространства mathbb{R}^n. Пересечение множеств решений отдельных уравнений дает, разумеется, множество L_1^{+} capldotscap L_k^{+}={A^Tx=o} решений системы этих уравнений. Поэтому (L_1+ ldots+L_k)oplus{A^Tx=o}=mathbb{R}^n, что и требовалось доказать. Утверждение (8.17) доказывается аналогично, используя (8.18).


Пример 8.10. Найти алгебраическое дополнение подпространства L=operatorname{Lin}[(t-1)^2,(t+1)^3] в пространстве P_3(mathbb{R}) многочленов не более, чем 3-й степени.

Решение. Сначала нужно переформулировать задачу для арифметического пространства (см. следствие теоремы 8.3 об изоморфизме конечномерных пространств). Для этого возьмем в P_3(mathbb{R}) стандартный базис mathbf{e}_1(t)=1, mathbf{e}_2(t)=t, mathbf{e}_3(t)=t^2, mathbf{e}_4(t)=t^3. Пространство P_3(mathbb{R}) изоморфно mathbb{R}^4. Найдем координаты многочленов mathbf{a}_1(t)=(t-1)^2 и mathbf{a}_2(t)=(t+1)^3 в стандартном базисе. Раскладывая mathbf{a}_1(t) по базису, получаем:

mathbf{a}_1(t)= (t-1)^2= 1-2t+t^2=1cdot mathbf{e}_1(t)+(-2)cdot mathbf{e}_2(t)+ 1cdot mathbf{e}_3(t)+0cdot mathbf{e}_4(t),

т.е. многочлену mathbf{a}_1(t) соответствует координатный столбец a_1= begin{pmatrix}1&-2&1&0end{pmatrix}^T — элемент пространства mathbb{R}^4. Аналогично получаем координатный столбец a_2= begin{pmatrix} 1&3&3&1end{pmatrix}^T для многочлена mathbf{a}_2(t).

Таким образом, исходная задача сводится к следующей: требуется найти алгебраическое дополнение подпространства L=operatorname{Lin}(a_1,a_2) в пространстве mathbb{R}^4. Используя правило (8.16), получаем, что L^{+} — это множество решений системы A^Tx=o, где A^T=begin{pmatrix} a_1&a_2 end{pmatrix}^T= begin{pmatrix}1&-2&1&0\ 1&3&3&1end{pmatrix}, т.е. системы begin{cases} x_1-2x_2+x_3=0,\ x_1+3x_2+3x_3+x_4=0. end{cases}

Решаем ее методом Гаусса. Приводим матрицу системы к упрощенному виду, прибавляя ко второй строке первую, умноженную на (-1), поделив вторую строку на 5, а затем прибавив ее, умноженную на 2, к первой:

A^T=begin{pmatrix}1&-2&1&0\ 1&3&3&1end{pmatrix}sim begin{pmatrix}1&-2&1&0\ 0&5&2&1 end{pmatrix}sim begin{pmatrix}1&0&9/5&2/5\ 0&1&2/5&1/5 end{pmatrix}!.

Базисные переменные x_1,,x_2, свободные — x_3,,x_4. Выражаем базисные переменные через свободные: x_1=-frac{9}{5}x_3-frac{2}{5}x_4; x_2=-frac{2}{5}x_3-frac{1}{5}x_4. Находим фундаментальную систему решений. Подставляя стандартные наборы свободных переменных (x_3=1,,x_4=0 и x_3= 0,,x_4=1), получаем решения: varphi_1=begin{pmatrix}-dfrac{9}{5}&-dfrac{2}{5}& 1&0end{pmatrix}^T, varphi_2=begin{pmatrix}-dfrac{2}{5}&-dfrac{1}{5}&0&1 end{pmatrix}^T, которые образуют фундаментальную систему решений и являются базисом алгебраического дополнения L^{+}=operatorname{Lin}(varphi_1,varphi_2) Полученный результат переносим в пространство многочленов. По координатному столбцу varphi_1 находим многочлен

varphi_1(t)=-frac{9}{9}cdot mathbf{e}_1(t)-frac{2}{5}cdot mathbf{e}_2(t)+ 1cdot mathbf{e}_3(t)+0cdot mathbf{e}_4(t)= -frac{9}{5}-frac{2}{5},t+t^2.

Аналогично получаем varphi_2(t)= -frac{2}{5}-frac{1}{5}t+t^3. Искомое алгебраическое дополнение имеет вид

L^{+}=operatorname{Lin}!left[left( -frac{9}{5}-frac{2}{5},t+t^2 right)!,,left( -frac{2}{5} -frac{1}{5}t+ t^3right)right]!,

Проверим равенство Lcap L^{+}={mathbf{o}}. Для этого приравняем между собой линейные комбинации многочленов mathbf{a}_1(t),,mathbf{a}_2(t) и varphi_1(t),,varphi_2(t):

alpha(1-t)^2+beta(1+t)^3= gamma!left(-frac{9}{5}-frac{2}{5},t+t^2 right)+delta! left(-frac{2}{5} -frac{1}{5}t+ t^3right)!.

Преобразовывая, получаем

(alpha+beta)cdot t^3+(alpha+3beta-gamma)cdot t^2+left(-2alpha+ 3beta+ frac{2}{5},gamma+frac{1}{5},deltaright)!cdot t+alpha+beta+ frac{9}{5},gamma+ frac{2}{5},delta=0.

Чтобы это равенство выполнялось тождественно, все его коэффициенты должны быть равны нулю:

begin{cases}beta-delta=0,\ alpha+3beta-gamma=0,\ -2alpha+3beta+ frac{2}{5} gamma+ frac{1}{5}delta=0,\ alpha+beta+ frac{9}{5}gamma+ frac{2}{5}delta=0, end{cases} Leftrightarrowquad underbrace{begin{pmatrix}0&1&0&-1\ 1&3&-1&0\ -2&3&2/5&1/5\ 1&1&9/5&2/5 end{pmatrix}}_{B}!cdot! begin{pmatrix}alpha\ beta\ gamma\ delta end{pmatrix}= begin{pmatrix} 0\0\0\0 end{pmatrix}!.

Ранг матрицы B этой системы равен 4 (находится, например, методом Гаусса). Поэтому однородная система имеет только нулевое решение alpha=beta= gamma= delta=0. Таким образом, равенство Lcap L^{+}={mathbf{o}} выполняется.


Нахождение алгебраической суммы подпространств

Для заданных подпространств A и B пространства mathbb{R}^n требуется найти размерность и базис их алгебраической суммы A+B. Рассмотрим методику решения этой задачи для двух случаев описания подпространств.

Пусть подпространства заданы линейными оболочками своих образующих (внутреннее описание): mathbf{A} =operatorname{Lin}(mathbf{a}_1,ldots, mathbf{a}_{k_1}) и mathbf{B} =operatorname{Lin} (mathbf{b}_1,ldots, mathbf{b}_{k_2}). Тогда, приписывая к образующим mathbf{a}_1,ldots, mathbf{a}_{k_1} одного подпространства образующие mathbf{b}_1,ldots, mathbf{b}_{k_2} другого подпространства, получаем образующие суммы подпространств mathbf{A} и mathbf{B}:

left.{begin{gathered}mathbf{A} =operatorname{Lin}(mathbf{a}_1,ldots, mathbf{a}_{k_1}),hfill\ mathbf{B}=operatorname{Lin}(mathbf{b}_1,ldots, mathbf{b}_{k_2}) end{gathered}}!right}quad Rightarrowquad mathbf{A}+mathbf{B}=operatorname{Lin} (mathbf{a}_1,ldots, mathbf{a}_{k_1},mathbf{b}_1,ldots, mathbf{b}_{k_2}),

(8.19)

поскольку любой вектор mathbf{v}in(mathbf{A}+mathbf{B}) имеет вид mathbf{v}= underbrace{alpha_1 mathbf{a}_1+ldots+ alpha_{k_1}mathbf{a}_{k_1} }_{mathbf{v}_1inmathbf{A}}+ underbrace{beta_1 mathbf{b}_1+ldots+ beta_{k_1}mathbf{b}_{k_2} }_{mathbf{v}_2inmathbf{B}}. Базис суммы mathbf{A}+ mathbf{B}= operatorname{Lin} (mathbf{a}_1,ldots, mathbf{a}_{k_1}, mathbf{b}_1, ldots, mathbf{b}_{k_2}) можно найти как максимальную подсистему линейно независимых столбцов.

Пусть подпространства заданы как множества решений однородных систем уравнений (внешнее описание): mathbf{A}={Ax=o} и mathbf{B}={Bx=o}. Тогда, переходя к внутреннему описанию, сводим задачу к предыдущему случаю, а именно нужно выполнить следующие действия:

1) для каждой однородной системы Ax=o и Bx=o найти фундаментальные системы решений varphi_1,ldots,varphi_{n-r} и psi_1,ldots,psi_{n-r} соответственно. При этом получим A=operatorname{Lin} (varphi_1,ldots,varphi_{n-r}) и B=operatorname{Lin}(psi_1,ldots,psi_{n-r}), где r_{A}=operatorname{rg}A, r_{B}=operatorname{rg}B;

2) по правилу (8.19) найти сумму mathbf{A}+mathbf{B}= operatorname{Lin} (varphi_1, ldots,varphi_{n-r},psi_1,ldots,psi_{n-r}).


Пример 8.11. Найти размерность и базис алгебраической суммы mathbf{A}+mathbf{B} подпространств mathbf{A},mathbf{B}triangleleft mathbb{R}^4, если подпространство mathbf{A} задано системой уравнений

begin{cases}x_1+x_2+2x_3+x_4=0,\ 2x_1+3x_2+x_4=0,\ 3x_1+4x_2+2x_3+2x_4=0,end{cases}

подпространство mathbf{B} — линейной оболочкой своих образующих:

mathbf{B}=operatorname{Lin}(b_1,b_2),quad b_1=begin{pmatrix}-4&3&1&-1 end{pmatrix}^T,quad b_2=begin{pmatrix}1&1&1&1end{pmatrix}^T.

Решение. Образующие подпространства mathbf{A} были найдены в примере 8.9: mathbf{A}=operatorname{Lin}(a_1,a_2), где a_1= begin{pmatrix}-6&4&1&0end{pmatrix}^T, a_2=begin{pmatrix}-2&1&0&1 end{pmatrix}^T. По правилу (8.19) получаем mathbf{A}+mathbf{B}= operatorname{Lin}(a_1,a_2,b_1,b_2). Найдем базис этого подпространства как максимальную линейно независимую подсистему столбцов. Составляем из этих столбцов матрицу и приводим ее методом Гаусса к ступенчатому виду:

begin{gathered}begin{pmatrix}-6&-2&-4&1\ 4&1&3&1\ 1&0&1&1\ 0&1&-1&1 end{pmatrix}sim begin{pmatrix}1&0&1&1\ 4&1&3&1\ -6&-2&-4&1\ 0&1&-1&1 end{pmatrix}sim begin{pmatrix}1&0&1&1\ 0&1&-1&-3\ 0&-2&2&7\ 0&1&-1&1 end{pmatrix}sim\[2pt] sim begin{pmatrix}1&0&1&1\ 0&1&-1&-3\ 0&0&0&1\ 0&0&0&4 end{pmatrix}sim begin{pmatrix} 1&0&1&1\ 0&1&-1&-3\ 0&0&0&1\ 0&0&0&0 end{pmatrix}!.end{gathered}

Первый, второй и четвертый столбцы полученной матрицы линейно независимы. Значит, соответствующие столбцы a_1,,a_2,,b_2 исходной матрицы так же линейно независимы (так как выполнялись элементарные преобразования только над строками). Поэтому они являются базисом mathbf{A}+mathbf{B} и dim(mathbf{A}+ mathbf{B})=3.


Нахождение пересечения подпространств

Для заданных подпространств mathbf{A} и mathbf{B} пространства mathbb{R}^n требуется найти размерность и базис их пересечения mathbf{A}cap mathbf{B}. Рассмотрим методику решения этой задачи для двух случаев описания подпространств.

Пусть подпространства заданы как множества решений однородных систем уравнений (внешнее описание): mathbf{A}={Ax=o} и mathbf{B}={Bx=o}. Тогда, приписывая к системе Ax=o, задающей одно подпространство, систему Bx=o, задающую другое подпространство, получаем систему begin{cases} Ax=o,\ Bx=o,end{cases} определяющую пересечение подпространств:

left.{begin{gathered}mathbf{A}={Ax=o},\ mathbf{B}={Bx=o} end{gathered}}right}quad Rightarrowquad mathbf{A}cap mathbf{B}=left{begin{pmatrix}A\ Bend{pmatrix}!x=oright}!.

(8.20)

Базисом пересечения служит ее фундаментальная система решений.

Пусть подпространства mathbf{A} и mathbf{B} пространства mathbb{R}^n заданы линейными оболочками своих образующих (внутреннее описание): mathbf{A}=operatorname{Lin}(a_1,ldots,a_{k_1}) и mathbf{B}= operatorname{Lin}(b_1,ldots,b_{k_2}). Переходя от внутреннего описания подпространств к внешнему, можно свести задачу к предыдущему случаю. Однако удобнее сделать иначе. Пересечению mathbf{A}cap mathbf{B} принадлежат только такие mathbf{x}in mathbb{R}^n, которые можно представить как равные между собой линейные комбинации столбцов a_1,ldots,a_{k_1} и столбцов b_1,ldots,b_{k_2} соответственно:

mathbf{x}=alphacdot mathbf{a}_1+ldots+alpha_{k_1}cdot mathbf{a}_{k_1}= beta_{1}cdot mathbf{b}_{1}+ldots+beta_{k_2}cdot mathbf{b}_{k_2}.

(8.21)

Представим второе равенство в (8.21) в матричном виде Aalpha=Bbeta, где A=begin{pmatrix}a_1&cdots&a_{k_1}end{pmatrix}, B=begin{pmatrix} b_1&cdots&b_{k_2}end{pmatrix} — матрицы, составленные из данных столбцов, alpha= begin{pmatrix}alpha_1&cdots&alpha_{k_1}end{pmatrix}^T, beta= begin{pmatrix} beta_1&cdots&beta_{k_2}end{pmatrix}^T — столбцы коэффициентов линейных комбинаций. Равенство Aalpha=Bbeta можно рассматривать как одно родную систему Aalpha-Bbeta=o n уравнений с (k_1+k_2) неизвестными alpha и beta. Каждому решению этой системы соответствует вектор mathbf{x}= Aalpha=Bbeta, при надлежащий пересечению mathbf{A}cap mathbf{B}. Однако, на практике удобнее вместо системы Aalpha-Bbeta=o рассматривать однородную систему Aalpha+Bbeta=o, решения которой обладают теми же свойствами (тогда вектор mathbf{x}= Aalpha=Bbeta при надлежит пересечению mathbf{A}cap mathbf{B}.

Поэтому для нахождения пересечения подпространств mathbf{A}= operatorname{Lin} (a_1,ldots,a_{k_1}) и mathbf{B}= operatorname{Lin}(b_1,ldots,b_{k_2}) и базиса пересечения нужно выполнить следующие действия.

1. Составить блочную матрицу (Amid B) коэффициентов однородной системы уравнений Aalpha+Bbeta=o, где матрицы A=begin{pmatrix} a_1&cdots&a_{k_1} end{pmatrix}, B=begin{pmatrix} b_1&cdots&b_{k_2}end{pmatrix} образованы из заданных столбцов.

2. Для однородной системы с матрицей (Amid B) найти фундаментальную матрицу Phi. Матрица Phi имеет размеры (k_1+k_2)times (k_1+k_2-r), где r=operatorname{rg}(Amid B).

3. Из первых k_1 строк матрицы Phi составить матрицу Phi_{alpha}= (E_{k_1}mid O)Phi. Столбцы матрицы Phi_{alpha}= begin{pmatrix} varphi_1&cdots &varphi_{k_1+k_2-r}end{pmatrix} содержат искомые коэффициенты alpha=begin{pmatrix}alpha_1&cdots&alpha_{k_1}end{pmatrix}^T линейных комбинаций (8.21).

4. Записать пересечение mathbf{A}cap mathbf{B} как линейную оболочку столбцов матрицы APhi_{alpha}: Acap B=operatorname{Lin}(Avarphi_1,ldots, Avarphi_{k_1+k_2-r}).

5. Найти базис пересечения как максимальную линейно независимую подсистему образующих Avarphi_1,ldots, Avarphi_{k_1+k_2-r}.


Пример 8.12. Найти размерности и базисы суммы mathbf{A}+ mathbf{B} и пересечения mathbf{A}cap mathbf{B} подпространств mathbf{A},mathbf{B}triangleleft mathbb{R}^4, если они заданы линейными оболочками своих образующих: mathbf{A}= operatorname{Lin}(a_1,a_2,a_3) mathbf{B}= operatorname{Lin}(b_1,b_2,b_3), где

a_1=begin{pmatrix}1\1\1\1end{pmatrix}!,quad a_2=begin{pmatrix}1\-1\1\-1 end{pmatrix}!,quad a_3=begin{pmatrix}1\3\1\3end{pmatrix}!,quad b_1=begin{pmatrix} 1\2\0\2 end{pmatrix}!,quad b_2=begin{pmatrix}1\2\1\2end{pmatrix}!,quad b_3=begin{pmatrix} 3\1\3\1 end{pmatrix}!.

Решение. Найдем базис и размерность суммы mathbf{A}+ mathbf{B}. Составим из данных столбцов блочную матрицу

(Amid B)= begin{pmatrix}a_1&a_2&a_3,mid, b_1&b_2&b_3 end{pmatrix}= begin{pmatrix}1&1&1!!&vline!!& 1&1&3\ 1&-1&3!!&vline!!& 2&2&1\ 1&1&1!!&vline!!& 0&1&3\ 1&-1&3!!&vline!!& 2&2&1 end{pmatrix}!.

Элементарными преобразованиями над строками приведем ее к ступенчатому виду:

(Amid B)sim begin{pmatrix}1&1&1!!&vline!!& 1&1&3\ 0&-2&2!!&vline!!& 1&1&-2\ 0&0&0!!&vline!!& -1&0&0\ 0&-2&2!!&vline!!& 1&1&-2end{pmatrix}sim begin{pmatrix} 1&1&1!!&vline!!& 1&1&3\ 0&-2&2!!&vline!!& 1&1&-2\ 0&0&0!!&vline!!& -1&0&0\ 0&0&0!!&vline!!& 0&0&0 end{pmatrix}= (A'mid B').

По ступенчатому виду определяем, что первый, второй и четвертый столбцы линейно независимы. Следовательно, из 6 образующих a_1,a_2,a_3, b_1,b_2,b_3 подпространства mathbf{A}+mathbf{B} максимальную линейно независимую подсистему составляют столбцы a_1,a_2,b_1 (в этих столбцах расположен базисный минор матрицы). Следовательно, эти столбцы служат базисом суммы: mathbf{A}+ mathbf{B}= operatorname{Lin}(a_1,a_2,b_1) и dim(mathbf{A}+mathbf{B})=3. По ступенчатому виду матрицы (Amid B) можно также определить размерности подпространств. В блоке A' две ненулевых строки, следовательно, dimmathbf{A}= operatorname{rg}A= operatorname{rg}A'=2. Ненулевые строки блока В’ линейно независимы, следовательно, dimmathbf{B}= operatorname{rg}B= operatorname{rg}B'=3.

Найдем базис и размерность пересечения mathbf{A}cap mathbf{B}~ (k_1=k_2=3,~ r=operatorname{rg}(Amid B)=3).

1. Первый пункт алгоритма выполнен выше: матрица (Amid B) однородной системы Aalpha+Bbeta=o приведена к ступенчатому виду (A'mid B').

2. Находим фундаментальную систему решений (используя алгоритм, описанный в разд. 5.5). Приводим матрицу (A'mid B') системы к упрощенному виду:

(A'mid B')= begin{pmatrix}1&1&1!!&vline!!& 1&1&3\ 0&-2&2!!&vline!!& 1&1&-2\ 0&0&0!!&vline!!& -1&0&0\ 0&0&0!!&vline!!& 0&0&0end{pmatrix}sim begin{pmatrix}1&0&2!!&vline!!& 0&3/2&2\ 0&1&-1!!&vline!!& 0&-1/2&1\ 0&0&0!!&vline!!& 1&0&0\ 0&0&0!!&vline!!& 0&0&0end{pmatrix}!.

Базисные переменные: alpha_1,,alpha_2,,beta_1; остальные переменные — свободные. Выражаем базисные переменные через свободные: alpha_1=-2alpha_3-frac{3}{2} beta_2-2beta_3; alpha_2=alpha_3+frac{1}{2}beta_2-beta_3; beta_1=0. Придавая свободным переменным наборы значений

alpha_3=1,quad beta_2=0,quad beta_3=0;qquad alpha_3=0,quad beta_2=2,quad beta_3=0;qquad alpha_3=0,quad beta_2=0,quad beta_3=1,

получаем линейно независимые решения

varphi_1=begin{pmatrix} -2&1&1&0&0&0 end{pmatrix}^T,quad varphi_2= begin{pmatrix} -3&1&0&0&2&0 end{pmatrix}^T,quad varphi_3=begin{pmatrix}-2&-1&0&0&0&1 end{pmatrix}^T.

т.е. фундаментальная матрица имеет вид

Phi= begin{pmatrix}-2&-3&-2\ 1&1&-1\ 1&0&0\ 0&0&0\ 0&2&0\ 0&0&1 end{pmatrix}!.

3. Из первых трех строк (k_1=3) матрицы Phi составляем матрицу Phi_{alpha}= begin{pmatrix} -2&-3&-2\ 1&1&-1\ 1&0&0 end{pmatrix}.

4. Вычисляем произведение

AcdotPhi_{alpha}= begin{pmatrix}1&1&1\ 1&-1&3\ 1&1&1\ 1&-1&3 end{pmatrix}! cdot! begin{pmatrix}-2&-3&-2\ 1&1&-1\ 1&0&0end{pmatrix}= begin{pmatrix}0&-2&-3\ 0&-4&-1\ 0&-2&-3\ 0&-4&-1end{pmatrix}= begin{pmatrix}o&c_1&c_2end{pmatrix}!.

Столбцы этой матрицы являются образующими пересечения mathbf{A}cap mathbf{B}= operatorname{Lin}(o,c_1,c_2), где o — нулевой столбец, c_1= begin{pmatrix} -2&-4&-2&-4 end{pmatrix}^T, c_2=begin{pmatrix}-3&-1&-3&-1 end{pmatrix}^T.

5. Найдем базис пересечения mathbf{A}cap mathbf{B}. Для этого матрицу APhi_{alpha} приводим к ступенчатому виду

AcdotPhi_{alpha}= begin{pmatrix}0&-2&-3\ 0&-4&-1\ 0&-2&-3\ 0&-4&-1end{pmatrix}sim begin{pmatrix}0&2&3\ 0&0&5\ 0&0&0\ 0&0&0 end{pmatrix}sim begin{pmatrix}0&1&3/2\ 0&0&1\ 0&0&0\ 0&0&0 end{pmatrix}!.

По ступенчатому виду определяем, что последние два столбца матрицы APhi_{alpha} линейно независимы. Следовательно, два столбца c_1,c_2 являются базисом пересечения mathbf{A}cap mathbf{B}= operatorname{Lin}(c_1,c_2) и dim(mathbf{A}cap mathbf{B})=2.

Проверим размерность пересечения подпространств, которую вычислим, используя формулу (8.13):

dim(mathbf{A}cap mathbf{B})= dim mathbf{A}+dim mathbf{B}-dim(mathbf{A}+ mathbf{B})= 2+3-3=2,

что совпадает с найденной ранее размерностью.


Пример 8.13. Найти размерности и базисы пересечения mathbf{A}cap mathbf{B} и суммы mathbf{A}+ mathbf{B} подпространств mathbf{A}, mathbf{B}triangleleft mathbb{R}^4, если они заданы однородными системами уравнений:

mathbf{A}colon, begin{cases}x_1+x_2+2x_3+x_4=0,\ 2x_1+3x_2+x_4=0,\ 3x_1+4x_2+2x_3+2x_4=0;end{cases}quad mathbf{B}colon, begin{cases}x_1+x_2+x_3=0,\ 2x_1+3x_2+x_3+2x_4=0,\ x_1+2x_2+2x_4=0.end{cases}

Решение. Обозначим матрицы данных систем через mathbf{A} и mathbf{B} соответственно. По правилу (8.20) пересечение mathbf{A}cap mathbf{B} описывается однородной системой begin{cases}Ax=o,\Bx=o.end{cases} Найдем базис пересечения — фундаментальную систему решений этой однородной системы уравнений. Составляем матрицу системы begin{pmatrix}dfrac{A}{B}end{pmatrix} и приводим ее к ступенчатому виду, а затем к упрощенному виду:

begin{gathered} begin{pmatrix}dfrac{A}{B}end{pmatrix}= begin{pmatrix}1&1&2&1\ 2&3&0&1\ 3&4&2&2\hline 1&1&1&0\ 2&3&1&2\ 1&2&0&2 end{pmatrix}sim begin{pmatrix} 1&1&2&1\ 0&1&-4&-1\ 0&1&-4&-1\hline 0&0&-1&-1\ 0&1&-3&0\ 0&1&-2&1 end{pmatrix}sim begin{pmatrix}1&1&2&1\ 0&1&-4&-1\ 0&0&0&0\hline 0&0&-1&-1\ 0&0&1&1\ 0&0&2&2 end{pmatrix}sim begin{pmatrix}1&1&2&1\ 0&1&-4&-1\ 0&0&1&1\hline 0&0&0&0\ 0&0&0&0\ 0&0&0&0 end{pmatrix}sim\[2pt] sim begin{pmatrix}1&0&6&2\ 0&1&-4&-1\ 0&0&1&1\hline 0&0&0&0\ 0&0&0&0\ 0&0&0&0 end{pmatrix}sim begin{pmatrix}1&0&0&-4\ 0&1&0&3\ 0&0&1&1\hline 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{pmatrix}!.end{gathered}

Базисные переменные: x_1,x_2,x_3, свободная переменная — x_4. Выражаем базисные переменные через свободную: x_1=4x_4; x_2=-3x_4; x_3=-x_4. Фундаментальная система содержит одно решение varphi_1= begin{pmatrix} 4&-3&-1&1end{pmatrix}^T, которое получаем, задавая x_4=1. Следовательно, mathbf{A}cap mathbf{B}= operatorname{Lin}(varphi_1) и dim(mathbf{A}cap mathbf{B}).

Найдем теперь сумму mathbf{A}+mathbf{B}. Фундаментальная система решений однородной системы Ax=o была найдена в примере 8.9. Следовательно,

mathbf{A}=operatorname{Lin}(a_1,a_2), где a_1=begin{pmatrix} -6&4&1&0 end{pmatrix}^T,~~ a_2=begin{pmatrix}-2&1&0&1end{pmatrix}^T,~~ dim{mathbf{A}}=2.

Найдем фундаментальную систему решений однородной системы Bx=o. Для этого приводим матрицу системы к ступенчатому виду, а затем к упрощенному:

B=begin{pmatrix}1&1&1&0\ 2&3&1&2\ 1&2&0&2 end{pmatrix}sim begin{pmatrix} 1&1&1&0\ 0&1&-1&2\ 0&1&-1&2 end{pmatrix}sim begin{pmatrix}1&1&1&0\ 0&1&-1&2\ 0&0&0&0 end{pmatrix}sim begin{pmatrix}1&0&2&-2\ 0&1&-1&2\ 0&0&0&0 end{pmatrix}!.

Базисные переменные: x_1,,x_2, свободные переменные: x_3,,x_4. Выражаем базисные переменные через свободные: x_1=-2x_3+2x_4; x_2=x_3-2x_4. Фундаментальная система состоит из двух решений b_1=begin{pmatrix}-2&1&1&0end{pmatrix}^T, b_2=begin{pmatrix}2&-2&0&1end{pmatrix}^T, которые находим, придавая свободным переменным стандартные наборы значений (x_3=1,~x_4=0 и x_3=0,~x_4=1). Следователь но, mathbf{B}= operatorname{Lin}(b_1,b_2) и dim mathbf{B}=2.

По правилу (8.19) находим сумму mathbf{A}+mathbf{B}= operatorname{Lin} (a_1,a_2,b_1,b_2). Чтобы определить базис, составим из столбцов a_1,,a_2,, b_1,,b_2 матрицу и приведем ее к ступенчатому виду:

begin{pmatrix}-6&-2&-2&2\ 4&1&1&-2\ 1&0&1&0\ 0&1&0&1end{pmatrix}sim begin{pmatrix}1&0&1&0\ 0&1&-3&-2\ 0&-2&4&2\ 0&1&0&1 end{pmatrix}sim begin{pmatrix} 1&0&1&0\ 0&1&-3&-2\ 0&0&-2&-2\ 0&0&3&3 end{pmatrix}sim begin{pmatrix}1&0&1&0\ 0&1&-3&-2\ 0&0&1&1\ 0&0&0&0 end{pmatrix}!.

Первые три столбца линейно независимы. Следовательно, mathbf{A}+mathbf{B}= operatorname{Lin}(a_1,a_2,b_1) и dim(mathbf{A}+mathbf{B})=3.

Проверим размерность суммы подпространств. По формуле (8.13) получаем

dim(mathbf{A}+mathbf{B})= dimmathbf{A}+dimmathbf{B}-dim(mathbf{A}cap mathbf{B})=2+2-1=3,

что совпадает с найденной ранее размерностью.


Нахождение относительных алгебраических дополнений подпространств

Пусть дана цепочка подпространств mathbf{A}triangleleft mathbf{B}triangleleft mathbb{R}^n. Требуется найти относительное дополнение mathbf{A}^{+}cap mathbf{B} подпространства mathbf{A} до подпространства mathbf{B}.

Рассмотрим случай внешнего описания подпространств — как множеств решений однородных систем уравнений: mathbf{A}={Ax=o} и mathbf{B}={Ax=o}. Согласно (8.17) базис пространства mathbf{A}^{+} образуют линейно независимые столбцы транспонированной матрицы A^T. Тогда относительное дополнение mathbf{A}^{+}cap mathbf{B} составляют такие векторы x=A^Ty, которые удовлетворяют системе Bx=o. Если обозначить через Phi фундаментальную матрицу системы BA^Ty=o, то линейно независимые столбцы матрицы A^TPhi являются максимальной системой векторов подпространства mathbf{B}, линейно независимой над mathbf{A}, т.е. базисом относительного дополнения.

На практике нахождение базиса mathbf{A}^{+}cap mathbf{B} удобнее производить, используя ступенчатые виды матриц A и B, согласно следующей методике.

1. Привести матрицы A и B при помощи элементарных преобразований строк к ступенчатому виду и удалить нулевые строки. В результате по лучим матрицы (A)_{text{st}} и (B)_{text{st}} модифицированного ступенчатого вида (строки каждой из этих матриц линейно независимые).

2. Найти фундаментальную матрицу Phi однородной системы уравнений (B)_{text{st}}(A)_{text{st}}^Ty=o.

3. Вычислить матрицу (A)_{text{st}}^TPhi. Ее столбцы образуют искомый базис mathbf{A}^{+}cap mathbf{B}.

Рассмотрим случай внутреннего описания подпространства mathbf{A} как линейной оболочки своих образующих: mathbf{A}=operatorname{Lin}(a_1,ldots,a_k). Согласно (8.16) множество решений системы уравнений A^Tx=o (матрица A= begin{pmatrix}a_1&cdots&a_kend{pmatrix} составлена из образующих) является алгебраическим дополнением mathbf{A}^{+}. Тогда множество решений системы begin{cases}A^Tx=o,\Bx=o,end{cases}!!Leftrightarrow, begin{pmatrix} dfrac{A^T}{B} end{pmatrix}!x=o является относительным дополнением mathbf{A}^{+}cap mathbf{B}, а ее фундаментальная система решений — базисом относительного дополнения.

Замечание 8.10. Способы описания подпространств комплексного линейного пространства, а также методы решения типовых задач аналогичны рассмотренным. В отличие от вещественного арифметического пространства mathbb{R}^n вместо операции транспонирования матрицы в комплексном арифметическом пространстве mathbb{C}^n нужно использовать операцию сопряжения матрицы.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

  1. Проверить,
    являются ли заданные множества линейными
    подпространствами; указать какой-нибудь
    базис и размерность линейных
    подпространств:

    1. Множество
      всех геометрических векторов из V3,
      компланарных фиксированной плоскости.

    2. Множество
      геометрических векторов из V3,
      удовлетворяющих условию (͞х ,͞а)=0, где͞
      а-фиксированный вектор.

    3. Множество
      всех геометрических векторов из V3,
      удовлетворяющих условию |
      ̅х̅ |
      =1.

    4. Множество
      всех векторов из Rn
      вида: ̅х=(0, х2,
      0, х4,
      х5,…хn)

    5. Множество
      всех симметрических матриц порядка
      n.

    6. Множество
      решений линейной однородной системы
      уравнений

x1+2x2

x3+x4

3x5=0

x2
–4
x3+x5=0

    1. Множество
      всех векторов из Rn,
      координаты которых удовлетворяют
      условию: х1n.

  1. Найти
    размерность линейной оболочки L(x̅1,
    2)
    арифметических векторов x̅1(1,
    0, 2, -1), x̅2(0,
    -1, 2, 0). Показать, что вектор x̅(1,
    -1, 4, -1) принадлежит оболочке.

  2. Найти
    размерность и какой-нибудь базис
    линейной оболочки заданной системы
    векторов x̅1(1,
    0, 0, -1), x̅2(2,
    1, 1, 0), x̅3(1,
    1, 1, 1), x̅4(1,
    2, 3, 4), x̅5(0,
    1, 2, 3).

  3. Найти
    размерность и какой-нибудь базис
    линейной оболочки заданной системы
    векторов x̅1(1,
    1, 1, 1, 0), x̅2(1,
    1, -1, -1, -1), x̅3(2,
    2, 0, 0, -1), x̅4(1,
    1, 5, 5, 2), x̅5(1,
    -1, -1, 0, 0).

  4. Найти
    размерность суммы и пересечения линейных
    оболочек L(x̅1,
    2)
    и L(y̅1,
    2):

1(1,
2, 1, 0), x̅2(-1,
1, 1, 1);

1(2,
-1, 0, 1), y̅2(1,
-1, 3, 7)

  1. Найти
    размерность суммы и пересечения линейных
    оболочек L(x̅1,
    2,
    3)
    и L(y̅1,
    2):

1
(1,
2, -1, -2), x̅2
(3,
1, 1, 1), x̅3
(-1,
0, 1, -1);

1
(2,
5, -6, -5), y̅2
(-1,
2, -7, -3)

  1. Написать
    уравнение геометрического образа
    линейной оболочки

L(а̄)
и многообразия L(а̄)
+b̅,
если а̄= -2i̅
+ j̅
— k̅,
b̅=
2i̅
— j̅.

  1. Написать
    уравнение геометрического образа
    линейной оболочки

L(а̄1,
2)
и многообразия L(а̄1,
2)
+ b̅,
если а̄1=
-i̅
+ j̅
+ k̅,
а̄2=2

— k̅
b̅=

+ k̅.

  1. Задана
    система уравнений

x1+
x2

3x3

x4
+ x5=1

3x1
x2
+
x3
+
4x4
+ 3x5=4

x1
5x2

9x3

8x4
+ x5=0.

Доказать,
что множество решений этой системы есть
линейное многообразие в пространстве
R5.Сдвигом
какого подпространства получается это
линейное многообразие? Найти ранг и
какой-нибудь базис этого подпространства.
Найти какой-нибудь вектор сдвига.

Ответы
к разделу 2

  1. 1.2.
    является, dimL=1,
    1.3.не является, 1.4. является, dimL=n-2,
    1.5. является, dimL=n2

    Cn2,
    1.6. является, dimL=3,
    1.7.является, dimL=n-1

  2. dimL=2.

  3. dimL=2

  4. dimL=3.

  5. Размерность
    пересечения равна 1, базисный вектор
    имеет координаты z̅
    (5, -2, -3, -4); размерность суммы равна 3,
    базис составлен, например, из векторов
    z̅,
    1,
    1.

  6. Сумма
    совпадает с первым пространством,
    пересечение – со вторым.

  7. Линейная
    оболочка – прямая, проходящая через
    точку (0, 0, 0) параллельно вектору с
    координатами (-2, 1, -1), линейное многообразие
    — прямая, проходящая через точку (2,-1, 0)
    параллельно вектору с координатами
    (-2, 1, -1)

  8. Линейная
    оболочка – плоскость -3x
    – y
    — 2z
    =0, линейное многообразие – плоскость
    -3x
    – y
    — 2z
    + 5=0.

  9. Множество
    решений неоднородной системы есть
    линейное многообразие, полученное из
    подпространства размерности 3 решений
    соответствующей однородной системы
    сдвигом на произвольное частное решение
    неоднородной системы.

  10. Доказать,
    что пространство Rn
    есть прямая сумма двух линейных
    подпространств: L1,
    заданного уравнением х12+…+хn=0
    и L2,
    заданного системой уравнений х12=…=хn.

  11. Пусть
    линейное пространство L
    является прямой суммой линейных
    подпространств L1
    и L2.
    Доказать, что размерность L
    равна сумме размерностей подпространств
    L1
    и L2,
    причем любые базисы L1
    и L2
    дают вместе базис L.

  12. Доказать,
    что сумма L
    линейных подпространств L1
    и L2
    тогда и только тогда будет прямой
    суммой, когда хотя бы один вектор x̅,
    принадлежащий L,
    представляется в виде x̅=
    1+
    2,
    где x̅1
    принадлежит L1,
    2
    принадлежит L2.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Аннотация: В данной лекции рассматриваются линейные подпространства линейных пространств, приведены определения их суммы и их пересечения, рассмотрено понятие линейной оболочки элементов линейного пространства. Приведены доказательства основных теорем и задачи для самостоятельного рассмотрения

Линейные подпространства линейных пространств

Пусть K поле, K Vлинейное пространство над полем K. Непустое подмножество varnothing neq U subseteq {}_K V называется линейным подпространством линейного пространства K V, если:

  1. u_1+u_2in U для всех u_1,u_2in U ;
  2. kuin U для всех kin K, uin U.

Ясно, что K Uлинейное пространство относительно тех же операций сложения элементов и умножения на элементы из поля K, что и в линейном пространстве K V.

Если U — линейное подпространство в конечномерном линейном пространстве KV, n=dim {}_K V<infty, то dim {}_K U leq dim {}_K V. Действительно, если элементы u_1,...,u_sin {}_K U линейно независимы в K U, то эти элементы линейно независимы и в линейном пространстве K V, s leq n, поэтому dim {}_K U leq dim {}_K V.

Если K U — линейное подпространство линейного пространства K V, {}_K Usubseteq {}_K V и dim {}_K U=dim {}_K V=n, то K U=K V. Действительно, если {u1,…,un}базис линейного пространства {}_K Upsubseteq {}_K V, то эти n элементов u1,…,un линейно независимы в K V и dim {}_K V=n, поэтому {u1,…,un}базис линейного пространства K V. Итак, каждый элемент vin V имеет вид v=k_1u_1+...+k_nu_nin {}_K U, k_iin K, т. е. K V=K U.

Пересечение линейных подпространств

Лемма 9.11.1. Пересечение

U=bigcaplimits_{iin I}U_i

любого семейства линейных подпространств {U_isubset {}_K Vmid iin I} линейного пространства K V является линейным подпространством.

Доказательство. Если u,u_1,u_2in U=bigcaplimits_{iin I}U_i, kin K, то u,u_1,u_2in U_i для любого iin I, поэтому u_1+u_2,kuin U_i для любого iin I, т. е. u_1+u_2,kuin U=bigcaplimits_{iin I}U_i.

Следствие 9.11.2. Если U1 и U2 — линейные подпространства линейного пространства K V, то U_1cap U_2 — линейное подпространство в {K V (наибольшее подпространство среди подпространств, лежащих одновременно в U1 и в U2 ).

Сумма линейных подпространств

Если U1 и U2 — линейные подпространства линейного пространства K V, то сумма линейных подпространств

U_1+U_2 = {u_1+u_2mid u_1in U_1, u_2in U_2}

также является линейным подпространством. Действительно, если u_1+u_2,u'_1+u'_2in U_1+U_2, u_1,u'_1in U_1, u_2,u'_2in U_2, kin K, то

begin{align*}
(u_1+u_2)+(u'_1+u'_2) &= (u_1+u'_1)+(u_2+u'_2)in U_1+U_2;\
k(u_1+u_2) &= ku_1+ku_2in U_1+U_2. 
end{align*}

Замечание 9.12.1. U1+U2 — наименьшее линейное подпространство среди линейных подпространств, содержащих одновременно U1 и U2. Более того,

U_1+U_2=bigcap_{substack{Usubseteq {}_K V\ U_1subseteq U, U_2subseteq U}} U.

Замечание 9.12.2. Если U, U1, U2, U3 — линейные подпространства в K V, то

begin{gathe}
Ucap U = U,quad U+U = U,\
U_1cap U_2 = U_2cap U_1, quad U_1 + U_2 = U_2 + U_1,\
U_1cap (U_2cap U_3) = (U_1cap U_2)cap U_3,\
U_1 + (U_2+U_3) = (U_1+U_2)+U_3,\
U_1cap (U_1+U_2) = U_1,quad U_1+(U_1cap U_2)=U_1.
end{gathe}

Линейная оболочка элементов линейного пространства

Пусть K Vлинейное пространство, v_1,...,v_min {}_K V. Рассмотрим

langle v_1,...,v_mrangle= {k_1v_1+...+k_mv_mmid k_1,...,k_min K} text{  -}

совокупность всех линейных комбинаций k1v1+…+kmvm элементов v1,…,vm с коэффициентами k_1,...,k_min K, называемую линейной оболочкой элементов v1,…,vm. Линейная оболочка langle v_1,...,v_mrangle является наименьшим линейным подпространством, содержащим элементы v1,…,vm. Действительно,

begin{mult}
(k_1v_1+...+k_mv_m)+(l_1v_1+...+l_mv_m)={}
\
{}=
(k_1+l_1)v_1+...+(k_m+l_m)v_m;
end{mult}

k(k1v1+…+kmvm)=(kk1)v1+…+(kkm)vm; если U — линейное подпространство в K V, v_1,...,v_min U, то k_1v_1+...+k_mv_min U, следовательно, langle v_1,...,v_mranglesubseteq U. Более того,

langle v_1,...,v_mrangle = bigcap_{substack{Usubseteq {}_K V\ v_1,...,v_min U}} U.

Замечание 9.13.1. Если 0neq vin {}_K V, то langle vrangle=Kv={kvmid kin K}, dimlangle vrangle=1 ; если v=0, langle vrangle=Kv={0}.

Замечание 9.13.2. langle v_1,...,v_mrangle= Kv_1+...+Kv_m.

Замечание 9.13.3. dim {}_K langle v_1,...,v_mrangle=r{v_1,...,v_m} ; любая максимальная линейно независимая подсистема в {v1,…,vm} является базисом линейного подпространства langle v_1,...,v_mrangle.

Основная лемма о линейной зависимости может быть сформулирована в следующей эквивалентной форме.

Теорема 9.13.4 (о замене). Пусть v_1,...,v_sin {}_K V — линейно независимая система, u_1,...,u_rin langle v_1,...,v_srangle, {u1,…,ur} — линейно независимая система элементов. Тогда r leq s и

langle v_1,...,v_srangle = langle u_1,...,u_r,v_{i_{r+1}},...,v_{i_s}rangle,

где

1 leq i_{r+1}<...<i_s leq s.

Доказательство. Так как s=dim_K langle v_1,...,v_srangle, то r leq s. Если r=s, то langle v_1,...,v_srangle=langle u_1,...,u_rrangle. Если r<s, то найдется v_{i_{r+1}}notin langle u_1,...,u_rrangle (индекс ir+1 — минимальный с этим свойством). Продолжая этот процесс, построим базис {u_1,...,u_r,v_{i_{r+1}},...,v_{i_s}} в langle v_1,...,v_srangle.

Следствие 9.13.5. Пусть U, W — линейные подпространства в K V и Usubseteq W, dim {}_K U=l, dim {}_K W=m. Тогда l leq m и любой базис подпространства U можно дополнить m-l элементами до базиса подпространства W. В частности, если U subseteq W и l=m, то U=W.

Теорема 9.13.6 (формула размерности). Пусть U, W — линейные подпространства в K V, dim {}_K V=n<infty. Тогда

dim {}_K U+dim {}_K W = dim {}_K (Ucap W) + dim {}_K (U+W),

или, что эквивалентно,

dim {}_K (U+W) = dim {}_K U+dim {}_K W - dim {}_K (Ucap W).

Доказательство. Пусть dim {}_K (Ucap W)=d, dim {}_K U=s, dim {}_K W=t. Ясно, что 0 leq d leq s, d leq t. При d=0 утверждение очевидно (объединение базисов в U и W дает базис в U+W ). Выберем базис v1,…,vd линейного пространства Ucap W и дополним его до базиса v1,…,vd,u1,…,us-d линейного пространства U и до базиса v1,…,vd,w1,…,wt-d линейного пространства W. Ясно, что

U+W=langle v_1,...,v_d,u_1,...,u_{s-d},w_1,...,w_{t-d}rangle.

Если

lambda_1 v_1 +...+lambda_d v_d + mu_1 u_1 +...+ mu_{s-d} u_{s-d} + gamma_1 w_1 +...+ gamma_{t-d}w_{t-d}=0,

то

sum_{i=1}^{d}lambda_i v_i + 
sum_{j=1}^{s-d} mu_j u_j = -sum_{k=1}^{t-d} 
gamma_k w_k in Ucap W,

поэтому mu_1=...=mu_{s-d}=0, gamma_1=...=gamma_{t-d}=0. Следовательно, lambda_1=...=lambda_d=0. Таким образом,

{v_1,...,v_d,u_1,...,u_{s-d},w_1,...,w_{t-d}}text{  -}

базис линейного подпространства U+W, откуда s+t = d+(s-d)+d+(t-d)=d+(d+(s-d)+(t-d)),
поэтому

dim {}_K U+dim {}_K W=dim {}_K Ucap W + dim {}_K (U+W).

Теорема 9.13.7 (о существовании прямого дополнения подпространства). Пусть dim {}_K V=n<infty, U — линейное подпространство в K V. Тогда существует линейное подпространство W в K V такое, что

U+W=V,quad Ucap W={0},

(называемое прямым дополнением подпространства U в K V ; в этом случае также говорят, что линейное пространство K V является прямой суммой линейных подпространств U и W, обозначение: {}_K V=Uoplus W ).

Доказательство. Если dim {}_K U=r и {u1,…,ur} базис в K U, то дополним его до базиса линейного пространства K V: u1,…,ur,v1,…,vn-r. Пусть W=langle v_1,...,v_{n-r}rangle. Тогда K V=U+W, Ucap W={0}.

Замечание 9.13.8. Конечно, прямое дополнение определено неоднозначно, однако все прямые дополнения линейного пространства изоморфны (а именно, все они имеют размерность dim {}_K V-dim {}_K U ).

Замечание 9.13.9. Если {}_K V=Uoplus W, то представление элемента vin V в виде v=u+w, uin U, win W, определено однозначно (действительно, если v=u+w=u’+w’, u'in U, w'in W, то u-u'=w'-win Ucap W={0}, следовательно, u=u’, w=w’ ), и поэтому линейное пространство {}_K V=Uoplus W изоморфно emph{внешней прямой} сумме {(u,w)mid uin U, win W} линейных пространств K U и K W с естественными операциями сложения пар и их умножения на cin K.

Пример 9.13.10 (прямого разложения). Пусть

begin{gathe}
V=mM_n( R),quad U={Ain M_n( R)mid A^*=A},\
W={Ain M_n( R)mid A^*=-A}.
end{gathe}

Тогда

{}_{ R} V=Uoplus W.

Действительно, A=frac{A+A^*}{2}+frac{A-A^*}{2}. Если A=A*=-A, то A=0in mM_n( R).

Понравилась статья? Поделить с друзьями:
  • Как найти видео рапунцель
  • Как найти свои действующие кредиты
  • Как составить мандалу на год
  • Как найти архив в вотсапе на андроиде
  • Высота биссектриса медиана треугольника как найти