Как найти разряд физика

Взаимодействия электрических зарядов исследовали ещё до Шарля Кулона. В частности, английский физик Кавендиш в своих исследованиях пришёл к выводу, что неподвижные заряды при взаимодействии подчиняются определённому закону. Однако он не обнародовал своих выводов. Повторно закон Кулона был открыт французским физиком, именем которого был назван этот фундаментальный закон.

Закон Кулона

Рисунок 1. Закон Кулона

История открытия

Эксперименты с заряженными частицами проводили много физиков:

  • Г. В. Рихман;
  • профессор физики Ф. Эпинус;
  • Д. Бернулли;
  • Пристли;
  • Джон Робисон и многие другие.

Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.

Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).

Крутильные весы

Рис. 2. Крутильные весы

У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10-9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1º. Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.

Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.

Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.

Формулировка

Кулон исследовал взаимодействие между шариками, ничтожно малых размеров, по сравнению с расстояниями между ними. В физике такие заряженные тела называются точечными. Другими словами, под определение точечных зарядов подпадают такие заряженные тела, если их размерами, в условиях конкретного эксперимента, можно пренебречь.

Для точечных зарядов справедливо утверждение: Силы взаимодействия между ними направлены вдоль линии, проходящей через центры заряженных тел. Абсолютная величина каждой силы прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними (см. рис. 3). Данную зависимость можно выразить формулой: |F1|=|F2|=(ke*q1*q2) / r2

Взаимодействие точечных зарядов

Рис. 3. Взаимодействие точечных зарядов

Остаётся добавить, что векторы сил направлены друг к другу для разноименных зарядов, и противоположно, в случае с одноимёнными зарядами. То есть между разноимёнными зарядами действует электрическое притяжение, а между одноимёнными – отталкивание.

Таким образом, закон Кулона описывает взаимодействие между двумя электрическими зарядами, которое лежит в основе всех электромагнитных взаимодействий.

Для того чтобы действовал сформулированный выше закон, необходимо выполнение следующий условий:

  • соблюдение точечности зарядов;
  • неподвижность заряженных тел;
  • закон выражает зависимости между зарядами в вакууме.

Границы применения

Описанная выше закономерность при определённых условиях применима для описания процессов квантовой механики. Правда, закон Кулона формулируется без понятия силы. Вместо силы используется понятие потенциальной энергии кулоновского взаимодействия. Закономерность получена путём обобщения экспериментальных данных.

Следует отметить, что на сверхмалых расстояниях (при взаимодействиях элементарных частиц) порядка 10 — 18 м проявляются электрослабые эффекты. В этих случаях закон Кулона, строго говоря, уже не соблюдается. Формулу можно применять с учётом поправок.

Нарушение закона Кулона наблюдается и в сильных электромагнитных полях (порядка 1018 В/м), например поблизости магнитаров (тип электронных звёзд). В такой среде кулоновский потенциал уменьшается не обратно пропорционально, а экспоненциально.

Кулоновские силы подпадают под действие третьего закона Ньютона: F1 = – F2. Они используются для описания законов всемирного тяготения. В этом случае формула приобретает вид: F = ( m1* m2 ) / r2 , где m1 и m2 – массы взаимодействующих тел, а r – расстояние между ними.

Закон Кулона стал первым открытым количественным фундаментальным законом, обоснованным математически. Его значение в исследованиях электромагнитных явлений трудно переоценить. С момента открытия и обнародования закона Кулона началась эра изучения электромагнетизма, имеющего огромное значение в современной жизни.

Коэффициент k

Формула содержит коэффициент пропорциональности k, который для согласования соразмерностей в международной системе СИ. В этой системе единицей измерения заряда принято называть кулоном (Кл) – заряд, проходящий за 1 секунду сквозь проводник, где силы тока составляет 1 А.

Коэффициент k в СИ выражается следующим образом: k = 1/4πε0, где ε0 – электрическая постоянная:   ε0 = 8,85 ∙10-12 Кл2/Н∙м2. Выполнив несложные вычисления, мы находим: k = 9×109 H*м2 / Кл2. В метрической системе СГС k =1.

На основании экспериментов было установлено, что кулоновские силы, как и принцип суперпозиции электрических полей, в законах электростатики описывают уравнения Максвелла.

Если между собой взаимодействуют несколько заряженных тел, то в замкнутой системе результирующая сила этого взаимодействия равняется векторной сумме всех заряженных тел. В такой системе электрические заряды не исчезают – они передаются от тела к телу.

Закон Кулона в диэлектриках

Выше было упомянуто, что формула, определяющая зависимость силы от величины точечных зарядов и расстояния между ними, справедлива для вакуума. В среде сила взаимодействия уменьшается благодаря явлению поляризации. В однородной изотопной среде уменьшение силы пропорционально определённой величине, характерной для данной среды. Эту величину называют диэлектрической постоянной. Другое название –  диэлектрическая проницаемость. Обозначают её символом ε. В этом случае k = 1/4πεε0.

Диэлектрическая постоянная воздуха очень близка к 1. Поэтому закон Кулона в воздушном пространстве проявляется так же как в вакууме.

Интересен тот факт, что диэлектрики могут накапливать электрические заряды, которые образуют электрическое поле. Проводники лишены такого свойства, так как заряды, попадающие на проводник, практически сразу нейтрализуются. Для поддержания электрического поля в проводнике необходимо непрерывно подавать на него заряженные частицы, образуя замкнутую цепь.

Применение на практике

Вся современная электротехника построена на принципах взаимодействия кулоновских сил.  Благодаря открытию Клоном этого фундаментального закона развилась целая наука, изучающая электромагнитные взаимодействия. Понятие термина электрического поля также базируется на знаниях кулоновских сил. Доказано, что электрическое поле неразрывно связано с зарядами элементарных частиц.

Грозовые облака не что иное как скопление электрических зарядов. Они притягивают к себе индуцированные заряды земли, в результате чего появляется молния. Это открытие позволило создавать эффективные молниеотводы для защиты зданий и электротехнических сооружений.

На базе электростатики появилось много изобретений:

  • конденсатор;
  • различные диэлектрики;
  • антистатические материалы для защиты чувствительных электронных деталей;
  • защитная одежда для работников электронной промышленности и многое другое.

На законе Кулона базируется работа ускорителей заряженных частиц, в частности, функционирование Большого адронного коллайдера (см. Рис. 4).

Большой адронный коллайдер

Рис. 4. Большой адронный коллайдер

Ускорение заряженных частиц до околосветовых скоростей происходит под действием электромагнитного поля, создаваемого катушками, расположенными вдоль трассы. От столкновения распадаются элементарные частицы, следы которых фиксируются электронными приборами. На основании этих фотографий, применяя закон Кулона, учёные делают выводы о строении элементарных кирпичиков материи.

Использованная литература:

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов.
  3. Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм.

Видео по теме

Так же как гравитационная масса тела в механике Ньютона, заряд в электродинамике относится к фундаментальным, основным понятиям.

Электрический заряд

Это физическая величина, означающая свойство некоторых частиц или тел вовлекаться в электромагнитные взаимодействия. В физике электрический заряд принято обозначать q, реже Q.

Из установленных экспериментальных фактов следуют следующие выводы:

  • в природе есть два типа электрических зарядов, условно «позитивные» (+) и «негативные» (-);
  • заряды передаются от одного тела к другому (допустим в случае прямого соприкосновения двух объектов). Поэтому электрический заряд, в отличие от массы тела, не является постоянной характеристикой конкретного тела. Одно и то же тело в разных условиях может иметь разные заряды.
  • Одинаковые заряды отталкиваются, противоположные – притягиваются. То есть «+» отталкивает «+», «-» отталкивает «-». Но «+» притягивает «-» и наоборот.

Закон Кулона

К одним из основных законов природы относится установленный экспериментально закон сохранения заряда (более известный как «Закон Кулона»).

В замкнутой системе алгебраическая сумма зарядов сохраняется:

q1+q2+q3+…+qn=constq_1 + q_2 + q_3 + … + q_n = const

Этот закон также значит, что в изолированной системе не могут происходить процессы появления или исчезновения зарядов только одного знака. То есть заряды рождаются и умирают парами («+» с «-»).

В современной науке, носителями заряда являются элементарные частицы. Все тела во Вселенной состоят из атомов. Но атомы в свою очередь состоят из таких элементарных частиц. Положительно заряженных протонов, отрицательных электронов и частиц без заряда — нейтронов. Протоны и нейтроны входят в состав ядра атома (поэтому оно позитивно заряжено), а электроны в состав оболочки (негативно заряженная). В нейтральном атоме заряд ядра равняется заряду всех электронов в оболочке. Заряд протона и электрона одинаковые по значению.

Экспериментально показано, что заряд может передаваться от одного тела к другому только целыми порциями или дискретно:

q=±ne(n=0,1,2,…),q = ± ne (n = 0, 1, 2, …),

ee – заряд электрона.

Измерение величины заряда

Стандартным методом обнаружения и измерения заряда, является прибор — электрометр. Он состоит из металлического стержня и стрелки, вращающейся вокруг горизонтальной оси. Стержень и стрелка изолированны от металлического корпуса прибора. Когда заряженное тело касается стержня прибора, электрические заряды одного знака перетекают по стержню и стрелке. Силы электростатического отталкивания поворачивают стрелку на некоторый угол. По величине угла можно судить о заряде, который был передан стержню электрометра.

На практике часто используют понятие точечного заряда. Точечным зарядом называют заряженное тело, размерами которого можно пренебречь.

Сила взаимодействия 2 зарядов

Сила взаимодействия неподвижных зарядов прямо пропорциональна модулю зарядов и обратно пропорциональна расстоянию между этими зарядами.

F=k∣q1∣⋅∣q2∣r2F = k frac{| q_1| cdot | q_2|}{r^2}

Закон Кулона хорошо согласуется когда заряды точечные, т.е когда размер заряженных тел гораздо меньше расстоянию между ними. Величина коэффициента kk зависит от выбора системы единиц.

В Международной системе СИ, принятой в большинстве стран:

k=14πε0k = frac {1} {4 pi varepsilon_0}

Также в СИ за 1 единицу заряда принят кулон (обозначается Кл). Кулон — это заряд, который проходит за время 1 с (одна секунда) через поперечное сечение проводника при силе тока 1А (один ампер).

Тест по теме «Электрический заряд. Закон Кулона»

Век, в котором мы живем, можно назвать временем электричества. Работа компьютеров, телевизоров, автомобилей, спутников, приборов искусственного освещения – это лишь малая часть примеров, где оно используется. Одним из интересных и важных для человека процессов является электрический разряд. Рассмотрим подробнее, что он собой представляет.

Краткая история изучения электричества

Когда человек познакомился с электричеством? Ответить на этот вопрос сложно, поскольку поставлен он некорректным образом, ведь наиболее яркое природное явление – молния, известная с незапамятных времен.

Значение слова "вразумить": это что значит?Вам будет интересно:Значение слова «вразумить»: это что значит?

Осмысленное изучение электрических процессов началось лишь с конца первой половины XVIII века. Здесь следует отметить серьезный вклад в представления человека об электричестве Чарльза Кулона, исследовавшего силу взаимодействия заряженных частиц, Георга Ома, математически описавшего параметры тока в замкнутой цепи, и Бенджамина Франклина, который провел множество экспериментов, изучая природу вышеназванной молнии. Помимо них, большую роль в развитии физики электричества сыграли такие ученые, как Луиджи Гальвани (изучение нервных импульсов, изобретение первой «батарейки») и Майкл Фарадей (исследование тока в электролитах).

Вузы Кургана: топ лучших, бюджетные места, специальностиВам будет интересно:Вузы Кургана: топ лучших, бюджетные места, специальности

Достижения всех названных ученых создали прочный фундамент для изучения и понимания сложных электрических процессов, одним из которых является электрический разряд.

Что представляет собой разряд и какие условия необходимы для его существования?

Разряд электрического тока – это физический процесс, который характеризуется наличием потока заряженных частиц между двумя пространственными областями, имеющими разный потенциал в газовой среде. Разберем это определение.

Во-первых, когда говорят о разряде, то всегда имеют в виду газ. Разряды в жидкостях и твердых телах тоже могут возникать (пробой твердого конденсатора), однако процесс изучения этого явления проще рассмотреть в менее плотной среде. Более того, именно разряды в газах часто наблюдаются и имеют большое значение для жизнедеятельности человека.

Долгосрочные активы – это что такое? Определение, особенности учетаВам будет интересно:Долгосрочные активы – это что такое? Определение, особенности учета

Во-вторых, как сказано в определении электрического разряда, он возникает только при соблюдении двух важных условий:

  • при существования разности потенциалов (напряженности электрического поля);
  • наличии носителей заряда (свободных ионов и электронов).

Разность потенциалов обеспечивает направленное движение заряда. Если она превышает некоторое пороговое значение, то несамостоятельный разряд переходит в самоподдерживающийся или самостоятельный.

Что касается свободных носителей заряда, то в любом газе они всегда присутствуют. Их концентрация, естественно, зависит от ряда внешних факторов и свойств самого газа, но сам факт их наличия является бесспорным. Связано это с существованием таких источников ионизации нейтральных атомов и молекул, как ультрафиолетовые лучи от Солнца, космическое излучение и естественная радиация нашей планеты.

Соотношение между разностью потенциалов и концентрацией носителей определяет характер разряда.

Виды электрических разрядов

Приведем список этих видов, а затем подробнее охарактеризуем каждый из них. Итак, все разряды в газовых средах принято разделять на следующие:

  • тлеющий;
  • искровой;
  • дуговой;
  • коронный.

Физически они отличаются друг от друга лишь мощностью (плотностью тока) и, как следствие, температурой, а также характером их проявления во времени. Во всех случаях речь идет о переносе положительного заряда (катионы) к катоду (область низкого потенциала) и отрицательного заряда (анионы, электроны) к аноду (зона высокого потенциала).

Тлеющий разряд

Для его существования необходимо создать низкие давления газа (в сотни и тысячи раз меньше атмосферного). Тлеющий разряд наблюдается в катодных трубках, которые заполняются каким-либо газом (например, Ne, Ar, Kr и другие). Приложение напряжения к электродам трубки приводит к активации следующего процесса: имеющиеся в газе катионы начинают ускоренно двигаться, достигнув катода, они ударяют по нему, передавая импульс и выбивая электроны. Последние при наличии достаточной кинетической энергии могут приводить к ионизации нейтральных молекул газа. Описанный процесс будет самоподдерживающимся только в случае достаточной энергии катионов, бомбардирующих катод, и их определенного количества, что зависит от разности потенциалов на электродах и давления газа в трубке.

Тлеющий разряд светится. Излучение электромагнитных волн обусловлено двумя идущими параллельно процессами:

  • рекомбинация пар электрон-катион, сопровождаемая выделением энергии;
  • переход нейтральных молекул (атомов) газа из возбужденного состояния в основное.

Типичными характеристиками этого вида разряда являются небольшие токи (несколько миллиампер) и небольшие стационарные напряжения (100–400 В), однако пороговое напряжение равно нескольким тысячам вольт, что зависит от давления газа.

Примерами тлеющего разряда являются люминесцентные и неоновые лампы. В природе к этому типу можно отнести северное сияние (движение потоков ионов в магнитном поле Земли).

Искровой разряд

Это типичный вид атмосферного электрического разряда, который проявляется в виде молнии. Для его существования необходимо не только наличие больших давлений газа (1 атм и больше), но и огромных напряжений. Воздух представляет собой достаточно хороший диэлектрик (изолятор). Его проницаемость лежит в пределах от 4 до 30 кВ/см, что зависит от наличия в нем влажности и твердых частиц. Эти цифры говорят о том, что для получения пробоя (искры) необходимо приложить минимум 4 000 000 вольт на каждый метр воздуха!

В природе такие условия возникают в кучевых облаках, когда в результате процессов трения между воздушными массами, конвекции воздуха и кристаллизации (конденсации) происходит перераспределение зарядов таким образом, что нижние слои туч заряжаются отрицательно, а верхние — положительно. Разность потенциалов постепенно накапливается, когда ее значение начинает превышать изоляционные возможности воздуха (несколько млн вольт на метр), то возникает молния – электрический разряд, который длится в течение долей секунды. Сила тока в нем достигает 10–40 тысяч ампер, а температура плазмы в канале поднимается до 20 000 К.

Минимальную энергию, которая выделяется в процессе молнии, можно вычислить, если принять во внимание следующие данные: процесс развивается в течение t=1*10-6 с, I = 10 000 А, U = 109 В, тогда получим:

E = I*U*t = 10 млн Дж

Полученная цифра эквивалентна энергии, которая освобождается при взрыве 250 кг динамита.

Дуговой разряд

Так же как и искровой, он возникает при наличии достаточного давления в газе. Его характеристики практически полностью аналогичны искровому, но имеются и отличия:

  • во-первых, токи достигают десяти тысяч ампер, но напряжение при этом составляет несколько сотен вольт, что связано с высокой проводимостью среды;
  • во-вторых, дуговой разряд существует стабильно во времени, в отличие от искрового.

Переход в этот вид разряда осуществляется постепенным повышением напряжения. Поддерживается разряд за счет термоэлектронной эмиссии с катода. Ярким его примером является сварочная дуга.

Коронный разряд

Этот тип электрического разряда в газах часто наблюдали моряки, которые путешествовали в Новый Мир, открытый Колумбом. Они называли синеватое свечение на концах мачт «огнями Святого Эльма».

Возникает коронный разряд вокруг объектов, имеющих очень сильную напряженность электрического поля. Такие условия создаются вблизи острых предметов (мачт кораблей, зданий с остроконечными крышами). Когда тело имеет некоторый статический заряд, то напряженность поля на его концах приводит к ионизации окружающего воздуха. Возникшие ионы начинают свой дрейф к источнику поля. Эти слабые токи, вызывающие аналогичные процессы, что и в случае тлеющего разряда, приводят к появлению свечения.

Опасность разрядов для здоровья человека

Коронный и тлеющий разряды особой опасности не представляют для человека, поскольку они характеризуются низкими токами (миллиамперы). Два других из вышеназванных разрядов являются смертельно опасными в случае прямого контакта с ними.

Если человек наблюдает приближение молнии, то он должен отключить все электроприборы (включая мобильные телефоны), а также расположиться так, чтобы не выделяться среди окружающей местности в плане высоты.

Закон Кулона

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

$F=k{|q_1|·|q_2|}/{r^2}$

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока $1$А за $1$с.

То есть $1$ Кл$= 1А·с$.

Заряд в $1$ Кл очень велик. Сила взаимодействия двух точечных зарядов по $1$ Кл каждый, расположенных на расстоянии $1$ км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой $1$ т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в $1$ А вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

$k=9·10^9H·м^2$/$Кл^2$

Часто его записывают в виде $k={1}/{4πε_0}$, где $ε_0=8.85×10^{-12}Кл^2$/$H·м^2$ — электрическая постоянная.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

$C={q}/{φ}$

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:

$C={q}/{U}={ε_{0}εS}/{d}$

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_{0}$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Энергия поля конденсатора

Энергия заряженного конденсатора выражается формулами

$E_n={qU}/{2}={q^2}/{2C}={CU^2}/{2}$

которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора.

Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:

$ω={εε_{0}E^2}/{2}$

где $ε$ — диэлектрическая проницаемость среды, $ε_0$ — электрическая постоянная.

Напряженность электрического поля

Напряженность электрического поля — векторная характеристика поля, сила, действующая на единичный покоящийся в данной системе отсчета электрический заряд.

Напряженность определяется по формуле:

$E↖{→}={F↖{→}}/{q}$

где $E↖{→}$ — напряженность поля; $F↖{→}$ — сила, действующая на помещенный в данную точку поля заряд $q$. Направление вектора $E↖{→}$ совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.

Единицей напряженности в СИ является вольт на метр (В/м).

Напряженность поля точечного заряда. Согласно закону Кулона, точечный заряд $q_0$ действует на другой заряд $q$ с силой, равной

$F=k{|q_0||q|}/{r^2}$

Модуль напряженности поля точечного заряда $q_0$ на расстоянии $r$ от него равен

$E={F}/{q}=k{|q_0|}/{r^2}$

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд.

Силовые линии электрического поля

Электрическое поле в пространстве принято представлять силовыми линиями. Понятие о силовых линиях ввел М. Фарадей при исследовании магнетизма. Затем это понятие было развито Дж. Максвеллом в исследованиях по электромагнетизму.

Силовая линия, или линия напряженности электрического поля, — это линия, касательная к которой в каждой ее точке совпадает с направлением силы, действующей на положительный точечный заряд, находящийся в этой точке поля.

Линии напряженности положительно заряженного шарика;

Линии напряженности двух разноименно заряженных шариков;

Линии напряженности двух одноименно заряженных шариков

Линии напряженности двух пластин, заряженных разными по знаку, но одинаковыми по абсолютной величине зарядами.

Линии напряженности на последнем рисунке почти параллельны в пространстве между пластинами, и плотность их одинакова. Это говорит о том, что поле в этой области пространства однородно. Однородным называется электрическое поле, напряженность которого одинакова во всех точках пространства.

В электростатическом поле силовые линии не замкнуты, они всегда начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Они нигде не пересекаются, пересечение силовых линий говорило бы о неопределенности направления напряженности поля в точке пересечения. Плотность силовых линий больше вблизи заряженных тел, где напряженность поля больше.

Поле заряженного шара. Напряженность поля заряженного проводящего шара на расстоянии от центра шара, превышающем его радиус $r≥R$, определяется по той же формуле, что и поля точечного заряда. Об этом свидетельствует распределение силовых линий, аналогичное распределению линий напряженности точечного заряда.

Заряд шара распределен равномерно по его поверхности. Внутри проводящего шара напряженность поля равна нулю.

Закон ученого Кулона

В физике есть раздел, который изучает электрические разряды и их взаимодействие с электрическим полем в состоянии покоя, и он называется электростатикой. В этом разделе главным оказывается правило Кулона.

Это правило применяют, чтобы определить силу, с которой взаимодействуют два покоящихся электрических зарядов либо расстояние от одного заряда до другого. На закон Кулона ничего не влияет и он ни от чего не зависит. Это основополагающий закон. Таким образом, вид конкретного объекта не оказывает влияния на силу и её значение.

Далее мы простыми словами объясним в чем заключается Кулоновское правило и закон Кулона и где его применяют.

Об открытии закона Кулона

Закон и правило Кулона

1785 г. стал годом, когда экспериментальным путём были доказаны действия, которые описываются в законе. Это открытие совершил Ш.О. Кулон при помощи специальных крутильных весов.

Но, уже в 1773 году с помощью конденсатора в форме сферы, Кавендиш доказал, что во внутренней части этой сферы не было электрического поля.

А это говорит об изменении электрических сил с учетом промежутка от одной частицы до другой. Или расстоянию в квадрате. Но эти научные данные никто не опубликовал.

Отсюда становится понятным, почему закон назван по имени ученого Ш. О. Кулона, а не в честь Кавендиша. Мера, с помощью которой проводят измерения разряда, получила аналогичное название.

Как формулируется закон Кулона

Закон и правило Кулона

Трактовка закона Кулона звучит следующим образом: в пустом пространстве (вакууме) сила двух взаимодействующих объектов с определённым зарядом возрастает по мере увеличения произведения их модулей и уменьшающаяся при возрастании расстояния в квадрате от одного объекта до другого.

Однако данная формулировка понятна не всем. Если объяснить по-простому, то закон Кулона будет звучать так: чем больше величина разряда тел и насколько рядом они располагаются, тем величина силы будет выше.

Либо по-другому: увеличивая промежуток между двумя заряженными телами – значение силы будет уменьшаться.

Описываемый закон может быть записан следующим образом:

Закон и правило Кулона

Что означает каждая из величин в формуле: q — заряд, r — промежуток от одного заряда до другого, k — множитель, зависящий от того, какая система СИ была выбрана.

Заряд q обладает условно положительным либо условно отрицательным значением. Такое разделение может быть условным, т.е. если тела будут соприкасаться, то это значение способно перемещаться от тела к телу.

В результате у одного и того же объекта разряд может отличаться по своему значению и знаку. Заряд с маленьким размером в сравнении с тем, на каком расстоянии они взаимодействуют, носит название точечного заряда.

Кроме того, необходимо принимать во внимание тот факт, что условия, в которых находится разряд, оказывают влияние на взаимодействующие силы (F). Эта сила как в воздушном пространстве, так и в безвоздушном пространстве (вакууме) обладает практически одинаковыми величинами, поэтому этот закон применим исключительно в этих средах.

И это является одним из правил использования выше написанной формулы. Единицей измерения зарядов является Кулон (Кл).

Кулоном называют заряды, проходящие за 1 сек через тело, в котором сила тока равна 1 амперу. И может быть представлена как производная от основополагающих единиц измерения СИ.

1Кл = 1А*1с

Закон и правило Кулона

Известно, что отталкиваясь, тела плохо удерживаются на маленьком объекте, несмотря на то, что сила тока равная 1 амперу–не велика.

К примеру, ток с силой в 0,5 ампер на каждые 100Вт протекает по простым лампочкам, но в том же электрическом нагревателе сила тока составляет величину более 10 ампер.

Таким образом, сила, действующая на объект с весом в 1 тонну с позиции Земли, обладает приблизительно одним и тем же значением.

Можно отметить тот факт, что выше представленное уравнение фактически имеет такую же форму, как и при гравитационных взаимодействиях.

И в случае когда в классической механике первостепенной является масса, тогда как при электростатическом взаимодействии фигурирует заряд.

Кулоновский закон для среды диэлектриков

Закон Кулона

Учитывая все величины в системе СИ множитель k будет равен следующему значению с соответствующей единицей измерения. Однако в большинстве учебников данный множитель записывают как дробь.

Закон Кулона

Где величина электрической постоянной равна — Е0= 8,85*10-12 Кл2/Н*м2.В диэлектрической среде в уравнении появляется величина диэлектрической постоянной.

Таким образом, рассматриваемый закон Кулона можно применять при расчете взаимодействующих сил заряда в вакууме и заряда в среде.

Теперь видно, что введя диэлектрик, значение силы F уменьшится.

Направление сил в законе Кулона

Взаимодействуя между собой два заряда с учётом того, какой полярностью обладают: с одинаковой будут отталкиваться, а с разными полярностями (противоположными) притягиваться.

Тем самым, отличаясь от похожего правила гравитационного взаимодействия, при котором объекты только способны притягиваться.

Радиус-вектор – это сила, направленная вдоль прямой, которая проведена между двумя зарядами. Эта величина имеет следующее обозначение —  r12.

В том случае, когда два заряда имеют противоположные знаки, то тогда направление сил будет от центральной части одного заряда к противоположному заряду по всей проведенной прямой этими зарядами.

Однако, если они имеют одинаковые знаки, то направление будет в противоположную сторону.

Величина силы, приложенной кq1со стороны q2имеет обозначение следующего вида — F12. Чтобы определить силу, которая прикладывается на второй разряд применяют следующие символы -F21 и R21.

В случае, когда объект обладает сложной формой и большими размерами, что с заданным расстоянием оно не считается точечным, тогда объект разделяют на небольшие разделы и принимают каждый раздел за одиночный заряд.

Проведя все геометрические расчёты векторов выводят итоговое значение силы.

Практическое использование закона Кулона

Исследования Кулона для электростатики имеют большое значение, так как применяются во многих изобретениях и устройствах. В качестве примера можно привести громоотвод.

Он применяется для защиты зданий и электроустановок от гроз, что также позволяет предупредить возникновение пожара и поломку техники.

Когда на улице дождливая погода сопровождается грозой, то на земле возникают направленные разряды, притягивающиеся к облакам. В результате на земле образуются электрические поля большой величины.

Рядом с острой частью громоотвода это поле обладает наибольшей величиной, поэтому от этой части образуется возгорание самостоятельного газового разряда (земля -> громоотвод ->облака).

В то время, когда электричество от земли притягиваются к противоположным величинам облаков, начинает действовать закон Кулона.

Происходит намагничивание воздуха и уменьшение напряженности электростатического поля рядом с громоотводом. В результате оба заряда не будет накапливаться на зданиях и тогда риск возникновения молний будет ниже.

В том случае если молния всё-таки ударит по зданию, тогда по громоотводу образуемая энергия будет уходить в землю.

Для более важных исследований используют устройство, с помощью которого получают заряженные частицы высокой энергии. В этом устройстве поле, создаваемое при помощи электрических разрядов, создаёт действия, которые увеличивают энергию частиц.

При рассмотрении этих процессов с позиции действия на небольшие разряды группами, то в этом случае все зависимости закона Кулона становятся правдивыми.

Понравилась статья? Поделить с друзьями:
  • Cpu abi устройства как исправить
  • Как найти вирусы в роутере
  • Как найти идентификатор дилера на триколор
  • Как исправить ошибки на виндоус
  • Как найти фотографии геншин импакт