Как найти разность арифметической прогрессии зная сумму

Разность арифметической прогрессии

Арифметическая прогрессия представляет собой последовательность чисел, каждая из которых, начиная со второй, отличается от предыдущей тем же числом d, которое называется разностью прогрессии.

Другими словами, разница в арифметической прогрессии — это разница между следующим и предыдущим членами прогрессии.

Если Арифметическая прогрессия является арифметической прогрессией, а an является ее n-м членом, то разность
Разность арифметической прогрессии .

В случае, когда известны первый a1 и n-й an члены прогрессии, разность d может быть найдена следующим образом:

Разность арифметической прогрессии

Если известны сумма первых n членов и первый элемент прогрессии, разность рассчитывается по следующей формуле:

Разность арифметической прогрессии

Онлайн калькулятор позволяет найти разность арифметической прогрессии, зная сумму первых n членов и первый элемент прогрессии.

Поделиться страницей в социальных сетях:

Арифметическая прогрессия — коротко о главном

Определение арифметической прогрессии:

Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна ( displaystyle d).

Например:

  • ( {{a}_{1}}=3)
  • ( displaystyle {{a}_{2}}=3+d=7~Rightarrow d=7-3=4)
  • ( displaystyle {{a}_{3}}=7+4=11) и т.д.

Арифметическая прогрессия бывает возрастающей (( displaystyle d>0)) и убывающей (( displaystyle d<0)).

Формула нахождения n-ого члена арифметической прогрессии:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) , где ( displaystyle n)– количество чисел в прогрессии.

Как найти член прогрессии, если известны его соседние члены:

( {{text{a}}_{text{n}}}=frac{{{text{a}}_{text{n}+1}}+{{text{a}}_{text{n}-1}}}{2}) — где ( displaystyle n) – количество чисел в прогрессии.

Сумма членов арифметической прогрессии:

1-й способ: ( {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

2-й способ: ( displaystyle {{s}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.

Это и есть пример числовой последовательности.

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.

Число с номером ( displaystyle n) называется ( displaystyle n)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).

Арифметическая прогрессия — определения

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.

Например:

( begin{array}{l}{{a}_{1}}=3\{{a}_{2}}=3+d=7~~~Rightarrow ~d=7-3=4\{{a}_{3}}=7+4=11end{array})

Такая числовая последовательность называется арифметической прогрессией.

Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.

Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

  • ( displaystyle 3;text{ }6;text{ }9;text{ }12;text{ }15;text{ }17ldots )
  • ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
  • ( displaystyle -5;text{ }-1;text{ }3;text{ }7;text{ }11;text{ }15ldots )
  • ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots )

Разобрался? Сравним наши ответы:

Является арифметической прогрессией – 2, 3.

Не является арифметической прогрессией – 1, 4.

Вернемся к заданной прогрессии (( displaystyle 3;text{ }7;text{ }11;text{ }15;text{ }19ldots )) и попробуем найти значение ее 6-го члена.

Существует два способа его нахождения.

Нахождения n-ого члена арифметической прогрессии

Способ I

Мы можем прибавлять к предыдущему значению числа прогрессии ( d=4) , пока не дойдем до ( displaystyle 6)-го члена прогрессии. Хорошо, что суммировать нам осталось немного – всего три значения:

( begin{array}{l}{{a}_{4}}=11+4=15\{{a}_{5}}=15+4=19\{{a}_{6}}=19+4=23end{array})

Итак, 6-ой член описанной арифметической прогрессии равен 23.

Способ II

А что если нам нужно было бы найти значение ( displaystyle 140)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.

А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.

Это и есть математика!

Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка. 

Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.

Что мы знаем?

  • У нас есть арифметическая прогрессия: 3, 7, 11, 15, 19 и т.д.
  • У нас есть номера прогрессии: 1, 2, 3, 4, 5, и т.д.
  • Мы все время прибавляем 4, значит разница прогрессии d = 4.

Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.

7=3+4 или 7=3+d

Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?

11=3+4+4 или 11=3+d+d

Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.

Давай проверим? Чему равен 4-й член арифметической прогрессии?

15=3+4+4+4 или 15=3+d+d+d

Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!

Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа. 

А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.

Например, посмотрим, из чего складывается значение ( displaystyle 4)-го члена данной арифметической прогрессии:

( begin{array}{l}{{a}_{4}}={{a}_{1}}+dleft( 4-1 right)\{{a}_{4}}=3+4left( 4-1 right)=15end{array})

Попробуй самостоятельно найти таким способом значение члена ( displaystyle n=6) данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

( begin{array}{l}{{a}_{6}}={{a}_{1}}+dleft( 6-1 right)\{{a}_{6}}=3+4left( 6-1 right)=3+4cdot 5=3+20=23end{array})

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли ( displaystyle d) к предыдущему значению членов арифметической прогрессии.

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) – уравнение арифметической прогрессии.

Кстати, таким образом мы можем посчитать и ( displaystyle 140)-ой член данной арифметической прогрессии (да и ( displaystyle 169)-ый тоже можем, да и любой другой вычислить совсем несложно).

Попробуй посчитать значения ( displaystyle 140)-го и ( displaystyle 169)-го членов, применив полученную формулу.

( begin{array}{l}…\{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=3+4left( 140-1 right)=3+4cdot 139=3+556=559\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=3+4left( 169-1 right)=3+4cdot 168=3+672=675end{array})

Возрастающие и убывающие арифметические прогрессии

Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего. 

Например:

( displaystyle begin{array}{l}4;text{ }6;text{ }8;text{ }10;text{ }12\-2;text{ }4;text{ }10;text{ }16;text{ }20end{array})

Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего. 

Например:

( displaystyle begin{array}{l}12;text{ }10;text{ }8;text{ }6;text{ }4\4;text{ }0;text{ }-4;text{ }-8;text{ }-12.end{array})

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.

Проверим это на практике.

Нам дана арифметическая прогрессия, состоящая из следующих чисел: ( displaystyle 13;text{ }8;text{ }4;text{ }0;text{ }-4.)

Проверим, какое получится ( displaystyle 4)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:

( {{text{a}}_{text{n}}}={{text{a}}_{1}}+text{d}left( text{n}-1 right))

Заметим, что так как арифметическая прогрессия убывающая, то значение ( displaystyle d) будет отрицательным, ведь каждый последующий член меньше предыдущего.

( displaystyle d=8-13=-5)

( {{a}_{4}}={{a}_{1}}+dleft( 4-1 right))

Так как ( displaystyle d=-5), то:
( {{a}_{4}}=13-5left( 4-1 right)=13-15=-2)

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.

Попробуй самостоятельно найти ( displaystyle 140)-ой и ( displaystyle 169)-ый члены этой арифметической прогрессии.

Сравним полученные результаты:

( begin{array}{l}{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=13-5left( 140-1 right)=13-5cdot 139=13-695=-682\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=13-5left( 169-1 right)=13-5cdot 168=13-840=-827end{array})

Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)

Усложним задачу — выведем свойство арифметической прогрессии.

Допустим, нам дано такое условие:

( displaystyle 4;text{ }x;text{ }12ldots ) — арифметическая прогрессия, найти значение ( displaystyle x).

Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Пусть ( displaystyle {{a}_{1}}=4), а ( displaystyle {{a}_{3}}=12), тогда:

( displaystyle begin{array}{l}{{a}_{3}}={{a}_{1}}+dleft( 3-1 right)\12=4+2d~~Rightarrow ~d=frac{12-4}{2}=4\{{a}_{2}}=x={{a}_{1}}+d\{{a}_{2}}=x=4+4=8end{array})

Абсолютно верно.

Получается, мы сначала находим ( displaystyle d), потом прибавляем его к первому числу и получаем искомое ( displaystyle x).

Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа ( displaystyle 4024;~x;6072)?

Согласись, есть вероятность ошибиться в вычислениях.

А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?

Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как ( {{text{a}}_{text{n}}}), формула его нахождения нам известна – это та самая формула, выведенная нами в начале:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)), тогда:

  • предыдущий член прогрессии это ( {{a}_{n}}-d): ( {{a}_{n-1}}={{a}_{1}}+dleft( n-1 right)-d)
  • последующий член прогрессии это ( {{a}_{n}}+d): ( {{a}_{n+1}}={{a}_{1}}+dleft( n-1 right)+d)

Просуммируем предыдущий и последующий члены прогрессии:

( {{a}_{1}}+dleft( n-1 right)-d+{{{a}}_{1}}+text{d}left( text{n}-1 right)+text{d}=2left( {{a}_{1}}+dleft( n-1 right) right)text{ }!!~!!text{ })

Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.

Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на ( 2).

( {{a}_{n}}=frac{{{a}_{n+1}}+{{a}_{n-1}}}{2}) – свойство членов арифметической прогрессии.

Попробуем посчитать значение ( x), используя выведенную формулу:

( x=frac{4+12}{2}=8)

Все верно, мы получили это же число. Закрепим материал.

Посчитай значение ( x) для прогрессии ( displaystyle 4024;~x;6072) самостоятельно, ведь это совсем несложно.

( x=frac{4024+6072}{2}=5048)

Молодец! Ты знаешь о прогрессии почти все!

Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…

Сумма первых n членов арифметической прогрессии

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:

«Сосчитать сумму всех натуральных чисел от ( displaystyle 1) до ( displaystyle 40) (по другим источникам до ( displaystyle 100)) включительно».

Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.

Допустим, у нас есть арифметическая прогрессия, состоящая из ( displaystyle 6)-ти членов: ( displaystyle 6;text{ }8;text{ }10;text{ }12;text{ }14;text{ }16…)

Нам необходимо найти сумму данных ( displaystyle 6) членов арифметической прогрессии.

Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ( displaystyle 100) ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.

Попробовал? Что ты заметил? Правильно! Их суммы равны

А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?

Конечно, ровно половина всех чисел, то есть ( frac{6}{2}=3).

Исходя из того, что сумма двух членов арифметической прогрессии равна ( 22), а подобных равных пар ( 3), мы получаем, что общая сумма равна:

( displaystyle Stext{ }=text{ }22cdot 3text{ }=text{ }66).

Таким образом, формула для суммы первых ( displaystyle n) членов любой арифметической прогрессии будет такой:

( displaystyle {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

В некоторых задачах нам неизвестен ( displaystyle n)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу ( displaystyle n)-го члена. ( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Что у тебя получилось?

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма ( displaystyle 40) чисел, начиная от ( displaystyle 1)-го, и сумма ( displaystyle 100) чисел начиная от ( displaystyle 1)-го.

Сколько у тебя получилось?

У Гаусса получилось, что сумма ( displaystyle 100 ) членов равна ( displaystyle 5050), а сумма ( displaystyle 40 ) членов ( displaystyle 820).

Так ли ты решал?

  • ( {{S}_{40}}=frac{left( 1+40 right)cdot 40}{2}=frac{41cdot 40}{2}=frac{1640}{2}=820)
  • ( {{S}_{100}}=frac{left( 1+100 right)cdot 100}{2}=frac{101cdot 100}{2}=5050)

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.

Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.

Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется ( displaystyle 6) блочных кирпичей.

Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом:

( displaystyle 6;text{ }5;text{ }4;text{ }3;text{ }2; 1).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\~~{{S}_{6}}=frac{left( 6+1 right)cdot 6}{2}=frac{7cdot 6}{2}=21\~end{array})

Способ 2.

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n)

( {{S}_{n}}=frac{2cdot 6+1left( 6-1 right)}{2}cdot 6=frac{12+5cdot 6}{2}=frac{7cdot 6}{2}=frac{42}{2}=21)

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.

Сошлось?

Молодец, ты освоил сумму ( displaystyle n)-ных членов арифметической прогрессии.

Конечно, из ( displaystyle 6) блоков в основании пирамиду не построишь, а вот из ( displaystyle 60)?

Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.

Справился?

Верный ответ – ( displaystyle 1830) блоков:

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\{{S}_{60}}=frac{left( 60+1 right)cdot 60}{2}=frac{61cdot 60}{2}=61cdot 30=1830.end{array})

На этой странице вы узнаете

  • Как правильно расставить шары для бильярда в начале игры? 
  • Как Карл Гаусс удивил своего учителя по математике?

Считаем ли мы овец перед сном, добавляем по монетке в копилку или достаем сухарик из упаковки — каждый раз мы интуитивно применяем законы математики, которые рассмотрим в этой статье.

Понятие арифметической прогрессии 

Арифметическая прогрессия является видом «Числовых последовательностей». 

У арифметической прогрессии есть особенность: каждый следующий член отличается от предыдущего на одно и то же число. В последовательности 1, 2, 3, 4 и так далее — члены отличаются друг от друга на единицу. 

Арифметическая прогрессия — последовательность чисел, в которой каждый член, начиная со второго, равен сумме предыдущего члена и разности прогрессии. 

Разность прогрессии — то число, на которое отличаются члены прогрессии друг от друга. Разность прогрессии обозначается буквой d. 

Арифметическую прогрессию можно задать формулой. 

an+1 = an + d

Например, если мы хотим найти третий член арифметической прогрессии, то нужно воспользоваться формулой: a3 = a2 + d

Однако бывает, что известны только первый член прогрессии и ее разность. Как быть в этом случае?

Разберемся на примере. Допустим, мы читаем книгу. Количество прочитанных страниц может быть задано с помощью арифметической прогрессии, в которой разность прогрессии и первый ее член равны 1. 

Мы прочитали 10 страниц. Десятая страница будет десятым членом прогрессии. Это 1 + 1 + 1 + 1 +1 + 1 + 1 + 1 + 1 + 1 страниц, если считать их по отдельности. 

Выделим первую страницу отдельно: 1 + (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) = 1 + 9 = 1 + 1 * 9 

Теперь заменим десятый член прогрессии, первый член прогрессии и ее разность на буквенные обозначения: a10 = a1 + 9 * d.

Заметим, что множитель перед d на один меньше, чем порядковый номер искомого члена прогрессии. Тогда получаем: a10 = a1 + (10 — 1) * d

Мы можем вывести формулу для n-го члена прогрессии. А выглядит она так. 

an = a1 + d(n — 1)

Как правильно расставить шары для бильярда в начале игры?

Вспомним расстановку шаров в бильярде. Они ставятся в пять рядов, причем в первом ряду один шар, а в пятом — пять. 

Тогда, чтобы правильно разместить 15 шаров, нужно воспользоваться арифметической прогрессией. В каждом следующем ряду будет на один шар больше, следовательно, во втором ряду имеем 1 + 1 = 2 шара, в третьем ряду 2 + 1 = 3 шара, а в четвертом 3 + 1 = 4. 

Расставленные таким образом шары образуют форму треугольника. 

Допустим, мы хотим купить джинсы. В магазине представлены три ценовых категорий, которые отличаются друг от друга на одинаковую сумму. Мы знаем, что самые дешевые джинсы стоят 1000 рублей, а самые дорогие 3000 рублей. Как найти, сколько стоят джинсы во второй ценовой категории?

Попробуем найти разность арифметической прогрессии. 

Джинсы во второй категории будут стоить 1000 + d, а чтобы найти стоимость третьей категории, нужно прибавить разность прогрессии ко второй категории. Получаем 1000 + d + d = 1000 + 2d.

Мы знаем, что самые дорогие джинсы стоят 3000 рублей. Получаем уравнение 1000 + 2d = 3000, откуда можем выразить разность прогрессии:

(d = frac{3000 — 1000}{2} = 1000)

Тогда джинсы во второй ценовой категории будут стоить 1000 + 1000 = 2000 рублей. 

Можно ли как-то найти это значение, не прибегая к таким большим рассуждениям? Для этого достаточно найти среднее арифметическое двух соседних членов. 

(a_n = frac{a_{n-1} + a_{n+1}}{2})

Докажем это. Если рассмотреть член аn, то член до него будет равен an — 1 = an — d, а член после него an + 1 = an + d. Тогда их среднее арифметическое равно (frac{a_{n — 1} + a_{n+1}}{2} = frac{a_n — d + a_n + d}{2} = frac{2a_n}{2} = an). 

Проверим на нашей задаче. 

(a_2 = frac{a_1 + a_3}{2} = frac{1000 + 3000}{2} = frac{4000}{2} = 2000). Все верно. 

Чтобы найти разность прогрессии, достаточно вычесть из любого члена прогрессии предыдущий к нему. 

d = an+1 — an

Найдем сумму всех членов арифметической прогрессии. Разумеется, их можно сложить: a1 + a2 + a3 + … + an. Но тогда нужно вычислять все члены прогрессии, а их может быть очень много. 

В этом случае используется формула суммы арифметической прогрессии. Ее удобство в том, что используются только первый и последний член прогрессии. 

(S_n = frac{a_1 + a_n}{2} * n)

Немного преобразуем формулу: 

(S_n = frac{a_1 + a_n}{2} * n = frac{a_1 + a_1 + d(n — 1)}{2} * n = frac{2a_1 + d(n — 1)}{2} * n) — это формула суммы членов арифметической прогрессии через первый член и ее разность. 

Решим небольшую задачу. Марина решила сделать картину из страз. По схеме у нее есть 15 рядов, в каждом из которых страз на три больше, чем в предыдущем. В первом ряду 6 страз. Сколько всего страз понадобится, чтобы выложить эти ряды?

Воспользуемся формулой арифметической прогрессии. Но прежде найдем, сколько страз в последнем, пятнадцатом ряду:

a15 = 6 + 3 * (15 + 1) = 6 + 3 * 14 = 6 + 42 = 48

Тогда по формуле суммы арифметической прогрессии всего Марине понадобится: 

(S_{15} = frac{6 + 48}{2} * 15 = frac{54}{2} * 15 = 27 * 15 = 405) страз. 

Как Карл Гаусс удивил своего учителя по математике?

Карл Гаусс — немецкий математик, живший в 18–19 веках. На одном из уроков математики учитель задал сложить все цифры от 1 до 100. 

Карл Гаусс заметил, что суммы чисел с противоположных сторон одинаковые: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 и так далее. Всего таких сумм получилось 50. Следовательно, быстро вычислить сумму этих цифр можно было как произведение 101 * 50. 

Такой способ работает для любой арифметической прогрессии.
Внимательно посмотрим на сумму арифметической прогрессии. Пусть a1 = 1, a100 = 100, n = 100. Тогда получаем:
(S_{100} = frac{1 + 100}{2} * 100 = 101 * 50), то есть Карл Гаусс использовал сумму арифметической прогрессии, сам того не зная. 

Виды арифметических прогрессий

Существует всего три вида арифметической прогрессии. 

1. Возрастающая арифметическая прогрессия. 

Разность прогрессии — положительное число, то есть d > 0, а каждый следующий член прогрессии больше предыдущего. 

Прогрессия 2, 4, 6, 8 является возрастающей. 

2. Убывающая арифметическая прогрессия. 

Разность прогрессии — отрицательное число, то есть d < 0, а каждый следующий член прогрессии меньше предыдущего. 

Примером убывающей арифметической прогрессии может служить 100, 95, 90, 85 и так далее.  

3. Стационарная арифметическая прогрессия. 

В этой арифметической прогрессии разность будет равна 0, то есть d = 0. Следовательно, члены прогрессии не будут отличаться друг от друга. 

Например, прогрессия 3, 3, 3, 3, 3 будет являться стационарной. 

Фактчек

  • Арифметическая прогрессия — последовательность чисел, в которой каждый член, начиная со второго, равен сумме предыдущего члена и разности прогрессии. 
  • Разность арифметической прогрессии — это число, на которое отличаются члены прогрессии. 
  • Чтобы найти n-ый член прогрессии, необходимо воспользоваться одной из трех формул: an+1 = an + d, an = a1 + d(n — 1) или (a_n = frac{a_{n-1} + a_{n+1}}{2}). 
  • Чтобы найти разность прогрессии, достаточно из любого члена прогрессии вычесть предыдущий ему член прогрессии. 
  • По формуле (S_n = frac{a_1 + a_n}{2} * n) можно найти сумму n членов прогрессии. 
  • Арифметическая прогрессия может быть убывающей, возрастающей или стационарной. 

Проверь себя

Задание 1. 
Какая прогрессия является арифметической?

  1. 3, 7, 11, 15
  2. 1, 1, 2, 3, 5
  3. 2, 4, 8, 16
  4. 1, 4, 16, 25

Задание 2. 
Первый член арифметической прогрессии равен 10, а ее разность равна -5. Найдите семнадцатый член арифметической прогрессии. 

  1. Семнадцатого члена такой арифметической прогрессии не существует
  2. 0
  3. −70
  4. −75 

Задание 3. 
Пятый член арифметической прогрессии равен 16, а седьмой член равен 20. Найдите шестой член арифметической прогрессии. 

  1. 2
  2. 18
  3. 17,5
  4. Невозможно найти шестой член арифметической прогрессии. 

Задание 4. 
Каждый день Миша катается на велосипеде, причем с каждым разом увеличивает расстояние на 2 км. В первый день он проехал 3 км. Сколько всего км проедет Миша за пять дней?

  1. 14
  2. 17
  3. 11
  4. 35

Ответы: 1. — 1 2. — 3 3. — 2 4. — 4

Многие слышали об арифметической прогрессии, но не все хорошо представляют, что это такое. В данной статье дадим соответствующее определение, а также рассмотрим вопрос, как найти разность прогрессии арифметической, и приведем ряд примеров.

Математическое определение

Итак, если речь идет о прогрессии арифметической или алгебраической (эти понятия определяют одно и то же), то это означает, что имеется некоторый числовой ряд, удовлетворяющий следующему закону: каждые два соседних числа в ряду отличаются на одно и то же значение. Математически это записывается так:

an + 1-an = d

Здесь n означает номер элемента an в последовательности, а число d — это разность прогрессии (ее название следует из представленной формулы).

О чем говорит знание разности d? О том, как «далеко» друг от друга отстоят соседние числа. Однако знание d является необходимым, но не достаточным условием для определения (восстановления) всей прогрессии. Необходимо знать еще одно число, которым может быть совершенно любой элемент рассматриваемого ряда, например, a4, a10, но, как правило, используют первое число, то есть a1.

Прогрессия при строительстве пирамид

Формулы для определения элементов прогрессии

В общем, информации выше уже достаточно, чтобы переходить к решению конкретных задач. Тем не менее до того, как будет дана прогрессия арифметическая, и найти разность ее будет необходимо, приведем пару полезных формул, облегчив тем самым последующий процесс решения задач.

Несложно показать, что любой элемент последовательности с номером n может быть найден следующим образом:

an = a1 + (n — 1) * d

Действительно, проверить эту формулу может каждый простым перебором: если подставить n = 1, то получится первый элемент, если подставить n = 2, тогда выражение выдает сумму первого числа и разности, и так далее.

Формула для n-го члена

Условия многих задач составляются таким образом, что по известной паре чисел, номера которых в последовательности также даны, необходимо восстановить весь числовой ряд (найти разность и первый элемент). Сейчас мы решим эту задачу в общем виде.

Итак, пусть даны два элемента с номерами n и m. Пользуясь полученной выше формулой, можно составить систему из двух уравнений:

an = a1 + (n — 1) * d;

am = a1 + (m — 1) * d

Для нахождения неизвестных величин воспользуемся известным простым приемом решения такой системы: вычтем попарно левую и правую части, равенство при этом останется справедливым. Имеем:

an = a1 + (n — 1) * d;

an — am = (n — 1) * d — (m — 1) * d = d * (n — m)

Таким образом, мы исключили одну неизвестную (a1). Теперь можно записать окончательное выражение для определения d:

d = (an — am) / (n — m), где n > m

Мы получили очень простую формулу: чтобы вычислить разность d в соответствии с условиями задачи, необходимо лишь взять отношение разностей самих элементов и их порядковых номеров. Следует обратить на один важный момент внимание: разности берутся между «старшим» и «младшим» членами, то есть n > m («старший» — имеется в виду стоящий дальше от начала последовательности, его абсолютное значение может быть как больше, так и меньше более «младшего» элемента).

Выражение для разности d прогрессии следует подставить в любое из уравнений в начале решения задачи, чтобы получить значение первого члена.

Преобразования для арифметической прогрессии

Далее в статье приведем примеры решения задач на вычисления d и на восстановление числового ряда алгебраической прогрессии. Здесь же хотелось бы отметить один важный момент.

В наш век развития компьютерных технологий многие школьники стараются найти решения для своих заданий в Интернете, поэтому часто возникают вопросы такого типа: найти разность арифметической прогрессии онлайн. По подобному запросу поисковик выдаст ряд web-страниц, перейдя на которые, нужно будет ввести известные из условия данные (это могут быть как два члена прогрессии, так и сумма некоторого их числа) и моментально получить ответ. Тем не менее такой подход к решению задачи является непродуктивным в плане развития школьника и понимания сути поставленной перед ним задачи.

Рекомендуется по указанным причинам самостоятельно решать подобные задачи. Кроме того, они не являются сложными.

Решение без использования формул

Номера домов - арифметическая прогрессия

Решим первую задачу, при этом не будем использовать никакие из приведенных формул. Пусть даны элементы ряда: а6 = 3, а9 = 18. Найти разность прогрессии арифметической.

Известные элементы стоят близко друг к другу в ряду. Сколько раз нужно добавить разность d к наименьшему, чтобы получить наибольшее из них? Три раза (первый раз добавив d, мы получим 7-й элемент, второй раз — восьмой, наконец, третий раз — девятый). Какое число нужно добавить к трем три раза, чтобы получить 18? Это число пять. Действительно:

3 + 5 + 5 + 5 = 18

Таким образом, неизвестная разность d = 5.

Конечно же, решение можно было выполнить с применением соответствующей формулы, но этого не было сделано намеренно. Подробное объяснение решения задачи должно стать понятным и ярким примером, что такое арифметическая прогрессия.

Задача, подобная предыдущей

Теперь решим похожую задачу, но изменим входные данные. Итак, следует найти разность прогрессии арифметической, если а3 = 2, а9 = 19.

Конечно, можно прибегнуть снова к методу решения «в лоб». Но поскольку даны элементы ряда, которые стоят относительно далеко друг от друга, такой метод станет не совсем удобным. А вот использование полученной формулы быстро приведет нас к ответу:

d = (а9 — а3) / (9 — 3) = (19 — 2) / (6) = 17 / 6 ≈ 2,83

Здесь мы округлили конечное число. Насколько это округление привело к ошибке, можно судить, проверив полученный результат:

a9 = a3 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 = 18,98

Этот результат отличается всего на 0,1 % от значения, данного в условии. Поэтому использованное округление до сотых можно считать успешным выбором.

Задачи на применение формулы для an члена

Элементы арифметической прогрессии

Рассмотрим классический пример задачи на определение неизвестной d: найти разность прогрессии арифметической, если а1 = 12, а5 = 40.

Когда даны два числа неизвестной алгебраической последовательности, причем одним из них является элемент a1, тогда не нужно долго думать, а следует сразу же применить формулу для an члена. В данном случае имеем:

a5 = a1 + d * (5 — 1) => d = (a5 — a1) / 4 = (40 — 12) / 4 = 7

Мы получили точное число при делении, поэтому нет смысла проверять точность рассчитанного результата, как это было сделано в предыдущем пункте.

Решим еще одну аналогичную задачу: следует найти разность арифметической прогрессии, если а1 = 16, а8 = 37.

Используем аналогичный предыдущему подход и получаем:

a8 = a1 + d * (8 — 1) => d = (a8 — a1) / 7 = (37 — 16) / 7 = 3

Что еще следует знать о прогрессии арифметической

Помимо задач на нахождение неизвестной разности или отдельных элементов, часто необходимо решать проблемы суммы первых членов последовательности. Рассмотрение этих задач выходит за рамки темы статьи, тем не менее для полноты информации приведем общую формулу для суммы n чисел ряда:

ni = 1(ai) = n * (a1 + an) / 2

Арифметическая прогрессия: что это такое?

5 января 2017

  • Тренировочные задачи
  • Ответы и решения

Да, да: арифметическая прогрессия — это вам не игрушки :)

Что ж, друзья, если вы читаете этот текст, то внутренний кэп-очевидность подсказывает мне, что вы пока ещё не знаете, что такое арифметическая прогрессия, но очень (нет, вот так: ОООООЧЕНЬ!) хотите узнать. Поэтому не буду мучать вас длинными вступлениями и сразу перейду к делу.

Для начала парочка примеров. Рассмотрим несколько наборов чисел:

  • 1; 2; 3; 4; …
  • 15; 20; 25; 30; …
  • $sqrt{2}; 2sqrt{2}; 3sqrt{2};…$

Что общего у всех этих наборов? На первый взгляд — ничего. Но на самом деле кое-что есть. А именно: каждый следующий элемент отличается от предыдущего на одно и то же число.

Судите сами. Первый набор — это просто идущие подряд числа, каждое следующее на единицу больше предыдущего. Во втором случае разница между рядом стоящими числами уже равна пяти, но эта разница всё равно постоянна. В третьем случае вообще корни. Однако $2sqrt{2}=sqrt{2}+sqrt{2}$, а $3sqrt{2}=2sqrt{2}+sqrt{2}$, т.е. и в этом случае каждый следующий элемент просто возрастает на $sqrt{2}$ (и пусть вас не пугает, что это число — иррациональное).

Так вот: все такие последовательности как раз и называются арифметическими прогрессиями. Дадим строгое определение:

Определение. Последовательность чисел, в которой каждое следующее отличается от предыдущего ровно на одну и ту же величину, называется арифметической прогрессией. Сама величина, на которую отличаются числа, называется разностью прогрессии и чаще всего обозначается буквой $d$.

Обозначение: $left( {{a}_{n}} right)$ — сама прогрессия, $d$ — её разность.

И сразу парочка важных замечаний. Во-первых, прогрессией считается лишь упорядоченная последовательность чисел: их разрешено читать строго в том порядке, в котором они записаны — и никак иначе. Переставлять и менять местами числа нельзя.

Во-вторых, сама последовательность может являться как конечной, так и бесконечной. К примеру, набор {1; 2; 3} — это, очевидно, конечная арифметическая прогрессия. Но если записать что-нибудь в духе {1; 2; 3; 4; …} — это уже бесконечная прогрессия. Многоточие после четвёрки как бы намекает, что дальше идёт ещё довольно много чисел. Бесконечно много, например.:)

Ещё хотел бы отметить, что прогрессии бывают возрастающими и убывающими. Возрастающие мы уже видели — тот же набор {1; 2; 3; 4; …}. А вот примеры убывающих прогрессий:

  • 49; 41; 33; 25; 17; …
  • 17,5; 12; 6,5; 1; −4,5; −10; …
  • $sqrt{5}; sqrt{5}-1; sqrt{5}-2; sqrt{5}-3;…$

Ладно, ладно: последний пример может показаться чересчур сложным. Но остальные, думаю, вам понятны. Поэтому введём новые определения:

Определение. Арифметическая прогрессия называется:

  1. возрастающей, если каждый следующий элемент больше предыдущего;
  2. убывающей, если, напротив, каждый последующий элемент меньше предыдущего.

Кроме того, существуют так называемые «стационарные» последовательности — они состоят из одного и того же повторяющегося числа. Например, {3; 3; 3; …}.

Остаётся лишь один вопрос: как отличить возрастающую прогрессию от убывающей? К счастью, тут всё зависит лишь от того, каков знак числа $d$, т.е. разности прогрессии:

  1. Если $d gt 0$, то прогрессия возрастает;
  2. Если $d lt 0$, то прогрессия, очевидно, убывает;
  3. Наконец, есть случай $d=0$ — в этом случае вся прогрессия сводится к стационарной последовательности одинаковых чисел: {1; 1; 1; 1; …} и т.д.

Попробуем рассчитать разность $d$ для трёх убывающих прогрессий, приведённых выше. Для этого достаточно взять любые два соседних элемента (например, первый и второй) и вычесть из числа, стоящего справа, число, стоящее слева. Выглядеть это будет вот так:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $sqrt{5}-1-sqrt{5}=-1$.

Как видим, во всех трёх случаях разность действительно получилась отрицательной. И теперь, когда мы более-менее разобрались с определениями, пора разобраться с тем, как описываются прогрессии и какие у них свойства.

Члены прогрессии и рекуррентная формула

Поскольку элементы наших последовательностей нельзя менять местами, их можно пронумеровать:

[left( {{a}_{n}} right)=left{ {{a}_{1}}, {{a}_{2}},{{a}_{3}},… right}]

Отдельные элементы этого набора называются членами прогрессии. На них так и указывают с помощью номера: первый член, второй член и т.д.

Кроме того, как мы уже знаем, соседние члены прогрессии связаны формулой:

[{{a}_{n}}-{{a}_{n-1}}=dRightarrow {{a}_{n}}={{a}_{n-1}}+d]

Короче говоря, чтобы найти $n$-й член прогрессии, нужно знать $n-1$-й член и разность $d$. Такая формула называется рекуррентной, поскольку с её помощью можно найти любое число, лишь зная предыдущее (а по факту — все предыдущие). Это очень неудобно, поэтому существует более хитрая формула, которая сводит любые вычисления к первому члену и разности:

[{{a}_{n}}={{a}_{1}}+left( n-1 right)d]

Наверняка вы уже встречались с этой формулой. Её любят давать во всяких справочниках и решебниках. Да и в любом толковом учебнике по математике она идёт одной из первых.

Тем не менее предлагаю немного потренироваться.

Задача №1. Выпишите первые три члена арифметической прогрессии $left( {{a}_{n}} right)$, если ${{a}_{1}}=8,d=-5$.

Решение. Итак, нам известен первый член ${{a}_{1}}=8$ и разность прогрессии $d=-5$. Воспользуемся только что приведённой формулой и подставим $n=1$, $n=2$ и $n=3$:

[begin{align} & {{a}_{n}}={{a}_{1}}+left( n-1 right)d; \ & {{a}_{1}}={{a}_{1}}+left( 1-1 right)d={{a}_{1}}=8; \ & {{a}_{2}}={{a}_{1}}+left( 2-1 right)d={{a}_{1}}+d=8-5=3; \ & {{a}_{3}}={{a}_{1}}+left( 3-1 right)d={{a}_{1}}+2d=8-10=-2. \ end{align}]

Ответ: {8; 3; −2}

Вот и всё! Обратите внимание: наша прогрессия — убывающая.

Конечно, $n=1$ можно было и не подставлять — первый член нам и так известен. Впрочем, подставив единицу, мы убедились, что даже для первого члена наша формула работает. В остальных случаях всё свелось к банальной арифметике.

Задача №2. Выпишите первые три члена арифметической прогрессии, если её седьмой член равен −40, а семнадцатый член равен −50.

Решение. Запишем условие задачи в привычных терминах:

[{{a}_{7}}=-40;quad {{a}_{17}}=-50.]

Далее распишем 7-й и 17-й члены через формулу $n$-го члена прогрессии:

[left{ begin{align} & {{a}_{7}}={{a}_{1}}+6d \ & {{a}_{17}}={{a}_{1}}+16d \ end{align} right.]

[left{ begin{align} & {{a}_{1}}+6d=-40 \ & {{a}_{1}}+16d=-50 \ end{align} right.]

Знак системы я поставил потому, что эти требования должны выполняться одновременно. А теперь заметим, если вычесть из второго уравнения первое (мы имеем право это сделать, т.к. у нас система), то получим вот что:

[begin{align} & {{a}_{1}}+16d-left( {{a}_{1}}+6d right)=-50-left( -40 right); \ & {{a}_{1}}+16d-{{a}_{1}}-6d=-50+40; \ & 10d=-10; \ & d=-1. \ end{align}]

Вот так просто мы нашли разность прогрессии! Осталось подставить найденное число в любое из уравнений системы. Например, в первое:

[begin{matrix} {{a}_{1}}+6d=-40;quad d=-1 \ Downarrow \ {{a}_{1}}-6=-40; \ {{a}_{1}}=-40+6=-34. \ end{matrix}]

Теперь, зная первый член и разность, осталось найти второй и третий член:

[begin{align} & {{a}_{2}}={{a}_{1}}+d=-34-1=-35; \ & {{a}_{3}}={{a}_{1}}+2d=-34-2=-36. \ end{align}]

Готово! Задача решена.

Ответ: {−34; −35; −36}

Обратите внимание на любопытное свойство прогрессии, которое мы обнаружили: если взять $n$-й и $m$-й члены и вычесть их друг из друга, то мы получим разность прогрессии, умноженную на число $n-m$:

[{{a}_{n}}-{{a}_{m}}=dcdot left( n-m right)]

Простое, но очень полезное свойство, которое обязательно надо знать — с его помощью можно значительно ускорить решение многих задач по прогрессиям. Вот яркий тому пример:

Задача №3. Пятый член арифметической прогрессии равен 8,4, а её десятый член равен 14,4. Найдите пятнадцатый член этой прогрессии.

Решение. Поскольку ${{a}_{5}}=8,4$, ${{a}_{10}}=14,4$, а нужно найти ${{a}_{15}}$, то заметим следующее:

[begin{align} & {{a}_{15}}-{{a}_{10}}=5d; \ & {{a}_{10}}-{{a}_{5}}=5d. \ end{align}]

Но по условию ${{a}_{10}}-{{a}_{5}}=14,4-8,4=6$, поэтому $5d=6$, откуда имеем:

[begin{align} & {{a}_{15}}-14,4=6; \ & {{a}_{15}}=6+14,4=20,4. \ end{align}]

Ответ: 20,4

Вот и всё! Нам не потребовалось составлять какие-то системы уравнений и считать первый член и разность — всё решилось буквально в пару строчек.

Теперь рассмотрим другой вид задач — на поиск отрицательных и положительных членов прогрессии. Не секрет, что если прогрессия возрастает, при этом первый член у неё отрицательный, то рано или поздно в ней появятся положительные члены. И напротив: члены убывающей прогрессии рано или поздно станут отрицательными.

При этом далеко не всегда можно нащупать этот момент «в лоб», последовательно перебирая элементы. Зачастую задачи составлены так, что без знания формул вычисления заняли бы несколько листов — мы просто уснули бы, пока нашли ответ. Поэтому попробуем решить эти задачи более быстрым способом.

Задача №4. Сколько отрицательных членов в арифметической прогрессии −38,5; −35,8; …?

Решение. Итак, ${{a}_{1}}=-38,5$, ${{a}_{2}}=-35,8$, откуда сразу находим разность:

[d={{a}_{2}}-{{a}_{1}}=-35,8-left( -38,5 right)=38,5-35,8=2,7]

Заметим, что разность положительна, поэтому прогрессия возрастает. Первый член отрицателен, поэтому действительно в какой-то момент мы наткнёмся на положительные числа. Вопрос лишь в том, когда это произойдёт.

Попробуем выяснить: до каких пор (т.е. до какого натурального числа $n$) сохраняется отрицательность членов:

[begin{align} & {{a}_{n}} lt 0Rightarrow {{a}_{1}}+left( n-1 right)d lt 0; \ & -38,5+left( n-1 right)cdot 2,7 lt 0;quad left| cdot 10 right. \ & -385+27cdot left( n-1 right) lt 0; \ & -385+27n-27 lt 0; \ & 27n lt 412; \ & n lt 15frac{7}{27}Rightarrow {{n}_{max }}=15. \ end{align}]

Ответ: 15

Последняя строчка требует пояснения. Итак, нам известно, что $n lt 15frac{7}{27}$. С другой стороны, нас устроят лишь целые значения номера (более того: $nin mathbb{N}$), поэтому наибольший допустимый номер — это именно $n=15$, а ни в коем случае не 16.

Задача №5. В арифметической прогрессии ${{}_{5}}=-150,{{}_{6}}=-147$. Найдите номер первого положительного члена этой прогрессии.

Это была бы точь-в-точь такая же задача, как и предыдущая, однако нам неизвестно ${{a}_{1}}$. Зато известны соседние члены: ${{a}_{5}}$ и ${{a}_{6}}$, поэтому мы легко найдём разность прогрессии:

[d={{a}_{6}}-{{a}_{5}}=-147-left( -150 right)=150-147=3]

Кроме того, попробуем выразить пятый член через первый и разность по стандартной формуле:

[begin{align} & {{a}_{n}}={{a}_{1}}+left( n-1 right)cdot d; \ & {{a}_{5}}={{a}_{1}}+4d; \ & -150={{a}_{1}}+4cdot 3; \ & {{a}_{1}}=-150-12=-162. \ end{align}]

Теперь поступаем по аналогии с предыдущей задачей. Выясняем, в какой момент в нашей последовательности возникнут положительные числа:

[begin{align} & {{a}_{n}}=-162+left( n-1 right)cdot 3 gt 0; \ & -162+3n-3 gt 0; \ & 3n gt 165; \ & n gt 55Rightarrow {{n}_{min }}=56. \ end{align}]

Минимальное целочисленное решение данного неравенства — число 56.

Ответ: 56

Обратите внимание: в последнем задании всё свелось к строгому неравенству, поэтому вариант $n=55$ нас не устроит.

Теперь, когда мы научились решать простые задачи, перейдём к более сложным. Но для начала давайте изучим ещё одно очень полезное свойство арифметических прогрессий, которое в будущем сэкономит нам кучу времени и неравных клеток.:)

Среднее арифметическое и равные отступы

Рассмотрим несколько последовательных членов возрастающей арифметической прогрессии $left( {{a}_{n}} right)$. Попробуем отметить их на числовой прямой:

Члены арифметической прогрессии на числовой прямой

Я специально отметил произвольные члены ${{a}_{n-3}},…,{{a}_{n+3}}$, а не какие-нибудь ${{a}_{1}}, {{a}_{2}}, {{a}_{3}}$ и т.д. Потому что правило, о котором я сейчас расскажу, одинаково работает для любых «отрезков».

А правило очень простое. Давайте вспомним рекуррентную формулу и запишем её для всех отмеченных членов:

[begin{align} & {{a}_{n-2}}={{a}_{n-3}}+d; \ & {{a}_{n-1}}={{a}_{n-2}}+d; \ & {{a}_{n}}={{a}_{n-1}}+d; \ & {{a}_{n+1}}={{a}_{n}}+d; \ & {{a}_{n+2}}={{a}_{n+1}}+d; \ end{align}]

Однако эти равенства можно переписать иначе:

[begin{align} & {{a}_{n-1}}={{a}_{n}}-d; \ & {{a}_{n-2}}={{a}_{n}}-2d; \ & {{a}_{n-3}}={{a}_{n}}-3d; \ & {{a}_{n+1}}={{a}_{n}}+d; \ & {{a}_{n+2}}={{a}_{n}}+2d; \ & {{a}_{n+3}}={{a}_{n}}+3d; \ end{align}]

Ну и что с того? А то, что члены ${{a}_{n-1}}$ и ${{a}_{n+1}}$ лежат на одном и том же расстоянии от ${{a}_{n}}$. И это расстояние равно $d$. То же самое можно сказать про члены ${{a}_{n-2}}$ и ${{a}_{n+2}}$ — они тоже удалены от ${{a}_{n}}$ на одинаковое расстояние, равное $2d$. Продолжать можно до бесконечности, но смысл хорошо иллюстрирует картинка

Члены прогрессии лежат на одинаковом расстоянии от центра

Что это значит для нас? Это значит, что можно найти ${{a}_{n}}$, если известны числа-соседи:

[{{a}_{n}}=frac{{{a}_{n-1}}+{{a}_{n+1}}}{2}]

Мы вывели великолепное утверждение: всякий член арифметической прогрессии равен среднему арифметическому соседних членов! Более того: мы можем отступить от нашего ${{a}_{n}}$ влево и вправо не на один шаг, а на $k$ шагов — и всё равно формула будет верна:

[{{a}_{n}}=frac{{{a}_{n-k}}+{{a}_{n+k}}}{2}]

Т.е. мы спокойно можем найти какое-нибудь ${{a}_{150}}$, если знаем ${{a}_{100}}$ и ${{a}_{200}}$, потому что ${{a}_{150}}=frac{{{a}_{100}}+{{a}_{200}}}{2}$. На первый взгляд может показаться, что данный факт не даёт нам ничего полезного. Однако на практике многие задачи специально «заточены» под использование среднего арифметического. Взгляните:

Задача №6. Найдите все значения $x$, при которых числа $-6{{x}^{2}}$, $x+1$ и $14+4{{x}^{2}}$ являются последовательными членами арифметической прогрессии (в указанном порядке).

Решение. Поскольку указанные числа являются членами прогрессии, для них выполняется условие среднего арифметического: центральный элемент $x+1$ можно выразить через соседние элементы:

[begin{align} & x+1=frac{-6{{x}^{2}}+14+4{{x}^{2}}}{2}; \ & x+1=frac{14-2{{x}^{2}}}{2}; \ & x+1=7-{{x}^{2}}; \ & {{x}^{2}}+x-6=0. \ end{align}]

Получилось классическое квадратное уравнение. Его корни: $x=2$ и $x=-3$ — это и есть ответы.

Ответ: −3; 2.

Задача №7. Найдите значения $$, при которых числа $-1;4-3;{{}^{2}}+1$ составляют арифметическую прогрессию (в указанном порядке).

Решение. Опять выразим средний член через среднее арифметическое соседних членов:

[begin{align} & 4x-3=frac{x-1+{{x}^{2}}+1}{2}; \ & 4x-3=frac{{{x}^{2}}+x}{2};quad left| cdot 2 right.; \ & 8x-6={{x}^{2}}+x; \ & {{x}^{2}}-7x+6=0. \ end{align}]

Снова квадратное уравнение. И снова два корня: $x=6$ и$x=1$.

Ответ: 1; 6.

Если в процессе решения задачи у вас вылезают какие-то зверские числа, либо вы не до конца уверены в правильности найденных ответов, то есть замечательный приём, позволяющий проверить: правильно ли мы решили задачу?

Допустим, в задаче №6 мы получили ответы −3 и 2. Как проверить, что эти ответы верны? Давайте просто подставим их в исходное условие и посмотрим, что получится. Напомню, что у нас есть три числа ($-6{{}^{2}}$, $+1$ и $14+4{{}^{2}}$), которые должны составлять арифметическую прогрессию. Подставим $x=-3$:

[begin{align} & x=-3Rightarrow \ & -6{{x}^{2}}=-54; \ & x+1=-2; \ & 14+4{{x}^{2}}=50. end{align}]

Получили числа −54; −2; 50, которые отличаются на 52 — несомненно, это арифметическая прогрессия. То же самое происходит и при $x=2$:

[begin{align} & x=2Rightarrow \ & -6{{x}^{2}}=-24; \ & x+1=3; \ & 14+4{{x}^{2}}=30. end{align}]

Опять прогрессия, но с разностью 27. Таким образом, задача решена верно. Желающие могут проверить вторую задачу самостоятельно, но сразу скажу: там тоже всё верно.

В целом, решая последние задачи, мы наткнулись на ещё один интересный факт, который тоже необходимо запомнить:

Если три числа таковы, что второе является средним арифметическим первого и последнего, то эти числа образуют арифметическую прогрессию.

В будущем понимание этого утверждения позволит нам буквально «конструировать» нужные прогрессии, опираясь на условие задачи. Но прежде чем мы займёмся подобным «конструированием», следует обратить внимание на ещё один факт, который прямо следует из уже рассмотренного.

Группировка и сумма элементов

Давайте ещё раз вернёмся к числовой оси. Отметим там несколько членов прогрессии, между которыми, возможно. стоит очень много других членов:

На числовой прямой отмечены 6 элементов

Попробуем выразить «левый хвост» через ${{a}_{n}}$ и $d$, а «правый хвост» через ${{a}_{k}}$ и $d$. Это очень просто:

[begin{align} & {{a}_{n+1}}={{a}_{n}}+d; \ & {{a}_{n+2}}={{a}_{n}}+2d; \ & {{a}_{k-1}}={{a}_{k}}-d; \ & {{a}_{k-2}}={{a}_{k}}-2d. \ end{align}]

А теперь заметим, что равны следующие суммы:

[begin{align} & {{a}_{n}}+{{a}_{k}}=S; \ & {{a}_{n+1}}+{{a}_{k-1}}={{a}_{n}}+d+{{a}_{k}}-d=S; \ & {{a}_{n+2}}+{{a}_{k-2}}={{a}_{n}}+2d+{{a}_{k}}-2d=S. end{align}]

Проще говоря, если мы рассмотрим в качестве старта два элемента прогрессии, которые в сумме равны какому-нибудь числу $S$, а затем начнём шагать от этих элементов в противоположные стороны (навстречу друг другу или наоборот на удаление), то суммы элементов, на которые мы будем натыкаться, тоже будут равны $S$. Наиболее наглядно это можно представить графически:

Одинаковые отступы дают равные суммы

Понимание данного факта позволит нам решать задачи принципиально более высокого уровня сложности, нежели те, что мы рассматривали выше. Например, такие:

Задача №8. Определите разность арифметической прогрессии, в которой первый член равен 66, а произведение второго и двенадцатого членов является наименьшим из возможных.

Решение. Запишем всё, что нам известно:

[begin{align} & {{a}_{1}}=66; \ & d=? \ & {{a}_{2}}cdot {{a}_{12}}=min . end{align}]

Итак, нам неизвестна разность прогрессии $d$. Собственно, вокруг разности и будет строиться всё решение, поскольку произведение ${{a}_{2}}cdot {{a}_{12}}$ можно переписать следующим образом:

[begin{align} & {{a}_{2}}={{a}_{1}}+d=66+d; \ & {{a}_{12}}={{a}_{1}}+11d=66+11d; \ & {{a}_{2}}cdot {{a}_{12}}=left( 66+d right)cdot left( 66+11d right)= \ & =11cdot left( d+66 right)cdot left( d+6 right). end{align}]

Для тех, кто в танке: я вынес общий множитель 11 из второй скобки. Таким образом, искомое произведение представляет собой квадратичную функцию относительно переменной $d$. Поэтому рассмотрим функцию $fleft( d right)=11left( d+66 right)left( d+6 right)$ — её графиком будет парабола ветвями вверх, т.к. если раскрыть скобки, то мы получим:

[begin{align} & fleft( d right)=11left( {{d}^{2}}+66d+6d+66cdot 6 right)= \ & =11{{d}^{2}}+11cdot 72d+11cdot 66cdot 6 end{align}]

Как видим, коэффициент при старшем слагаемом равен 11 — это положительное число, поэтому действительно имеем дело с параболой ветвями вверх:

график квадратичной функции — парабола

Обратите внимание: минимальное значение эта парабола принимает в своей вершине с абсциссой ${{d}_{0}}$. Конечно, мы можем посчитать эту абсциссу по стандартной схеме (есть же формула ${{d}_{0}}={-b}/{2a};$), но куда разумнее будет заметить, что искомая вершина лежит на оси симметрии параболы, поэтому точка ${{d}_{0}}$ равноудалена от корней уравнения $fleft( d right)=0$:

[begin{align} & fleft( d right)=0; \ & 11cdot left( d+66 right)cdot left( d+6 right)=0; \ & {{d}_{1}}=-66;quad {{d}_{2}}=-6. \ end{align}]

Именно поэтому я не особо спешил раскрывать скобки: в исходном виде корни было найти очень и очень просто. Следовательно, абсцисса равна среднему арифметическому чисел −66 и −6:

[{{d}_{0}}=frac{-66-6}{2}=-36]

Что даёт нам обнаруженное число? При нём требуемое произведение принимает наименьшее значение (мы, кстати, так и не посчитали ${{y}_{min }}$ — от нас это не требуется). Одновременно это число является разностью исходной прогрессии, т.е. мы нашли ответ.:)

Ответ: −36

Задача №9. Между числами $-frac{1}{2}$ и $-frac{1}{6}$ вставьте три числа так, чтобы они вместе с данными числами составили арифметическую прогрессию.

Решение. По сути, нам нужно составить последовательность из пяти чисел, причём первое и последнее число уже известно. Обозначим недостающие числа переменными $x$, $y$ и $z$:

[left( {{a}_{n}} right)=left{ -frac{1}{2};x;y;z;-frac{1}{6} right}]

Отметим, что число $y$ является «серединой» нашей последовательности — оно равноудалено и от чисел $x$ и $z$, и от чисел $-frac{1}{2}$ и $-frac{1}{6}$. И если из чисел $x$ и $z$ мы в данный момент не можем получить $y$, то вот с концами прогрессии дело обстоит иначе. Вспоминаем про среднее арифметическое:

[y=frac{-frac{1}{2}-frac{1}{6}}{2}=-frac{4}{2cdot 6}=-frac{1}{3}]

Теперь, зная $y$, мы найдём оставшиеся числа. Заметим, что $x$ лежит между числами $-frac{1}{2}$ и только что найденным $y=-frac{1}{3}$. Поэтому

[x=frac{-frac{1}{2}-frac{1}{3}}{2}=-frac{5}{6cdot 2}=-frac{5}{12}]

Аналогично рассуждая, находим оставшееся число:

[z=frac{-frac{1}{3}-frac{1}{6}}{2}=-frac{3}{6cdot 2}=-frac{1}{4}]

Готово! Мы нашли все три числа. Запишем их в ответе в том порядке, в котором они должны быть вставлены между исходными числами.

Ответ: $-frac{5}{12}; -frac{1}{3}; -frac{1}{4}$

Задача №10. Между числами 2 и 42 вставьте несколько чисел, которые вместе с данными числами образуют арифметическую прогрессию, если известно, что сумма первого, второго и последнего из вставленных чисел равна 56.

Решение. Ещё более сложная задача, которая, однако, решается по той же схеме, что и предыдущие — через среднее арифметическое. Проблема в том, что нам неизвестно, сколько конкретно чисел надо вставить. Поэтому положим для опредлённости, что после вставки всего будет ровно $n$ чисел, причём первое из них — это 2, а последнее — 42. В этом случае искомая арифметическая прогрессия представима в виде:

[left( {{a}_{n}} right)=left{ 2;{{a}_{2}};{{a}_{3}};…;{{a}_{n-1}};42 right}]

Далее распишем сумму первого, второго и последнего из вставленных чисел:

[{{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56]

Заметим, однако, что числа ${{a}_{2}}$ и ${{a}_{n-1}}$ получаются из стоящих по краям чисел 2 и 42 путём одного шага навстречу друг другу, т.е. к центру последовательности. А это значит, что

[{{a}_{2}}+{{a}_{n-1}}=2+42=44]

Но тогда записанное выше выражение можно переписать так:

[begin{align} & {{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56; \ & left( {{a}_{2}}+{{a}_{n-1}} right)+{{a}_{3}}=56; \ & 44+{{a}_{3}}=56; \ & {{a}_{3}}=56-44=12. \ end{align}]

Зная ${{a}_{3}}$ и ${{a}_{1}}$, мы легко найдём разность прогрессии:

[begin{align} & {{a}_{3}}-{{a}_{1}}=12-2=10; \ & {{a}_{3}}-{{a}_{1}}=left( 3-1 right)cdot d=2d; \ & 2d=10Rightarrow d=5. \ end{align}]

Осталось лишь найти остальные члены:

[begin{align} & {{a}_{1}}=2; \ & {{a}_{2}}=2+5=7; \ & {{a}_{3}}=12; \ & {{a}_{4}}=2+3cdot 5=17; \ & {{a}_{5}}=2+4cdot 5=22; \ & {{a}_{6}}=2+5cdot 5=27; \ & {{a}_{7}}=2+6cdot 5=32; \ & {{a}_{8}}=2+7cdot 5=37; \ & {{a}_{9}}=2+8cdot 5=42; \ end{align}]

Таким образом, уже на 9-м шаге мы придём в левый конец последовательности — число 42. Итого нужно было вставить лишь 7 чисел: 7; 12; 17; 22; 27; 32; 37.

Ответ: 7; 12; 17; 22; 27; 32; 37

Текстовые задачи с прогрессиями

В заключение хотелось бы рассмотреть парочку относительно простых задач. Ну, как простых: для большинства учеников, которые изучают математику в школе и не читали того, что написано выше, эти задачи могут показаться жестью. Тем не менее именно такие задачи попадаются в ОГЭ и ЕГЭ по математике, поэтому рекомендую ознакомиться с ними.

Задача №11. Бригада изготовила в январе 62 детали, а в каждый следующий месяц изготовляла на 14 деталей больше, чем в предыдущий. Сколько деталей изготовила бригада в ноябре?

Решение. Очевидно, количество деталей, расписанное по месяцам, будет представлять собой возрастающую арифметическую прогрессию. Причём:

[begin{align} & {{a}_{1}}=62;quad d=14; \ & {{a}_{n}}=62+left( n-1 right)cdot 14. \ end{align}]

Ноябрь — это 11-й месяц в году, поэтому нам нужно найти ${{a}_{11}}$:

[{{a}_{11}}=62+10cdot 14=202]

Следовательно, в ноябре будет изготовлено 202 детали.

Ответ: 202

Задача №12. Переплётная мастерская переплела в январе 216 книг, а в каждый следующий месяц она переплетала на 4 книги больше, чем в предыдущий. Сколько книг переплела мастерская в декабре?

Решение. Всё то же самое:

$begin{align} & {{a}_{1}}=216;quad d=4; \ & {{a}_{n}}=216+left( n-1 right)cdot 4. \ end{align}$

Декабрь — это последний, 12-й месяц в году, поэтому ищем ${{a}_{12}}$:

[{{a}_{12}}=216+11cdot 4=260]

Это и есть ответ — 260 книг будет переплетено в декабре.

Ответ: 260

Что ж, если вы дочитали до сюда, спешу вас поздравить: «курс молодого бойца» по арифметическим прогрессиям вы успешно прошли. Можно смело переходить к следующему уроку, где мы изучим формулу суммы прогрессии, а также важные и очень полезные следствия из неё.

Смотрите также:

  1. Формула n-го члена арифметической прогрессии
  2. Нахождение элементов арифметической прогрессии
  3. Тест к уроку «Сложные выражения с дробями» (легкий)
  4. Как считать логарифмы еще быстрее
  5. Задача B5: метод узлов
  6. Сфера, вписанная в куб

Понравилась статья? Поделить с друзьями:
  • Как найти биомассу растений
  • Как найти ответ на скай смарт
  • Как составить свою характеристику образец
  • Как найти скорость течения реки математика задача
  • Как найти объем шара зная его диаметр