Как найти разрешение экрана информатика

Информатика

7 класс

Урок № 10

Формирование изображения на экране компьютера

Перечень вопросов, рассматриваемых в теме:

  • Понятия: пространственного разрешения монитора, глубины цвета, пикселя.
  • Знакомство с цветовой моделью RGB.
  • Формулы для нахождения объёма памяти и количества цветов в палитре.
  • Решение типовых задач.

Тезаурус:

Пиксель – наименьший элемент дисплея, формирующий изображение.

Пространственное разрешение монитора – это количество пикселей, из которых складывается изображение на экране.

Глубина цвета – длина двоичного кода, который используется для кодирования цвета пикселя.

Цветовая модель RGB: Red – красный, Green – зелёный, Blue – синий.

Формулы, которые используются при решении типовых задач:

N = 2i

I = K · i

где N – количество цветов в палитре, i – глубина цвета, K – количество пикселей в изображении, I – информационный объём файла.

Основная литература:

  1. Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.

Дополнительная литература:

  1. Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
  2. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  3. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  4. Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.

Теоретический материал для самостоятельного изучения

Когда мы включаем компьютер, перед нами открывается рабочий стол – картинка на экране монитора. А задумывались ли мы когда-нибудь, как формируется изображение на экране монитора, сколько цветов оно может в себя включать? Скорее всего, нет. Вот сегодня на уроке мы узнаем, как формируются такие изображения, познакомимся с понятием пространственное разрешение монитора, выясним, из каких базовых цветов строятся изображения и введём новое понятие – глубина цвета.

Так вот, изображение на экране монитора образуется из отдельных точек, которые называются пикселем, что в переводе с английского означает элемент изображения. Эти точки на экране монитора образуют строки, а всё изображение строится из определённого количества таких строк.

Общее количество пикселей, из которых складывается изображение на экране монитора, называется пространственным разрешением монитора. Чтобы его определить, нужно количество строк изображения умножить на количество точек в строке.

Пространственное разрешение монитора может быть различным: 800 на 600, 1280 на 1024. Это означает, что изображение на экране монитора состоит из 800 строк, каждая из которых содержит 600 пикселей.

Чем больше маленьких точек в изображении, тем чётче оно будет выглядеть – это изображение высокого разрешения. А изображение низкого разрешения состоит из меньшего количества крупных точек, и поэтому оно получается нечётким.

На самом деле пиксель – это три очень маленьких точки красного, зелёного и синего цвета, но они расположены настолько близко друг к другу, что наши глаза воспринимают их как единое целое. Пиксель принимает именно тот цвет, который является наиболее ярким. Именно из этих трёх цветов образуется цветовая модель RGB. Название такое она получила неспроста, это первые буквы английских названий цветов: Red – красный, Green – зелёный, Blue – синий.

В этой цветовой модели каждый базовый цвет имеет один из 256 уровней интенсивности. Если менять яркость базовых цветов, то можно увидеть, как меняется окраска картинки.

Первые цветные мониторы могли использовать лишь восемь цветов: чёрный, синий, зелёный, голубой, красный, пурпурный, жёлтый и белый. Каждый цвет кодировался цепочкой из трёх нулей и единиц, то есть, трёхразрядным двоичным кодом.

Современные же компьютеры имеют достаточно большую палитру, где количество цветов зависит от того, сколько двоичных разрядов отводится для кодирования цвета одного пикселя.

Длина такого двоичного кода, который можно использовать для кодирования цвета пикселя, называется глубиной цвета.

Количество цветов в палитре связано с глубиной кодирования формулой N = 2i.

Изображения в памяти компьютера хранятся в виде файлов, их информационный объём вычисляется как произведение количества пикселей, имеющихся в изображении, и глубины кодирования: I = K · i.

Решим такую задачу.

Рассчитайте объём файла графического изображения, который занимает весь экран монитора с разрешением 800 на 600 и палитрой 256 цветов.

Так как палитра состоит из 256 цветов, то можно рассчитать глубину цвета по формуле N = 2i. Получаем глубину цвета равную восьми.

Теперь, по формуле I = K · i, найдем объём файла.

Объём получился 3840000 бит, переведём его в килобайты, для этого

3840000 разделим на 8 и разделим на 1024. Получилось примерно 469 Кб.

Решение:

Дано:

N = 256

K = 800 · 600

I = ?

Решение:

N = 2i

256 = 2i, i = 8 бит

I = K · i

I = 800 · 600 · 8 = 3840000 бит = 3840000 : 8 : 1024 = 469 Кб

Ответ: 469 Кб.

Итак, сегодня мы узнали, как формируются изображения на экранах мониторов, познакомились с понятием пространственное разрешение монитора. Выяснили, что каждый пиксель имеет определённый цвет, отсюда формируется цветовая модель RGB. Познакомились с новой величиной, такой как глубина цвета. Записали формулы для решения задач по новой теме.

Цветовая модель HSB

При работе в RGB работа режимов наложения цветового тона, насыщенности и яркости базируется на модели HSB. Заглавные буквы здесь не соответствуют никаким цветам.

Hue переводится как Цветовой тон, Saturation – Насыщенность, Brightness – Яркость.

Все цвета располагаются по кругу, и каждому соответствует свой градус.

Работая с насыщенностью, мы как бы добавляем в спектр белой краски, поэтому она становится хуже, картинка делается более блёклой.

Работая с яркостью, в спектр добавляется больше чёрного цвета. И чем его больше, тем рисунок становится более тёмным, яркость уменьшается.

Цветовой тон при этом остаётся прежним.

Перемещая ползунок, мы регулируем яркость, если двигаем его по горизонтали, то изменяется насыщенность, а сам цвет не меняется

Основной задачей данной модели является правка оттенков выбранных цветов.

Модель HSB – это пользовательская цветовая модель, которая позволяет выбирать цвет традиционным способом. Она намного беднее рассмотренной ранее RGB, так как позволяет работать всего лишь с 3 миллионами цветов.

Разбор решения заданий тренировочного модуля

№1.

Сколько цветов будет содержать палитра, если на один пиксель отводится 3 бита памяти?

Дано:

i = 3 бита

N = ?

Решение:

N = 2i

N = 23 = 8.

Ответ: 8 цветов в палитре.

№2.

Найдите объём видеопамяти растрового изображения, занимающего весь экран монитора с разрешением 1024×768, и глубиной цвета данного изображения 32 бита. Ответ должен быть выражен в Мб.

Дано:

К=1024×768

i = 32 бита

I=?

Решение:

I = K · i

I = 1024 · 768 · 32 = 25165824 бит = 3145728 байт

3072 Кб = 3 Мб.

Ответ: 3 Мб.

№3.

Сравните размеры памяти, необходимые для хранения изображений: первое изображение 8-цветное, его размер 32×64 пикселей, второе изображение 32-цветное, его размер 64×64 пикселей.

Решение:

Первое изображение 8-цветное, т. е. 8 = 2i , следовательно, i = 3 бита на один пиксель.

Найдём I1 по формуле: I = K · i, т. е. 32 · 64 · 3 = 6144 бита.

Второе изображение 32-цветное, т. е. 32 = 2i, следовательно, i = 5 бит на один пиксель.

Найдём I2 по формуле: I = K · i, т. е. 64 · 64 · 5 = 20480 бит.

Второе изображение больше первого на 14336 бит, или 1792 байта, или на 1,75 Кб.

Ответ: второе изображение больше первого на 1,75 Кб.

Решение задач на кодирование графической информации.

  1. Нахождение объема видеопамяти

В задачах такого типа используются понятия:

  • объем видеопамяти,

  • графический режим,

  • глубина цвета,

  • разрешающая способность экрана,

  • палитра.

Во всех подобных задачах требуется найти ту или иную величину.

Видеопамять — это специальная оперативная память, в которой формируется графическое изображение. Иными словами для получения на экране монитора картинки её надо где-то хранить. Для этого и существует видеопамять. Чаще всего ее величина от 512 Кб до 4 Мб для самых лучших ПК при реализации 16,7 млн. цветов.

Объем видеопамяти рассчитывается по формуле: V=I*X*Y, где I – глубина цвета отдельной точки, X, Yразмеры экрана по горизонтали и по вертикали (произведение х на у – разрешающая способность экрана).

Экран дисплея может работать в двух основных режимах: текстовом и графическом.

В графическом режиме экран разделяется на отдельные светящиеся точки, количество которых зависит от типа дисплея, например 640 по горизонтали и 480 по вертикали.  Светящиеся точки на экране обычно называют пикселями, их цвет и яркость может меняться. Именно в графическом режиме появляются на экране компьютера все сложные графические изображения, создаваемыми специальными программами, которые управляют параметрами каждого пикселя экрана. Графические режимы характеризуются такими показателями как:

разрешающая способность (количество точек, с помощью которых на экране воспроизводится изображение)  — типичные в настоящее время уровни разрешения 800*600 точек или 1024*768 точек. Однако для мониторов с большой диагональю может использоваться разрешение 1152*864 точки.

глубина цвета (количество бит, используемых для кодирования цвета точки), например, 8, 16, 24, 32 бита. Каждый цвет можно рассматривать как возможное состояние точки, Тогда количество цветов, отображаемых на экране монитора может быть вычислено по формуле K=2I , где K – количество цветов, I – глубина цвета или битовая глубина.

Кроме перечисленных выше знаний учащийся должен иметь представление о палитре:

палитра (количество цветов, которые используются для воспроизведения изображения), например 4 цвета, 16 цветов, 256 цветов, 256 оттенков серого цвета, 216 цветов в режиме называемом High color или 224  , 232 цветов в режиме True color.

Учащийся должен знать также связи между единицами измерения информации, уметь переводить из мелких единиц в более крупные, Кбайты и Мбайты, пользоваться обычным калькулятором и Wise Calculator.

Уровень «3»

1. Определить требуемый объем видеопамяти для различных графических режимов экрана монитора, если известна глубина цвета на одну точку.

Режим экрана

Глубина цвета (бит на точку)

4

8

16

24

32

640 на 480

800 на 600

1024 на 768

1280 на 1024

Решение:

  1. Всего точек на экране (разрешающая способность): 640 * 480 = 307200
    2. Необходимый объем видеопамяти V= 4 бит * 307200 = 1228800 бит = 153600 байт = 150 Кбайт.
    3. Аналогично рассчитывается необходимый объем видеопамяти для других графических режимов. При расчетах учащийся пользуется калькулятором для экономии времени.

Ответ:

Режим экрана

Глубина цвета (бит на точку)

4

8

16

24

32

640 на 480

150 Кб

300 Кб

600 Кб

900 Кб

1,2 Мб

800 на 600

234 Кб

469 Кб

938 Кб

1,4 Мб

1,8 Мб

1024 на 768

384 Кб

768 Кб

1,5 Мб

2,25 Мб

3 Мб

1280 на 1024

640 Кб

1,25 Мб

2,5 Мб

3,75 Мб

5 Мб

2. Черно-белое (без градаций серого) растровое графическое изображение имеет размер 10 ´10 точек. Какой объем памяти займет это изображение?

Решение:

  1. Количество точек -100

  2. Так как всего 2 цвета черный и белый. то глубина цвета равна 1 ( 21 =2)

  3. Объем видеопамяти равен 100*1=100 бит

3. Для хранения растрового изображения размером 128 x 128 пикселей отвели 4 КБ памяти. Каково максимально возможное число цветов в палитре изображения.

Решение:

  1. Определим количество точек изображения. 128*128=16384 точек или пикселей.

  2. Объем памяти на изображение 4 Кб выразим в битах, так как V=I*X*Y вычисляется в битах. 4 Кб=4*1024=4 096 байт = 4096*8 бит =32768 бит

  3. Найдем глубину цвета I =V/(X*Y)=32768:16384=2

  4. N=2I , где N – число цветов в палитре. N=4

Ответ: 4

4. Сколько бит видеопамяти занимает информация об одном пикселе на ч/б экране (без полутонов)?([6],C. 143, пример 1)

Решение:

Если изображение Ч/Б без полутонов, то используется всего два цвета –черный и белый, т.е. К=2, 2i =2, I= 1 бит на пиксель.

Ответ: 1 пиксель

5. Какой объем видеопамяти необходим для хранения четырех страниц изображения, если битовая глубина равна 24, а разрешающая способность дисплея- 800 х 600 пикселей?

Решение:

  1. Найдем объем видеопамяти для одной страницы: 800*600*24=11520000 бит =1440000 байт =1406,25 Кб ≈1, 37 Мб

  2. 1,37*4 =5,48 Мб ≈5.5 Мб для хранения 4 страниц.

Ответ: 5.5 Мб

Уровень «4»

6.Определить объем видеопамяти компьютера, который необходим для реализации графического режима монитора High Color с разрешающей способностью 1024 х 768 точек и палитрой цветов из 65536 цветов.

Методические рекомендации:

Если ученик помнит, что режим High Color – это 16 бит на точку, то объем памяти можно найти, определив число точек на экране и умножив на глубину цвета, т.е. 16. Иначе ученик может рассуждать так:

Решение:

1. По формуле K=2I , где K – количество цветов, I – глубина цвета определим глубину цвета. 2I =65536

Глубина цвета составляет: I = log265 536 = 16 бит (вычисляем с помощью программы Wise Calculator)

2.. Количество точек изображения равно: 1024´768 = 786 432

3. Требуемый объем видеопамяти равен: 16 бит ´ 786 432 =  12 582 912 бит = 1572864 байт = 1536 Кб =1,5 Мб (»1,2 Мбайта). Приучаем учеников, переводя в другие единицы, делить на 1024, а не на 1000.

Ответ: 1,5 Мб

7. В процессе преобразования растрового графического изображения количество цветов уменьшилось с 65536 до 16. Во сколько раз уменьшится объем занимаемой им памяти? (2.70, [3])

Решение:

Чтобы закодировать 65536 различных цветов для каждой точки, необходимо 16 бит. Чтобы закодировать 16 цветов, необходимо всего 4 бита. Следовательно, объем занимаемой памяти уменьшился в 16:4=4 раза.

Ответ: в 4 раза

8. Достаточно ли видеопамяти объемом 256 Кбайт для работы монитора в режиме 640 ´ 480 и палитрой из 16 цветов?

Решение:

  1. Узнаем объем видеопамяти, которая потребуется для работы монитора в режиме 640х480 и палитрой в 16 цветов. V=I*X*Y=640*480*4 (24 =16, глубина цвета равна 4),

V= 1228800 бит = 153600 байт =150 Кб.

  1. 150

Ответ: достаточно

9. Укажите минимальный объем памяти (в килобайтах), достаточный для хранения любого растрового изображения размером 256 х 256 пикселей, если известно, что в изображении используется палитра из 216 цветов. Саму палитру хранить не нужно.

    1. 128

    2. 512

    3. 1024

    4. 2048

(ЕГЭ_2005, уровень А)

Решение:

Найдем минимальный объем памяти, необходимый для хранения одного пикселя. В изображении используется палитра из 216 цветов, следовательно, одному пикселю может быть сопоставлен любой из 216 возможных номеров цвета в палитре. Поэтому, минимальный объем памяти, для одного пикселя будет равен log2 216 =16 битам. Минимальный объем памяти, достаточный для хранения всего изображения будет равен 16*256*256 =24 * 28 * 28 =220 бит=220 : 23 =217 байт = 217 : 210 =27 Кбайт =128 Кбайт, что соответствует пункту под номером 1.

Ответ: 1

10. Используются графические режимы с глубинами цвета 8, 16. 24, 32 бита. Вычислить объем видеопамяти, необходимые для реализации данных глубин цвета при различных разрешающих способностях экрана.

Примечание: задача сводится в конечном итоге к решению задачи №1 (уровень «3», но ученику самому необходимо вспомнить стандартные режимы экрана.

11. Сколько секунд потребуется модему, передающему сообщения со скоростью 28800 бит/с, чтобы передать цветное растровое изображение размером 640 х 480 пикселей, при условии, что цвет каждого пикселя кодируется тремя байтами? (ЕГЭ_2005, уровень В)

Решение:

  1. Определим объем изображения в битах:

3 байт = 3*8 = 24 бит,

V=I*X*Y=640*480*24 бит =7372800 бит

  1. Найдем число секунд на передачу изображения: 7372800 : 28800=256 секунд

Ответ: 256.

12. Сколько секунд потребуется модему, передающему сообщения со скоростью 14400 бит/сек, чтобы передать цветное растровое изображение размером 800 х 600 пикселей, при условии, что в палитре 16 миллионов цветов? (ЕГЭ_2005, уровень В)

Решение:

Для кодирования 16 млн. цветов требуется 3 байта или 24 бита (Графический режим True Color). Общее количество пикселей в изображении 800 х 600 =480000. Так как на 1 пиксель приходится 3 байта, то на 480000 пикселей приходится 480000*3=1 440 000 байт или 11520000 бит. 11520000 : 14400 = 800 секунд.

Ответ: 800 секунд.

13. Современный монитор позволяет получать на экране 16777216 различных цветов. Сколько бит памяти занимает 1 пиксель?

Решение:

Один пиксель кодируется комбинацией двух знаков «0» и «1». Надо узнать длину кода пикселя.

2х =16777216, log2 16777216 =24 бит

Ответ: 24.

14. Каков минимальный объем памяти ( в байтах), достаточный для хранения черно-белого растрового изображения размером 32 х 32 пикселя, если известно, что в изображении используется не более 16 градаций серого цвета.

Решение:

  1. Глубина цвета равна 4, т.к. 16 градаций цвета используется.

  2. 32*32*4=4096 бит памяти для хранения черно-белого изображения

  3. 4096 : 8 = 512 байт.

Ответ: 512 байт

Уровень «5»

15. Монитор работает с 16 цветной палитрой в режиме 640*400 пикселей. Для кодирования изображения требуется 1250 Кбайт. Сколько страниц видеопамяти оно занимает? (Задание 2,Тест I-6)

Решение:

1. Т.к. страница –раздел видеопамяти, вмещающий информацию об одном образе экрана одной «картинки» на экране, т.е. в видеопамяти могут размещаться одновременно несколько страниц, то, чтобы узнать число страниц надо поделить объем видеопамяти для всего изображения на объем памяти на 1 страницу. К-число страниц, К=Vизобр/V1 стр

Vизобр =1250 Кб по условию

  1. Для этого вычислим объем видеопамяти для одной страницы изображения с 16 цветовой палитрой и разрешающей способностью 640*400.

V1 стр = 640*400*4 , где 4- глубина цвета (24 =16)

V1 стр = 1024000 бит = 128000 байт =125 Кб

3. К=1250 : 125 =10 страниц

Ответ: 10 страниц

16. Страница видеопамяти составляет 16000 байтов. Дисплей работает в режиме 320*400 пикселей. Сколько цветов в палитре?

Решение:

1. V=I*X*Y – объем одной страницы, V=16000 байт = 128000 бит по условию. Найдем глубину цвета I.

I=V/(X*Y).

I= 128000 / (320*400)=1.

2. Определим теперь, сколько цветов в палитре. K=2I , где K – количество цветов, I – глубина цвета. K=2

Ответ: 2 цвета.

17. Сканируется цветное изображение размером 10´10 см. Разрешающая способность сканера 600 dpi и глубина цвета 32 бита. Какой информационный объем будет иметь полученный графический файл. (2.44, [3], аналогично решается задача 2.81 [3])

Решение:

1. Разрешающая способность сканера 600 dpi (dot per inch — точек на дюйм) означает, что на отрезке длиной 1 дюйм сканер способен различить 600 точек. Переведем разрешающую способность сканера из точек на дюйм в точки на сантиметр:

600 dpi : 2,54 » 236 точек/см (1 дюйм = 2.54 см.)

2. Следовательно, размер изображения в точках составит 2360´2360 точек. (умножили на 10 см.)

3. Общее количество точек изображения равно:

2360´2360 = 5 569 600

4. Информационный объем файла равен:

32 бит ´ 5569600 = 178 227 200 бит » 21 Мбайт

Ответ: 21 Мбайт

18. Объем видеопамяти равен 256 Кб. Количество используемых цветов -16. Вычислите варианты разрешающей способности дисплея. При условии, что число страниц изображения может быть равно 1, 2 или 4.

Решение:

  1. Если число страниц равно 1, то формулу V=I*X*Y можно выразить как

256 *1024*8 бит = X*Y*4 бит, (так как используется 16 цветов, то глубина цвета равна 4 бит.)

т.е. 512*1024 = X*Y; 524288 = X*Y.

Соотношение между высотой и шириной экрана для стандартных режимов не различаются между собой и равны 0,75. Значит, чтобы найти X и Y, надо решить систему уравнений:

Выразим Х=524288/ Y, подставим во второе уравнение, получим Y2 =524288*3/4=393216. Найдем Y≈630; X=524288/630≈830

Вариантом разрешающей способности может быть 630 х 830.

2. Если число страниц равно 2, то одна страница объемом 256:2=128 Кбайт, т.е

128*1024*8 бит = X*Y*4 бит, т.е. 256*1024 = X*Y; 262144 = X*Y.

Решаем систему уравнений:

Х=262144/ Y; Y2 =262144*3/4=196608; Y=440, Х=600

Вариантом разрешающей способности может быть 600 х 440.

4. Если число страниц равно 4, то 256:4 =64; 64*1024*2=X*Y; 131072=X*Y; решаем систему

X=131072/Y; Y2 =131072*3/4=98304; Y≈310, X≈420

Ответ: одна страница — 630 х 830

две страницы — 600 х 440

три страницы – 420 х 310

19. Часть страниц многотомной энциклопедии является цветными изображениями в шестнадцати цветовой палитре и в формате 320 ´ 640 точек. Страницы, содержащие текст, имеют формат — 32 строки по 64 символа в строке. Сколько страниц книги можно сохранить на жестком магнитном диске объемом 20 Мб, если каждая девятая страница энциклопедии — цветное изображение?

Решение:

  1. Так как палитра 16 цветная, то глубина цвета равна 4 (2 4 =16)

  2. 4 ´ 320 ´ 640 = 819200 бит = 102400 байт =100 Кбайт – информации содержит каждая графическая страница.

  3. 32 ´ 64 = 2048 символов = 2048 байт = 2 Кбайт – содержит каждая текстовая страница.

  4. Пусть Х — число страниц с графикой, тогда так как каждая 9 страница – графическая, следует, что страниц с текстом в 8 раз больше, т.е. 8Х — число страниц с текстом. Тогда все страницы с графикой будут иметь объем 110Х, а все страницы с текстом – объем 2* 8Х=16Х.

  5. Известно, что диск составляет 20 Мб = 20480 Кб. Составим уравнение:

100Х + 16Х = 20480. Решив уравнение, получим Х ≈ 176, 5. Учитывая, что Х –целое число, берем число 176 –страниц с графикой.

  1. 176*8 =1408 страниц с текстом. 1408+176 = 1584 страниц энциклопедии.

Ответ: таким образом, на жестком магнитном диске объемом 20 Мб можно разместить 1584 страницы энциклопедии (176 графических и 1408 текстовых).

    1. Определение разрешающей способности экрана и установка графического режима экрана.

Уровень «3»

20. Установить графический режим экрана монитора, исходя из объема установленной видеопамяти и параметров монитора.

Решение:

Установка графического режима экрана монитора

  1. Ввести команду [Настройка-Панель управления — Экран] или щелкнуть по индикатору монитора на панели задач.

  2. На появившейся диалоговой панели Свойства: экран выбрать вкладку Настройка.

  3. С помощью раскрывающегося списка Цветовая палитра выбрать глубину цвета. С помощью ползунка Область экрана выбрать разрешение экрана

21. Определить марку монитора, разрешение экрана, глубину цвета собственного компьютера, объем видеопамяти. (Аналогично, см. задачу 1, а так же используя кнопку Дополнительно, выбрать вкладку Адаптер для определения объема видеопамяти.)

Уровень «4»

Методические рекомендации

Для решения задач этого уровня учащиеся также должны знать о ещё одной характеристике экрана, такой как Частота обновления экрана. Эта величина обозначает, сколько раз меняется за секунду изображение на экране. Чем чаще меняется изображение, тем меньше заметно мерцание и тем меньше устают глаза. При длительной работе за компьютером рекомендуется обеспечить частоту не менее 85 Гц. Кроме этого учащиеся должны уметь подбирать оптимальную разрешающую способность экрана, определять для конкретного объема видеопамяти оптимальный графический режим.

22. Установить различные графические режимы экрана монитора вашего компьютера:

а) режим с максимально возможной глубиной цвета;

б) режим с максимально возможной разрешающей способностью;

в) оптимальный режим.

Решение:

а) Выбрать контекстное меню Рабочего стола, Свойства, (можно вызвать меню и двойным щелчком на панели управления по значку экрана). В появившемся диалоговом окне Свойства: Экран выбрать вкладку Настойка или Параметры. Максимально возможную глубину цвета можно выбрать из списка Цветовая палитра (или Качество цветопередачи), где выбрать пункт Самое высокое 32 бита (True color24, или 32 бита) Эта операция может требовать перезагрузки компьютера.

б) Чтобы установить режим с максимально возможной разрешающей способностью надо на этой же вкладке Свойства:Экран переместить движок на панели Область экрана (Разрешение экрана) слева направо и выбрать например 1280 х 1024. В зависимости от видеокарты при изменении разрешения экрана может потребоваться перезагрузка компьютера. Но чаще всего выдается диалоговое окно, предупреждающее о том, что сейчас произойдет пробное изменение разрешения экрана. Для подтверждения щелкнуть на кнопке Ок.

При попытке изменить разрешение экрана выдается диалоговое окно с запросом о подтверждении изменений. Если не предпринимать никаких действий, то через 15 секунд восстанавливается прежнее разрешение. Это предусмотрено на случай сбоя изображения. Если экран выглядит нормально, следует щелкнуть на кнопке ДА и сохранить новое разрешение.

в) Для установки оптимального графического режима экрана надо исходить из объема видеопамяти, частоты обновления экрана и учитывать здоровье сберегающие факторы.

Для настройки частоты обновления экрана надо всё в той же вкладке Свойства:Экран щелкнуть по вкладке Дополнительно. В диалоговом окне свойств видеоадаптера выбрать вкладку Адаптер. Выбрать в списке Частота обновления и выбрать пункт Оптимальный –максимально возможная частота обновления экрана, доступная при текущем разрешении экрана для данной видеокарты и монитора.

Так чем меньше разрешение экрана, тем больше размеры значков на рабочем столе. Так оптимальным разрешением экрана может быть размеры экрана 800 х 600 точек при глубине цвета 32 бит и частотой обновления 85 Гц.

23. Объем страницы видеопамяти -125 Кбайт. Монитор работает с 16 цветной палитрой. Какова разрешающая способность экрана. (Задание 8,Тест I-6)

Решение:

  1. Так как глубина цвета равна 4 (24 =16), то имеем V=4*X*Y

  2. В формуле объема видеопамяти объем выражен в битах, а в условии задачи дан в Кбайтах, поэтому обе части равенства надо представить в байтах:

125*1024=(X*Y*4)/8 (делим справа на 8 — переводим в байты, умножаем слева на 1024 –переводим в байты)

3. Далее решаем уравнение: 4*X*Y = 125*1024 * 8

X*Y = 125*1024*2=250*1024=256000

4. Наиболее часто в паре разрешающей способности экрана встречается число 640, например 640*200, 640*400, 640*800. Попробуем разделить полученное число на 640

256000:640=400

Ответ: Разрешающая способность экрана равна 640*400

24. Какие графические режимы работы монитора может обеспечить видеопамять объемом в 1 МБ? (2.78 [3])

Решение:

Задача опирается на решение задачи №2.76 [3] (решение см. задачу №1 данного электронного пособия), а затем проводится анализ и делаем вывод. Видеопамять объемом 1 МБ может обеспечить следующие графические режимы:

  • 640 х 480 (при глубине цвета 4, 8, 16, 24 бит)

  • 800 х 600 (при глубине цвета 4, 8, 16 бит)

  • 1024 х 768 (при глубине цвета 4, 8 бит)

  • 1280 х 1024 (при глубине цвета 4 бита)

Ответ: 640 х 480 (4, 8, 16, 24 бит), 800 х 600 (4, 8, 16 бит), 1024 х 768 (4, 8 бит), 1280 х 1024 (4 бита)

Уровень «5»

25. Определить максимально возможную разрешающую способность экрана для монитора с диагональю 15″ и размером точки экрана 0,28 мм.

Решение:

1. Задача сводится к нахождению числа точек по ширине экрана. Выразим размер диагонали в сантиметрах. Учитывая ,что 1 дюйм=2,54 см., имеем: 2,54 см • 15 = 38,1 см.
2. Определим соотношение между высотой и шириной экрана для часто встречающегося режима экрана 1024х768 точек: 768 : 1024 = 0,75.
3. Определим ширину экрана. Пусть ширина экрана равна L, а высота h,

h:L =0,75, тогда h= 0,75L.

По теореме Пифагора имеем:
L2 + (0,75L)2 = 38,12
1,5625 L2 = 1451,61
L2 ≈ 929
L ≈ 30,5 см.
4.
Количество точек по ширине экрана равно:
305 мм : 0,28 мм = 1089.
Следовательно, максимально возможным разрешением экрана монитора является 1024х768.

Ответ: 1024х768.

26. Определить соотношение между высотой и шириной экрана монитора для различных графических режимов. Различается ли это соотношение для различных режимов? а)640х480; б)800х600; в)1024х768; а)1152х864; а)1280х1024. Определить максимально возможную разрешающую способность экрана для монитора с диагональю 17″ и размером точки экрана 0,25 мм.

Решение:

1. Определим соотношение между высотой и шириной экрана для перечисленных режимов, они почти не различаются между собой:

640×480

800×600

1024×768

1152×864

1280×1024

0,75

0,75

0,75

0,75

0,8

2. Выразим размер диагонали в сантиметрах:
2,54 см • 17 = 43,18 см.
3. Определим ширину экрана. Пусть ширина экрана равна L, тогда высота равна 0,75L (для первых четырех случаев) и 0,8L для последнего случая.

По теореме Пифагора имеем:

L2 + (0,75L)2 = 43,182
1,5625 L2 = 1864,5124
L2 ≈ 1193,2879
L ≈ 34,5 см

L2 + (0,8L)2 = 43,182
1,64 L2 = 1864,5124
L2 ≈ 1136,8978
L ≈ 33,7 см.

4. Количество точек по ширине экрана равно:

345 мм : 0,25 мм = 1380

337 мм: 0,25 мм = 1348

Следовательно, максимально возможным разрешением экрана монитора является. 1280х1024

Ответ: 1280х1024

  1. Кодировка цвета и изображения.

Методические рекомендации:

Учащиеся пользуются знаниями, полученными ранее Системы счисления, перевод чисел из одной системы в другую.

Используется и теоретический материал темы:

Цветное растровое изображение формируется в соответствие с цветовой моделью RGB, в которой тремя базовыми цветами являются Red (красный), Green (зеленый) и Blue (синий). Интенсивность каждого цвета задается 8-битным двоичным кодом, который часто для удобства выражают в шестнадцатеричной системе счисления. В этом случае используется следующий формат записи RRGGBB.

Уровень «3»

27. Запишите код красного цвета в двоичном, шестнадцатеричном и десятичном представлении.

Решение:

Красный цвет соответствует максимальному значению интенсивности красного цвета и минимальным значениям интенсивностей зеленого и синего базовых цветов, что соответствует следующим данным:

Коды/Цвета

Красный

Зеленый

Синий

двоичный

11111111

00000000

00000000

шестнадцатеричный

FF

00

00

десятичный

256

0

0

28. Сколько цветов будет использоваться, если для каждого цвета пикселя взято 2 уровня градации яркости? 64 уровня яркости каждого цвета?

Решение:

1. Всего для каждого пикселя используется набор из трех цветов (красный, зеленый, синий) со своими уровнями яркости (0-горит, 1-не горит). Значит, K=23 =8 цветов.

2.643 =262144

Ответ: 8; 262 144 цвета.

Уровень «4»

29. Заполните таблицу цветов при 24- битной глубине цвета в 16- ричном представлении.

Решение:

При глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит, т.е для каждого из цветов возможны 256 уровней интенсивности (28 =256). Эти уровни заданы двоичными кодами (минимальная интенсивность -00000000, максимальная интенсивность -11111111). В двоичном представлении получается следующее формирование цветов:

Название цвета

Интенсивность

Красный

Зеленый

Синий

Черный

00000000

00000000

00000000

Красный

11111111

00000000

00000000

Зеленый

00000000

11111111

00000000

Синий

00000000

00000000

11111111

Белый

11111111

11111111

11111111

Переведя в 16-ричную систему счисления имеем:

Название цвета

Интенсивность

Красный

Зеленый

Синий

Черный

00

00

00

Красный

FF

00

00

Зеленый

00

FF

00

Синий

00

00

FF

Белый

FF

FF

FF

30. На «маленьком мониторе» с растровой сеткой размером 10 х 10 имеется черно-белое изображение буквы «К». Представить содержимое видеопамяти в виде битовой матрицы, в которой строки и столбцы соответствуют строкам и столбцам растровой сетки.

1

Х

2 3 4 5 6 7 8 9 10

10

Y

Решение:

Для кодирования изображения на таком экране требуется 100 бит (1 бит на пиксель) видеопамяти. Пусть «1» означает закрашенный пиксель, а «0» — не закрашенный. Матрица будет выглядеть следующим образом:

0000000000

0001000100

0001001000

0001010000

0001100000

0001010000

0001001000

0001000100

0000000000

0000000000

Эксперименты:

1. Поиск пикселей на мониторе.

Вооружиться увеличительным стеклом и попытаться увидеть триады красных, зеленых и синих (RGB –от англ. «RedGreenBlue» точек на экране монитора.

Существуют разные технологии изготовления электронно-лучевых трубок. Если трубка выполнена по технологии «теневая маска», тогда можно увидеть настоящую мозаику из точек. В других случаях, когда вместо маски с отверстиями используется система нитей из люминофора трех основных цветов (апертурная решетка), картина будет совсем иной. Газета приводит очень наглядные фотографии трех типичных картин, которые могут увидеть «любопытные ученики».

Ребятам полезно было бы сообщить, что желательно различать понятия «точки экрана» и пиксели. Понятие «точки экрана» — физически реально существующие объекты. Пиксели- логические элементы изображения. Как это можно пояснить? Вспомним. Что существует несколько типичных конфигураций картинки на экране монитора: 640 х 480, 600 х 800 пикселей и другие. Но на одном и том же мониторе можно установить любую из них.. Это значит, что пиксели это не точки монитора. И каждый их них может быть образован несколькими соседними светящимися точками ( в пределе одной). По команде окрасить в синий цвет тот или иной пиксель, компьютер, учитывая установленный режим дисплея, закрасит одну или несколько соседних точек монитора. Плотность пикселей измеряется как количество пикселей на единицу длины. Наиболее распространены единицы, называемые кратко как (dots per inch- количество точек на дюйм, 1 дюйм = 2, 54 см). Единица dpi общепринята в области компьютерной графики и издательского дела. Обычно плотность пикселей для экранного изображения составляет 72 dpi или 96dpi.

2. Проведите эксперимент в графическом редакторе в случае, если для каждого цвета пикселя взято 2 уровня градации яркости? Какие цвета вы получите? Оформите в виде таблицы.

Решение:

Красный

Зеленый

Синий

Цвет

0

0

0

Черный

0

1

0

Зеленый

0

0

1

Синий

1

1

1

Белый

1

0

0

Красный

0

1

1

Бирюзовый

1

1

0

Желтый

1

0

1

Малиновый

Векторная графика:

  1. Задачи на кодирование векторного изображения.

  2. Получение векторного изображения с помощью векторных команд

Методические рекомендации:

При векторном подходе изображение рассматривается как описание графических примитивов, прямых, дуг, эллипсов, прямоугольников, окружностей, закрасок и пр. Описываются положение и форма этих примитивов в системе графических координат.

Таким образом векторное изображение кодируется векторными командами, т.е описывается с помощью алгоритма. Отрезок прямой линии определяется координатами его концов, окружность – координатами центра и радиусом, многоугольник – координатами его углов, закрашенная область — линией границы и цветом закраски. Целесообразно, чтобы учащиеся имели таблицу системы команд векторной графики ([6], стр.150):

Команда

Действие

Линия к X1, Y1

Нарисовать линию от текущей позиции в позицию (X1, Y1).

Линия X1, Y1, X2,Y2

Нарисовать линию с координатами начала X1, Y1 и координатами конца X2, Y2. Текущая позиция не устанавливается.

Окружность X,Y,R

Нарисовать окружность; X,Y – координаты центра, а R – длина радиуса.

Эллипс X1, Y1, X2,Y2

Нарисовать эллипс, ограниченный прямоугольником; (X1, Y1) –координаты левого верхнего, а (X2,Y2) – правого нижнего угла прямоугольника.

Прямоугольник X1, Y1, X2,Y2

Нарисовать прямоугольник; (X1, Y1)- координаты левого верхнего угла, (X2,Y2) — координаты правого нижнего угла прямоугольника.

Цвет рисования Цвет

Установить текущий цвет рисования.

Цвет закраски Цвет

Установить текущий цвет закраски

Закрасить X,Y, ЦВЕТ ГРАНИЦЫ

Закрасить произвольную замкнутую фигуру; X, Y – координаты любой точки внутри замкнутой фигуры, ЦВЕТ ГРАНИЦЫ –цвет граничной линии.

1. Задачи на кодирование векторного изображения.

Уровень «3»

  1. Описать букву «К» последовательностью векторных команд.

1 2 3 4 5 6 7 8 9 10

X

10

Y

§ 3.1. Формирование изображения на экране монитора

Информатика. 7 класса. Босова Л.Л. Оглавление


Ключевые слова:

  • пиксель
  • пространственное разрешение монитора
  • цветовая модель RGB
  • глубина цвета
  • видеокарта
  • видеопамять
  • видеопроцессор
  • частота обновления экрана

Пространственное разрешение монитора

Изображение на экране монитора формируется из отдельных точек — пикселей (англ, picture element — элемент изображения), образующих строки; всё изображение состоит из определённого количества таких строк.

Пространственное разрешение монитора — это количество пикселей, из которых складывается изображение на его экране. Оно определяется как произведение количества строк изображения на количество точек в строке. Мониторы могут отображать информацию с различными пространственными разрешениями (800 х 600, 1280 х 1024, 1400 х 1050 и выше). Например, разрешение монитора 1280 х 1024 означает, что изображение на его экране будет состоять из 1024 строк, каждая из которых содержит 1280 пикселей. Изображение высокого разрешения состоит из большого количества мелких точек и имеет хорошую чёткость. Изображение низкого разрешения состоит из меньшего количества более крупных точек и может быть недостаточно чётким (рис. 3.1).

§ 3.1. Формирование изображения на экране монитора

Компьютерное представление цвета

Человеческий глаз воспринимает каждый из многочисленных цветов и оттенков окружающего мира как сумму взятых в различных пропорциях трёх базовых цветов — красного, зелёного и синего. Например, пурпурный цвет — это сумма красного и синего, жёлтый — сумма красного и зелёного, голубой — сумма зелёного и синего цветов. Сумма красного, зелёного и синего цветов воспринимается человеком как белый цвет, а их отсутствие — как чёрный цвет1.

Такая модель цветопередачи называется RGB, по первым буквам английских названий цветов: Red — красный, Green — зелёный, Blue — синий (рис. 3.2).

§ 3.1. Формирование изображения на экране монитора

Рассмотренная особенность восприятия цвета человеческим глазом и положена в основу окрашивания каждого пикселя на экране компьютера в тот или иной цвет. На самом деле пиксель — это три крошечные точки красного, зелёного и синего цветов, расположенные так близко друг к другу, что человек их воспринимает как единое целое. Пиксель принимает тот или иной цвет в зависимости от яркости базовых цветов (рис. 3.3).

§ 3.1. Формирование изображения на экране монитора

Рекомендуем вам посмотреть анимацию «Цветовая модель RGB» (179672), размещённую в Единой коллекции цифровых образовательных ресурсов (http://sc.edu.ru/). Этот ресурс не только демонстрирует общий принцип образования цветов (см. рис. 3.2), но и позволяет в интерактивном режиме собственноручно создавать всевозможные оттенки, задавая различные соотношения базовых цветов. Там же размещена анимация «Изображения на компьютере» (196610), в которой доступно изложены основные принципы формирования изображений на экране монитора.

У первых цветных мониторов базовые цвета имели всего две градации яркости, т. е. каждый из трёх базовых цветов либо участвовал в образовании цвета пикселя (обозначим это состояние 1), либо нет (обозначим это состояние О). Палитра таких мониторов состояла из восьми цветов. При этом каждый цвет можно было закодировать цепочкой из трёх нулей и единиц — трёхразрядным двоичным кодом:

§ 3.1. Формирование изображения на экране монитора

Современные компьютеры обладают необычайно богатыми палитрами, количество цветов в которых зависит от того, сколько двоичных разрядов отводится для кодирования цвета пикселя.

Глубина цвета — длина двоичного кода, который используется для кодирования цвета пикселя. Количество цветов в палитре N и глубина цвета i связаны между собой соотношением: N = 2i.

В настоящее время наиболее распространёнными значениями глубины цвета являются 8, 16 и 24 бита, которым соответствуют палитры из 256, 65 536 и 16 777 216 цветов:

§ 3.1. Формирование изображения на экране монитора

Видеосистема персонального компьютера

Качество изображения на экране компьютера зависит как от пространственного разрешения монитора, так и от характеристик видеокарты (видеоадаптера), состоящей из видеопамяти и видеопроцессора. Монитор и видеокарта образуют видеосистему персонального компьютера. Рассмотрим работу видеосистемы персонального компьютера в упрощённом виде.

  • 1. Под управлением процессора информация о цвете каждого пикселя экрана компьютера заносится для хранения в видеопамять. Видеопамять — это электронное энергозависимое запоминающее устройство. Глубина цвета, а значит, количество цветов в палитре компьютера, зависит от размера видеопамяти. Видеопамять современных компьютеров составляет 256, 512 и более мегабайтов. 2. Видеопроцессор несколько десятков раз в секунду считывает содержимое видеопамяти и передаёт его на монитор, который превращает полученные данные в видимое человеком изображение. Частота обновления экрана (количество обновлений экрана в секунду) измеряется в герцах (Гц). Комфортная работа пользователя, при которой он не замечает мерцания экрана, возможна при частоте обновления экрана не менее 75 Гц.

Пространственное разрешение монитора, глубина цвета и частота обновления экрана — основные параметры, определяющие качество компьютерного изображения. В операционных системах предусмотрена возможность выбора необходимого пользователю и технически возможного графического режима (рис. 3.4).

§ 3.1. Формирование изображения на экране монитора


Задача. Рассчитайте объём видеопамяти, необходимой для хранения графического изображения, занимающего весь экран монитора с разрешением 640 х 480 и палитрой из 65 536 цветов.

§ 3.1. Формирование изображения на экране монитора

Самое главное

Изображение на экране монитора формируется из отдельных точек — пикселей. Пространственное разрешение монитора — это количество пикселей, из которых складывается изображение.

Каждый пиксель имеет определённый цвет, который получается комбинацией трёх базовых цветов — красного, зелёного и синего (цветовая модель RGB).

Глубина цвета — длина двоичного кода, который используется для кодирования цвета пикселя. Количество цветов N в палитре и глубина i цвета связаны между собой соотношением: N = 2i.

Монитор и видеокарта, включающая в себя видеопамять и видеопроцессор, образуют видеосистему персонального компьютера.


Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Используйте эти материалы при подготовке ответов на вопросы и выполнении заданий.

2. Что общего между пуантилизмом (техника живописи), созданием мозаичных изображений и формированием изображения на экране монитора?

3. Опишите цветовую модель RGB.

4. Какие особенности нашего зрения положены в основу формирования изображений на экране компьютера?

5. Для чего нужна видеопамять?

6. Какие функции выполняет видеопроцессор?

7. Опишите в общих чертах работу видеосистемы персонального компьютера.

8. Как вы понимаете смысл фразы «В операционных системах предусмотрена возможность выбора необходимого пользователю и технически возможного графического режима»?

9. Рассчитайте объём видеопамяти, необходимой для хранения графического изображения, занимающего весь экран монитора с разрешением 1024 х 768 и количеством отображаемых цветов, равным 16 777 216.

10. Вы хотите работать с разрешением монитора 1600 х 1200 пикселей, используя 16 777 216 цветов. В магазине продаются видеокарты с памятью 512 Кб, 2 Мбайт, 4 Мбайт и 64 Мбайт. Какую из них можно купить для вашей работы?

11. Подсчитайте объем данных, передаваемых в секунду от видеопамяти к монитору в режиме 1024 х 768 пикселей с глубиной цвета 16 битов и частотой обновления экрана 75 Гц.


Оглавление

Тестовые задания для самоконтроля

Глава 3. Обработка графической информации

§ 3.1. Формирование изображения на экране монитора

§ 3.2. Компьютерная графика


Вопросы занятия:

·                   
пиксель;

·                   
пространственное
разрешение монитора;

·                   
RGB;

·                   
качество
изображения;

·                   
видеокарта.

Человек, в процессе своего развития, прежде чем
научиться писать и читать, начал рисовать. Вот, посмотрите, видите рисунки на
скалах.

Приёмы рисования из века в век постоянно улучшались.
Изменялись инструменты для рисования, использовались различные материалы для
нанесения изображений.

В современном мире, ну никак нельзя обойтись без
компьютера. Соответственно и для рисования стали использовать компьютер.

Для начала, давайте с вами немного отвлечёмся и
вспомним уроки физики. На этих уроках вам говорили, что все тела состоят из
частиц, молекул, атомов, ионов.

Изображение на экране монитора также состоит из частиц.
Давайте присмотримся…

А если посмотреть ещё ближе. Вы видите, что изображение
формируется из отдельных точек. Эти точки называются пикселями.

То есть Пиксель — это наименьший элемент
изображения, получаемого с помощью компьютерного монитора или принтера.

Слово пиксель происходит от английского picture
element или элемент изображения,
который образует строки. Ну а всё изображение строится из определённого
количества строк.

Теперь давайте посмотрим на экран монитора. На экране
стоит фоновый рисунок. Мы с вами уже выяснили, что рисунок состоит из пикселей,
а пиксели в свою очередь складываются в строки.

Количество пикселей, из которых складывается
изображение на экране называется пространственным разрешением монитора.

Его можно найти по формуле. Для этого нужно количество
строк изображения умножить на количество пикселей в строке.

Вы уже, наверное, не раз видели, что мониторы бывают
разные. То есть у них могут быть разные пространственные разрешения.

Например, разрешение монитора может быть 800 на 600.
Это означает, что изображение, которое отображается на данном мониторе будет
состоять из 800 строк и в каждой строке будет по 600 пикселей.

Ещё мониторы могут быть с разрешением 1280 на 1240 или
1400 на 1050 и другие, с ещё более высоким разрешением. Однако стоит отметить,
что на одном и том же мониторе может быть установлено различное разрешение, но
не выше того что указано у него в документации.

Посмотрите внимательно на два изображения. Они
одинаковые, но что-то в них ни так.

Одно изображение более чёткое, а другое менее чёткое.

То есть получается, что изображение высокого
разрешения состоит из большего количества мелких точек и поэтому оно более
чёткое. Второе изображение состоит из меньшего количества более крупных точек
и, естественно, оно менее чёткое.

То есть, можно сделать вывод: чем больше разрешение
монитора, тем более чётко он будет отображать изображения.

Теперь, давайте разберёмся с вопросом: Как компьютер
может представлять цвета?

Человеческий глаз
– один из сложнейших органов человека, он обладает удивительной способностью
адаптации к меняющимся условиям окружающей среды и может различать большое количество
цветов. По сути, это одно из самых совершенных оптических систем.

Итак, глаз человека воспринимает множество цветов и
оттенков окружающего мира как сумму взятых в различных пропорциях трёх базовых
цветов – красного, зелёного и синего. Например, если смешать красный и синий,
то получим фиолетовый цвет. А если смешать красный и зелёный, получим
коричневый цвет. Если смешать все три цвета красный, зелёный и синий, то
человек увидит белый. Ну а если их нет, то человек видит чёрный цвет.

Такая форма цветопередачи называется RGB. Она получила
своё название по первым буквам английских названий цветов: Red
– красный, Green – зелёный, Blue

синий.

Это свойство восприятия цвета человеческим глазом и
было положено в основу окрашивания пикселей не экране компьютера в какой-либо
цвет.

То есть, если мы посмотрим на пиксель в увеличенном
размере, то увидим, что он состоит из трёх точек красного, зелёного и синего
цветов. Эти точки находятся очень близко друг к другу, поэтому человек воспринимает
их как единое целое.

Для того чтобы пиксель окрасился в какой-либо цвет,
добавляют яркость нужным базовым цветам.

Давайте подробнее рассмотрим цветовую модель RGB. Как
мы уже выяснили в этой модели каждый цвет – это комбинация яркостей базовых
цветов – красного, зелёного и синего. Модель RGB ещё называют аддитивной или
относящейся к сложению, так как с увеличением яркости разный цветов
результирующий цвет также становится ярче.

В этой модели каждый из трёх базовых цветов имеет один
из 256 уровней интенсивности.

Давайте посмотрим, как получаются разные цвета и
оттенки. Как мы уже говорили, для этого нужно менять яркость базовых цветов.
Если мы сделаем минимальной яркость синего цвета, то получим жёлтый цвет. Если
мы исключим зелёный цвет, то получим сиреневый. Если исключить красный цвет, то
получим голубой и так далее. Для получения серого цвета нужно синхронно
изменять все три базовых цвета.

У первых цветных мониторов яркость цветов была только
в двух положениях. То есть какой-либо цвет либо участвовал в образовании цвета
(обозначим это состояние 1), либо не участвовал (обозначим такое состояние 0).
Палитра этих мониторов состояла всего из восьми цветов. Каждый цвет имел свой
трёхразрядный двоичный код. То есть каждый цвет можно было закодировать
цепочкой из нулей и единиц.

Например, если яркости всех трёх базовых цветов
находились в состоянии ноль или другими словами не участвовали в образовании
цвета, то на экране отображался чёрный цвет. Или если красный и зелёный находились
в состоянии ноль, а синий в состоянии единица, то есть участвует в образовании
цвета, то на экране монитора отображался синий цвет. И так далее.

В современных компьютерах палитры цветов просто
огромные. Количество цветов в них зависит от того, сколько двоичных разрядов
отводится для кодирования цвета пикселя.

Глубина цвета
– это термин, обозначающий, какое количество цветов или оттенков передаёт
изображение, и изменяется в битах. Подавляющее число изображений, с которыми
производится работа, имеют глубину цвета 8 бит на канал, что позволяет в каждом
канале изображения хранить до 256 его оттенков.

Если количество цветов в палитре обозначить буквой N, а
глубину цвета буквой i, то получим связь

В настоящее время наиболее распространены значения
глубины цвета 8, 16 и 24 бита.

Как мы уже выяснили качество изображения на экране
компьютера зависит от пространственного разрешения монитора. Однако это ещё не
все. Качество изображения также зависит от характеристик видеокарты (видеоадаптера)
компьютера. Видеокарта состоит из видеопамяти и видеопроцессора.

Вместе монитор и видеокарта в компьютере образуют
видеосистему.

Давайте рассмотрим, как работает видеосистема
персонального компьютера в упрощённом виде.

Вы уже знаете, что компьютер хранит информацию в виде
чисел. Для каждого числа в памяти компьютера есть ячейка. Часть памяти связана
с точками на мониторе.

Под управлением процессора информация о цвете каждого
пикселя монитора заносится для хранения в видеопамять.

Видеопамять
— это внутренняя оперативная память, отведённая для хранения данных, которые
используются для формирования изображения на экране монитора.

Глубина цвета, и соответственно, количество цветов в
палитре компьютера, зависит от размера видеопамяти.

Видеопамять современных компьютеров составляет 256,
512 и более мегабайт.

В свою очередь видеопроцессор десятки раз в секунду
считывает данные из видеопамяти и передаёт их на монитор, который преобразует
полученные данные в изображение, которое видит человек.

Частота обновления экрана – это количество обновлений
экрана в секунду. Измеряется в герцах.

На качество изображения частота влияет только на ЭЛТ
(электронная лучевая трубка) системах. При увеличении частоты на ЭЛТ,
изображение становится более чётким и увеличивается реализм из-за уменьшения
видимого мерцания. Комфортная работа пользователя, при
которой он не замечает мерцания экрана, возможна при частоте обновления экрана
не менее 75 Герц.

Так как на жидкокристаллических панелях, изображение
меняется только там, где идёт его изменение и лампы работают на частотах выше
150 Герц, эта характеристика не так важна.

Таким образом, пространственное разрешение монитора,
глубина цвета и частота обновления экрана — это основные параметры, которые
определяют качество компьютерного изображения.

Перейдём к практической части урока.

Давайте рассчитаем, какой объём в памяти компьютера
займёт графическое изображение размером 1024 на 768 пикселей. Если палитра
состоит из 65536 цветов.

Рассмотрим такую ситуацию. Предположим вы хотите
работать с разрешением монитора 1600 на 1200 пикселей, используя 16777216
цветов. В магазине продаются видеокарты с памятью 512 Килобайт, 2 Мегабайта, 4
Мегабайта и 64 Мегабайта. Какую из них вам нужно купить?

Пришло время подвести итоги урока.

Пиксель — это наименьший
элемент изображения, получаемого с помощью компьютерного монитора или принтера.

Количество пикселей, из которых складывается
изображение на экране называется пространственным разрешением монитора.

RGB (аббревиатура английских
слов Red, Green, Blue — красный, зелёный, синий) — аддитивная цветовая модель.

Качество изображения
на экране компьютера зависит от пространственного разрешения монитора и характеристик
видеокарты (видеоадаптера) компьютера.

Видеокарта
состоит из видеопамяти и видеопроцессора.

Автор статьи

Екатерина Андреевна Гапонько

Эксперт по предмету «Информатика»

Задать вопрос автору статьи

Мониторы, с которыми может столкнуться современный пользователь, могут быть двух типов:

  • ЭЛТ (или CRT)— монитор на основе электронно-лучевой трубки.
  • ЖК (или LCD)— жидкокристаллический монитор .

ЭЛТ-мониторы считаются на сегодняшний день устаревшими, но с ними по-прежнему можно столкнуться, поэтому полезно знать особенности настройки изображения на обоих типах мониторов.

Пространственное разрешение монитора

Изображение на экране монитора любого типа формируется из отдельных окрашенных точек – пикселов. Размер пиксела примерно равен 0.2-0.3мм. Качество изображения, которое пользователь видит на экране, зависит от параметров видеоадаптера и от пространственного разрешения монитора. Пространственным разрешением монитора называется число пикселов, из которых складывается изображение. Пространственное разрешение задается двумя числами: количеством пикселов, расположенных по горизонтали и количеством пикселов, расположенных по вертикали.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Мониторы могут отображать изображение с различными пространственными разрешениями (800х600, 1280х1024, 1400х1050) Изображение с высоким разрешением состоит из большого числа мелких точек. Изображение с низким разрешением состоит из малого числа более крупных точек.

Пространственное разрешение монитора. Автор24 — интернет-биржа студенческих работ

Для настройки разрешения экрана нужно:

  • Вызвать контекстное меню рабочего стола и выбрать в нем пункт «Разрешение экрана».
  • В открывшемся окне выбрать при помощи регулятора нужное разрешение.
  • Нажать кнопку «Применить».

Замечание 1

Важно понимать, что современные жидкокристаллические мониторы имеют высокое качество изображения только при одном разрешении. Такое разрешение называется физическим. Оно определяется количеством ячеек на LCD-матрице монитора. Все разрешения, которые меньше физического, могут быть установлены на мониторе путем интерполяции. При интерполяции изображение растягивается, объединяя соседние ячейки матрицы, при этом контуры изображений и текста становятся несколько расплывчатыми.

«Формирование изображения на экране монитора» 👇

Пространственное разрешение монитора. Автор24 — интернет-биржа студенческих работ

Глубина цвета

Каждый пиксел характеризуется определенным цветом в формате RGB и глубиной цвета. Глубина цвета (качество цветопередачи, битность изображения) это длина двоичного кода, который используется для кодирования цвета пиксела. Таким образом, получается, что число цветов в палитре N и глубина цвета d связаны между собой формулой $N=2^d$.

Формирование изображения на экране монитора. Автор24 — интернет-биржа студенческих работ

Глубину цвета, установленную на компьютере, можно узнать, если в окне «Разрешение экрана» перейти по ссылке «Дополнительные параметры». В открывшемся окне на вкладке «Монитор» есть поле со списком «Качество цветопередачи». Для современных мониторов обычно есть выбор из двух вариантов:

  • HighColor.
  • TrueColor.

Представление HighColor отображает оттенки «реальной жизни», то есть, такие оттенки, которые наиболее удобны для восприятия человеческим глазом. Цвета HighColor могут быть:

  • 15-битными;
  • 16-битными;
  • 18-битными.

В 15-битном представлении цвета по 5 бит отводится на представление красной, зеленой и синей составляющей цвета. Таким образом, каждый цвет может иметь $2^5=32 оттенка$. Всего можно закодировать $32×32×32=32768$ цветов.

16-битное представление основано на том, что человеческий глаз более всего чувствителен к зеленой составляющей. Потому на красную и синюю составляющую отводится по 5 бит, а на зеленую – 6 бит. Таким образом, оттенков красного и синего возможно по 32, а зеленого – 64. Общее число цветов в этом представлении будет $32×64×32=65536$.

18-битное представление отводит по 6 битов на каждый цвет и дает в сумме $64×64×64=262144$ цветов.

Представление TrueColor может быть:

  • 24-битным;
  • 32-битным.

24-битное представление отображает 16,7 миллионов различных оттенков. На кодирование красного, зеленого и синего цветов это представление отводит по 8 бит. Таким образом, получается по 256 оттенков каждого основного цвета. Общее число цветов будет 256×256×256.

32-битный TrueColor полноценно используется в палитре CMYK, которая состоит не из трех (как RGB), а их четырех основных цветов. Под кодирование каждого цвета отводится 8 бит. Но изображения, выполненные в CMYK, не рассчитаны на показ на мониторе. Палитра CMYK используется для печати полиграфической продукции. Для обычной RGB-палитры 32-битное представление означает, что на кодирование основных цветов отводятся все те же 24 бита. Но есть еще 8 дополнительных битов, которые отводятся под кодирования степени прозрачности каждого пиксела.

Частота обновления экрана

Этот параметр имеет смысл только для ЭЛТ-монитора. Видеоконтроллер считывает из видеопамяти информацию о цвете каждого пиксела и с определенной частотой передает ее на монитор. Монитор согласно полученной информации каждый раз заново выводит изображение. Частота, с которой это происходит, называется частотой обновления экрана. Чем выше этот параметр, тем меньше устают глаза. Для жидкокристаллических мониторов этот параметр не имеет значения, потому что у них принципиально иная технология смены изображения. Изображение меняется только там, где происходит его изменение.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:
  • Как найти работу сила мысли
  • Как найти забытый рассказ
  • Как найти дорогу ежику
  • Как найти площадь фигуры используя мерку
  • Как в панели управления найти блютуз