Как найти реакцию распада

Ядра большинства атомов – это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^{226}Rarightarrow86^{222}Rn+2^4) He. Чтобы понимать смысл написанного выражения, он изучил тему о массовом и зарядовом числе ядра атома.

Удалось установить, что основные виды радиоактивного распада – альфа и бета-распад – происходят согласно следующему правилу смещения.

Альфа-распад

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов (Z) и нейтронов (N) в атомном ядре оно превращается в вещество с количеством протонов (Z-2) и количеством нейтронов (N-2) и, соответственно, атомной массой (A-4). То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Пример α-распада: (92^{238}Urightarrow90^{234}Th+2^4)He.

Альфа-распад – это внутриядерный процесс. В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон ((beta)-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример (beta)-распада: (19^{40}Krightarrow20^{40}Ca+_{-1} ^0e+_0 ^0v).

Бета-распад – это внутринуклонный процесс. Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях, либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.

Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие виды радиоактивности это альфа, бета и гамма-распад.

Можно описать и так, что альфа-распад – это вид радиоактивного распада ядра, в результате которого происходит испускание дважды магического ядра гелия (^4)He – альфа-частицы. При этом массовое число ядра уменьшается на 4, а атомный номер – на (2). Альфа-распад наблюдается только у тяжелых ядер (атомный номер должен быть больше 82, массовое число должно быть больше (200)). Альфа-частица испытывает туннельный переход через кулоновский барьер в ядре, поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциально, период полураспада альфа-активных ядер экспоненциально растет с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера-Нэттола). При энергии альфа-частицы меньше (2) МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной. Поэтому, хотя большинство природных изотопов тяжелее церия в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован.

Скорость вылета альфа-частицы составляет от 9400 км/с (изотоп неодима (^{144})Nd) до (23700) км/с (у изотопа полония (^{212m})Po). В общем виде формула альфа-распада выглядит следующем образом:

(_Z^AXrightarrow_{Z-2}^{A-4}Y+alpha(_2^4He)).

Пример альфа-распада для изотопа (^{238}U):

(_{92}^{238}Urightarrow_{90}^{234}Th+alpha(_2^4He)).

Альфа-распад может рассматриваться как предельный случай кластерного распада.

Впервые альфа-распад был идентифицирован британским физиком Эрнестом Резерфордом в 1899 году. Одновременно в Париже французский физик Пол Виллард проводил аналогичные эксперименты, но не успел разделить излучения раньше Резерфорда. Первую количественную теорию альфа-распада разработал советский и американский физик Георгий Гамов.

Атомные ядра с одинаковым массовым числом, но с разными зарядовыми числами называются изобарами. Экспериментально установлено, что одному массовому числу обычно соответствует только один стабильный изобар. Остальные оказываются нестабильными и за довольно короткий промежуток времени либо делятся на две части, либо изменяют заряд на единицу посредством распада нейтрона на протон, электрон и другие частицы.
Зависимость числа нераспавшихся нестабильных ядер изначально была получена экспериментально:
(N=N_0cdot 2^{-frac{t}{T}}).  ((1))
Формула ((1)) называется законом радиоактивного распада, где

(N_0) — начальное количество нераспавшихся ядер в момент времени (t=0),

(N) — количество нераспавшихся ядер в момент времени (t),

(T) —  период полураспада, время, за которое распадается приблизительно половина вещества.
В общем случае любую ядерную реакцию (процесс взаимодействия ядер, сопровождающийся изменением состава ядра) можно представить в виде:
(A+a; rightarrow; B+b).  ((2))
Важно отметить, что во всех реакциях выполняется закон сохранения заряда и массы. Рассмотрим виды ядерных реакций.

Это деление ядра на альфа-частицу и ядро-остаток. Обычно в альфа-распаде участвуют ядра тяжёлых элементов с порядковым номером (Zgeq 82). Первый альфа-распад наблюдался на изотопе урана:
 (_{92}^{238}U; rightarrow; _{90}^{234}Th+_{2}^{4}He).  ((3))
Иногда при альфа-распаде часть энергии не переходит в кинетическую, а идёт на возбуждение ядра-продукта, которое впоследствии излучает фотон.

Это спонтанное излучение электрона ядром вследствие превращения нейтрона в протон. В этой реакции по закону сохранения энергии должна рождаться ещё одна нейтральная безмассовая частица, которая была названа нейтрино:
(_0^{1}n rightarrow _1^{1}p + e^{-} + _0^0tilde{nu}),  ((4))
где (_0^0tilde{nu}) — электронное антинейтрино.
В эксперименте появляется античастица нейтрино — антинейтрино. Однако из-за того, что бета-распад был обнаружен раньше, чем были обнаружены античастицы, обнаруженную частицу сначала назвали просто нейтрино.
Так, бета-распад калия можно записать:
(_{19}^{40}K;rightarrow; _{20}^{40}Ca + e^{-} + _0^{0}tilde{nu}).  ((5))
Как и альфа-распад, бета-распад может сопровождаться излучением фотона.

Позитронный бета-распад (позитронный (beta)-распад)

При таком типе распада один из протонов ядра превращается в нейтрон, позитрон и нейтрино. В настоящее время известно три вида нейтрино: электронное, мюонное и тау-нейтрино, но при бета-распадах появляется именно электронное нейтрино или электронное антинейтрино:
(_{1}^{1}p;rightarrow; _0^{1}n+ e^{+} +_0^{0}tilde{nu}).  ((6))

Ещё один пример ядерных реакций — это гамма-распад ((gamma)-распад).

Деление ядер

Это спонтанное деление ядра на две части. Этот тип распада характерен для элементов, которые тяжелее урана. Продукты распада называются ядрами-осколками. Деления ядер урана:
(_{92}^{236}U; rightarrow; _{56}^{141}Ba+_{36}^{92}Kr+3n.)  ((7))

Возможность цепных ядерных реакций была спрогнозирована в (1934) году супругами Кюри. В (1939) году было обнаружено, что при делении ядра урана (изотоп (235)) освобождается (2)–(3) нейтрона. При попадании этих нейтронов в другие ядра урана-(235) возможна ситуация, когда эти ядра тоже будут делиться. Но при попадании в ядра урана-(238) эти нейтроны просто поглощаются. Это называется цепной реакцией. Необходимым условием этой реакции является наличие критической массы.
На цепных ядерных реакциях основан принцип работы ядерных электростанций. Энергия, выделяющаяся при ядерной реакции, идёт на нагрев теплоносителя (например, воды), который нагревает и испаряет воду, после чего водяной пар направляется на лопасти турбины.
Энергия в ядерных реакциях может выделяться не только за счёт деления тяжёлых ядер, но и за счёт соединения лёгких. Такие реакции называют термоядерными, поскольку для их прохождения нужна высокая температура плазмы.
Например, термоядерные реакции синтеза гелия:
( _1^{3}H+_1^{2}H ;rightarrow; _2^4He+_0^1n,; _1^2H+_1^2Hrightarrow _2^4He.)  ((8))

Атомная физика на ОГЭ. Вся теория и разбор заданий от преподавателя MAXIMUM

06.02.2021
19303

Атомная физика — один из труднейших разделов экзамена, а задания по этой теме кочуют из варианта в вариант каждый год. Не пугаемся! Для решения заданий ОГЭ на радиоактивность, распады и ядерные реакции нужно знать лишь самые базовые понятия. Из этой статьи вы узнаете все необходимое — атомная физика на ОГЭ обязательно вам покорится!

В этой статье:

Какие частицы необходимо помнить для сдачи ОГЭКакие ядерные распады нужно знатьАльфа-распадИзотопыБета-распад
Гамма-распадЯдерные реакцииАтомная физика на ОГЭ: что нужно запомнить

атомная физика огэ

Какие частицы необходимо помнить для сдачи ОГЭ

Чтобы перейти к практике и научиться решать хитрые задания, сначала нужно вспомнить теорию, связанную с ними.

Таблица основных частиц, которые встречаются в каждом варианте ОГЭ

Вспомним, что химические элементы обозначаются в виде ,  где

  • X – название химического элемента
  • А – массовое число, равное сумме протонов и нейтронов
  • Z – зарядовое число, равное числу протонов в ядре

Давайте раз и навсегда узнаем, что скрывается за числами рядом с названием каждого элемента. Рассмотрим пример углерода:

  • 6 — это порядковый номер и зарядовое число Z. Таким образом, в ядре атома углерода 6 протонов. Z=6.
  • 12,011 — это атомная масса. Мы будем его округлять до 12 и называть массовым числом A, то есть суммой протонов и нейтронов. A=12.
  • Получается, в ядре атома углерода 6 протонов и 6 нейтронов.

Какие ядерные распады нужно знать

На ОГЭ часто встречаются три типа распадов: альфа, бета и гамма.

Альфа-распад

α-распад — испускание ядром альфа-частицы. Что это такое? Все просто — так называют ядро атома гелия, то есть частицу из двух протонов и двух нейтронов.

  • У нас был элемент X с массовым числом A и с зарядовым числом Z
  • Атом испускает альфа-частицу с массовым числом=4 и зарядовым числом=2
  • Мы получаем новый элемент с массовым числом=A-4 и зарядовым числом=Z-2

В α-распаде заряд уменьшается на 2, а масса уменьшается на 4.

Самостоятельно подготовиться к ОГЭ непросто. На то, чтобы разобраться со всеми темами, понадобится много времени. Но и это не решит проблему! Например, если вы запомнили какое-то решение из интернета, а оно оказалось неправильным, можно на пустом месте потерять баллы. Если хотите научиться решать все задания ОГЭ по физике, обратите внимание на онлайн-курсы MAXIMUM! Наши специалисты уже проанализировали сотни вариантов ОГЭ и подготовили для вас вас максимально полезные занятия.

Приходите к нам на пробный урок! Вы узнаете всю структуру ОГЭ-2021, разберете сложные задания из первой части, получите полезные рекомендации и узнаете, как устроена подготовка к экзаменам в MAXIMUM. Все это абсолютно бесплатно!

Задача 1

Используя фрагмент Периодической системы элементов Д.И. Менделеева, представленный на рисунке, определите, какое ядро образуется в результате α-распада ядра нептуния-237. 

Разбор

  • Как мы говорили чуть выше, порядковый номер элемента — это, по совместительству, зарядовое число. То есть, количество протонов. Получается, в Нептунии 93 протона.
  • У α-частицы количество протонов = 2.
  • Посчитаем, чему равно зарядовое число нашего нового элемента: зарядовое число = 93-2 = 91. Взглянув на табличку, находим элемент под номером 91 — Протактиний.

Ответ: 1) Ядро протактиния

Изотопы

Теперь давай обратим внимание на массовые числа нептуния и протактиния. Отличаются ли они на массовое число альфа-частицы — на 4?

237-231=6

Время бить тревогу! Неужели мы что-то напутали и решили задачу неверно? Но нет, оказывается, мы все сделали правильно — ведь у протактиния более 15 изотопов.

Изотопы — это разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковое зарядовое число, но разные массовые числа. 

Например, изотопы азота:

и

Задача 2

Ядро тория   превратилось в ядро радия . Какую частицу испустило при этом ядро тория?

  1. нейтрон
  2. протон
  3. альфа-частицу
  4. бета-частицу

Разбор

  • Сверху находится массовое число — масса частицы. Вычтем из массы Тория массу Радия: 230-226=4. Получили массу неизвестной частицы.
  • Снизу находится зарядовое число — это заряд не­из­вест­ной частицы. Вычтем из заряда Тория заряд Радия: 90-88=2. Получили заряд неизвестной частицы.
  • Итого: массовое число = 4. Зарядовое число = 2
  • Взглянем на табличку самых распространенных частиц. 

Вуаля! Наша незнакомка — это альфа-частица — частица с двумя протонами и двумя нейтронами.

Ответ: 3) альфа-частица

https://blog.maximumtest.ru/post/oge-po-fizike-2021-struktura-i-izmeneniya.html

Бета-распад

β-распад — испускание ядром бета-частицы. Бета-частицей называют электрон. Посмотрим в списке основных частиц наверху, чему равны массовое и зарядовое число бета-частицы (электрона).

  • У нас был элемент X с массовым числом A и с зарядовым числом Z
  • Атом испускает бета-частицу с массовым числом=0 и зарядовым числом=-1
  • Мы получаем новый элемент с прежним массовым числом=A и зарядовым числом=Z+1

В β-распаде заряд увеличивается на 1, а масса не меняется.

Задача 3

Изо­топ крип­то­на в ре­зуль­та­те серии рас­па­дов пре­вра­тил­ся изо­топ мо­либ­де­на . Сколь­ко β-частиц было ис­пу­ще­но в этой серии рас­па­дов?

Разбор

  • Обозначим количество испущенных β-частиц за N
  • Зарядовое число криптона до серии β-распадов равнялось 36
  • Зарядовое число молибдена после серии β-распадов 42
  • Тогда 42-36=6 β распадов

Ответ: было испущено 6 β распадов

Задача 4

Радиоактивный атом превратился в атом в результате цепочки альфа- и бета-распадов. Чему было равно число альфа- и бета-распадов?

Разбор

Эта задача требует максимальной концентрации — многие школьники ее решают неверно. Давайте разберем правильный подход к этой задаче.

  • Для начала рассмотрим альфа-распады 

  • Добьемся, чтобы массовое число изменилось с 232 до 208. Для этого производим альфа-распады, вычитая 4 из массового числа и 2 из зарядового числа.

  • Получили элемент с массовым числом=208 и зарядовым числом=78. Для этого мы произвели 6 альфа распадов.
  • Теперь перейдем к бета-распадам. Бета-распады влияют только на зарядовое число.

  • Добьемся того, чтобы зарядовое число изменилось с 78 до 82.

  • Получили элемент с массовым числом = 208 и зарядовым числом = 82. Для этого мы произвели 4 бета распада.

Ответ: 6 альфа распадов и 4 бета распада.

Гамма-распад

γ-частицы — это излучение, а γ-распад — испускание ядром гамма-излучения. Пожалуй, это самый простой распад, потому что он ничего не меняет.

Элемент X до распада и элемент Y после распада — это одно и то же.

На ОГЭ ученики часто попадают в ловушки экзамена, считая, что γ-излучение меняет элемент. Но это совсем не так! Какой элемент был до гамма-распада, такой и останется.

При γ-распаде заряд и масса не меняются.

Ядерные реакции

Атомная физика на ОГЭ включает в себя не только распады, но и ядерные реакции. Ядерные реакции происходят при столкновении ядер или элементарных частиц с другими ядрами. В результате изменяется массовое и зарядовое число элементов, появляются новые частицы.

Во всех ядерных реакциях работает очень простой лайфхак: при протекании ядерной реакции сохраняется суммарное массовое число  и суммарный заряд.

Сумма масс слева равна сумме масс справа: A1+A2=A3+A4.

Сумма зарядов слева равна сумме зарядов справа: Z1+Z2=Z3+Z4.

Сразу же закрепим эти правила на практике.

Задача 5

В результате столкновения ядра урана с частицей X произошло деление урана, описываемое реакцией:

Определите зарядовое и массовое числа частицы X, с которой столкнулось ядро урана.

Разбор

  • Сначала разберемся с массовым числом. Используем лайфхак: то, что слева, равно тому, что справа.
  • Также заметим, что у нас 3 нейтрона. Получается, нам нужно умножить массовое число нейтрона на 3.
  • С гамма-частицей разобраться легко — как мы показали ранее, она ни на что не влияет.

A+235 = 133+139+3*1

Отсюда A=133+139+3-235=40

  • Теперь настал черед зарядового числа.

Z+92 = 36+56+3*0

Отсюда Z=36+56+0-92=0

Ответ: получили элемент X c массовым числом 40 и зарядовым числом 0.

Атомная физика на ОГЭ: что нужно запомнить

  • В α-распаде заряд уменьшается на 2, а масса уменьшается на 4.
  • α-частица — это ядро атома гелия. α-частица состоит из двух протонов и двух нейтронов.
  • В β-распаде заряд увеличивается на 1, а масса не меняется.
  • β-частица — это электрон.
  • В γ-распаде заряд и масса не меняются.
  • γ-частица — это порция электромагнитного излучения.
  • Изотопы — это разновидности атомов (и ядер) какого либо химического элемента, которые имеют одинаковое зарядовое число, но разные массовые числа. 
  • В ядерных реакциях сохраняется суммарное массовое число и суммарный заряд.

Теперь вы знаете, как решать задания на ядерные распады и реакции! Надеюсь, атомная физика на ОГЭ стала для вас намного понятнее. Если хотите разобраться в остальных темах по физике и не только, обратите внимание на наши онлайн-курсы. Уже более 150 тысяч выпускников подготовились с нами к ОГЭ и ЕГЭ. Кстати, у меня на курсах MAXIMUM тоже можно поучиться! Приходите на бесплатный пробный урок, чтобы познакомиться с нашей образовательной системой и узнать массу полезного про ОГЭ.

`

Лайфхаки экзамена

К рубрике

Ядерные реакции

  • Темы кодификатора ЕГЭ: ядерные реакции, деление и синтез ядер.

  • Энергетический выход ядерной реакции

  • Деление ядер

  • Цепная ядерная реакция

  • Термоядерная реакция

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: ядерные реакции, деление и синтез ядер.

В предыдущем листке мы неоднократно говорили о расщеплении атомного ядра на составные части. Но как этого добиться в действительности? В результате каких физических процессов можно разбить ядро?

Наблюдения радиоактивного распада в изменяющихся внешних условиях — а именно, при различных давлениях и температурах, в электрических и магнитных полях — показали, что скорость радиоактивного распада от этих условий не зависит. Никаких превращений химических элементов друг в друга все эти факторы вызвать не способны. Очевидно, изменения энергии тут слишком малы, чтобы повлиять на атомное ядро — так ветер, обдувающий кирпичный дом, не в состоянии его разрушить.

Но разрушить дом можно артиллерийским снарядом. И Резерфорд в 1919 году решил воспользоваться наиболее мощными «снарядами», которые имелись тогда в распоряжении. Это были alpha-частицы, вылетающие с энергией около 5 МэВ при радиоактивном распаде урана. (Как вы помните, это те самые снаряды, которыми он восемь лет назад бомбардировал лист золотой фольги в своих знаменитых опытах, породивших планетарную модель атома.)

Правда, превращений золота в другие химические элементы в тех экспериментах не наблюдалось. Ядро золота ^{197}_{phantom{1} 79}rm{Au} само по себе весьма прочное, да и к тому же содержит довольно много протонов; они создают сильное кулоновское поле, отталкивающее alpha-частицу и не подпускающее её слишком близко к ядру. А ведь для разбивания ядра alpha-снаряд должен сблизиться с ядром настолько, чтобы включились ядерные силы! Что ж, раз большое количество протонов мешает — может, взять ядро полегче, где протонов мало?

Резерфорд подверг бомбардировке ядра азота ^{14}_{phantom{1} 7}rm{N} и в результате осуществил первую в истории физики ядерную реакцию:

^{14}_{vphantom{1}7}rm{N} + vphantom{1} ^{4}_{2}rm{He} rightarrow vphantom{1}^{17}_{phantom{1}8}rm{O} + vphantom{1}^{1}_{1}rm{H}. (1)

В правой части (1) мы видим продукты реакции — изотоп кислорода и протон.

Стало ясно, что для изучения ядерных реакций нужно располагать частицами-снарядами высоких энергий. Такую возможность дают ускорители элементарных частиц. Ускорители имеют два серьёзных преимущества перед естественными «радиоактивными пушками».

1. В ускорителях можно разгонять любые заряженные частицы. В особенности это касается протонов, которые при естественном распаде ядер не появляются. Протоны хороши тем, что несут минимальный заряд, а значит — испытывают наименьшее кулоновское отталкивание со стороны ядер-мишеней.

2. Ускорители позволяют достичь энергий, на несколько порядков превышающие энергию α-частиц при радиоактивном распаде. Например, в Большом адронном коллайдере протоны разгоняются до энергий в несколько ТэВ; это в миллион раз больше, чем 5 МэВ у alpha-частиц в реакции (1), осуществлённой Резерфордом.

Так, с помощью протонов, прошедших через ускоритель, в 1932 году удалось разбить ядро лития (получив при этом две alpha-частицы):

^{7}_{3}rm{Li} + vphantom{1}^{1}_{1}rm{H} rightarrow vphantom{1}^{4}_{2}rm{He} + vphantom{1}^{4}_{2}rm{He}. (2)

Ядерные реакции дали возможность искусственного превращения химических элементов.

Кроме того, в продуктах реакций стали обнаруживаться новые, не известные ранее частицы. Например, при облучении бериллия alpha-частицами в том же 1932 году был открыт нейтрон:

^{9}_{4}rm{Be} + vphantom{1}^{4}_{2}rm{He} rightarrow vphantom{1}^{12}_{phantom{1} 6}rm{O} + vphantom{1}^{1}_{0}rm{n}. (3)

Нейтроны замечательно подходят для раскалывания ядер: не имея электрического заряда, они беспрепятственно проникают внутрь ядра. (При этом ускорять нейтроны не надо — медленные нейтроны легче проникают в ядра. Нейтроны, оказывается, нужно даже замедлять, и делается это пропусканием нейтронов через обычную воду.) Так, при облучении азота нейтронами протекает следующая реакция:

^{14}_{phantom{1} 7}rm{N} + vphantom{1}^{1}_{0}rm{n} rightarrow vphantom{1}^{11}_{phantom{1} 5}rm{B} + vphantom{1}^{4}_{2}rm{He}. (4)

к оглавлению ▴

Энергетический выход ядерной реакции

Обсуждая энергию связи, мы видели, что в результате ядерных процессов масса системы частиц не остаётся постоянной. Это, в свою очередь, приводит к тому, что кинетическая энергия продуктов ядерной реакции отличается от кинетической энергии исходных частиц.

Прежде всего напомним, что полная энергия E частицы массы m складывается из её энергии покоя mc^2 и кинетической энергии K:

E = mc^2 + K.

Пусть в результате столкновения частиц A и B происходит ядерная реакция, продуктами которой служат частицы X и Y:

A + B rightarrow X + Y. (5)

Полная энергия системы частиц сохраняется:

E_A + E_B = E_X + E_Y,

то есть

(m_Ac^2 + K_A) + (m_Bc^2 + K_B) = (m_Xc^2 + K_X) + (m_Y c^2 + K_Y ). (6)

Кинетическая энергия исходных частиц равна K_A + K_B. Кинетическая энергия продуктов реакции равна K_X + K_Y. Энергетический выход Q ядерной реакции — это разность кинетических энергий продуктов реакции и исходных частиц:

Q = (K_X + K_Y) - (K_A + K_B).

Из (6) легко получаем:

Q = (m_A + m_B - m_X - m_Y)c^2. (7)

Если Q > 0, то говорят, что реакция идёт с выделением энергии: кинетическая энергия продуктов реакции больше кинетической энергии исходных частиц. Из (7) мы видим, что в этом случае суммарная масса продуктов реакции меньше суммарной массы исходных частиц.

Если же Q < 0, то реакция идёт с поглощением энергии: кинетическая энергия продуктов реакции меньше кинетической энергии исходных частиц. Суммарная масса продуктов реакции в этом случае больше суммарной массы исходных частиц.

Таким образом, термины «выделение» и «поглощение» энергии не должны вызывать недоумение: они относятся только к кинетической энергии частиц. Полная энергия системы частиц, разумеется, в любой реакции остаётся неизменной.

Чтобы посчитать энергетический выход Q ядерной реакции (5), действуем по следующему алгоритму.

1. С помощью таблицы масс нейтральных атомов находим m_A, m_B, m_X и m_Y, выраженные в а. е. м. (для нахождения массы ядра не забываем вычесть из массы нейтрального атома массу электронов).

2. Вычисляем массу m_1 = m_A + m_B исходных частиц, массу m_2 = m_X + m_Y продуктов реакции и находим разность масс Delta m = m_1 - m_2.

3. Умножаем Delta m на 931,5 и получаем величину Q, выраженную в МэВ.

Мы сейчас подробно рассмотрим вычисление энергетического выхода Q на двух примерах бомбардировки ядер лития ^{7}_{3}rm{Li}: сначала — протонами, затем — alpha-частицами.

В первом случае имеем уже упоминавшуюся выше реакцию (2):

vphantom{1}^{7}_{3}rm{Li} + vphantom{1}^{1}_{1}rm{H} rightarrow vphantom{1}^{4}_{2}rm{He} + vphantom{1}^{4}_{2}rm{He}.

Масса атома лития ^{7}_{3}rm{Li} равна 7,01601 а. е. м. Масса электрона равна 0,000548 а. е. м. Вычитая из массы атома массу трёх его электронов, получаем массу ядра лития ^{7}_{3}rm{Li}:

7,01601 - 3 cdot 0,000548 = 7,01437 а. е. м.

Масса протона равна  1,00728  а. е. м., так что масса исходных частиц:

m_1 = 7,01437 + 1,00728 = 8,02165  а. е. м.

Переходим к продуктам реакции. Масса атома гелия равна  4,00260  а. е. м. Вычитаем массу электронов и находим массу ядра гелия vphantom{1}^{4}_{2}rm{He}:

4,00260 - 2 cdot 0,000548 = 4,00150  а. е. м.

Умножая на 2, получаем массу продуктов реакции:

 m_2 = 2 cdot 4,00150 = 8,00300  а. е. м.

Масса, как видим, уменьшилась (m_2 < m_1); это означает, что наша реакция идёт с выделением энергии. Разность масс:

Delta m = m_1 - m_2 = 8,02165 - 8,00300 = 0,01865  а. е. м.

Выделившаяся энергия:

Q = 0,01865 cdot 931,5 = 17,4  МэВ.

Теперь рассмотрим второй пример. При бомбардировке ядер лития alpha-частицами происходит реакция:

vphantom{1}^{7}_{3}rm{Li} + vphantom{1}^{4}_{2}rm{He} rightarrow vphantom{1}^{10}_{phantom{1} 5}rm{B} + vphantom{1}^{1}_{0}rm{n}. (8)

Массы исходных ядер нам уже известны; остаётся сосчитать их суммарную массу:

m_1 = 7,01437 + 4,00150 = 11,01587  а. е. м.

Из таблицы берём массу атома бора vphantom{1}^{10}_{phantom{1} 5}rm{B} (она равна  10,01294  а. е. м.); вычитаем массу пяти электронов и получаем массу ядра атома бора:

10,01294 - 5 cdot 0,000548 = 10,01020  а. е. м.

Масса нейтрона равна 1,00867  а. е. м. Находим массу продуктов реакции:

m_2 = 10,01020 + 1,00867 = 11,01887 а. е. м.

На сей раз масса увеличилась (m_2 > m_1), то есть реакция идёт с поглощением энергии.

Разность масс равна:

Delta m = m_1 - m_2 = -0,0030  а. е. м.

Энергетический выход реакции:

Q = -0,0030 cdot 931,5 = -2,8 МэВ.

Таким образом, в реакции (8) поглощается энергия 2,8 МэВ. Это означает, что суммарная кинетическая энергия продуктов реакции (ядра бора и нейтрона) на 2,8 МэВ меньше, чем суммарная кинетическая энергия исходных частиц (ядра лития и alpha-частицы). Поэтому чтобы данная реакция в принципе осуществилась, энергия исходных частиц должна быть не меньше 2,8 МэВ.

к оглавлению ▴

Деление ядер

Бомбардируя ядра урана медленным нейтронами, немецкие физики Ган и Штрассман обнаружили появление элементов средней части периодической системы: бария, криптона, стронция, рубидия, цезия и т. д. Так было открыто деление ядер урана.

На рис. 1 мы видим процесс деления ядра (изображение с сайта oup.co.uk.). Захватывая нейтрон, ядро урана делится на два осколка, и при этом освобождаются два-три нейтрона.

Рис. 1. Деление ядра урана

Осколки являются ядрами радиоактивных изотопов элементов середины таблицы Менделеева. Обычно один из осколков больше другого. Например, при бомбардировке урана vphantom{1}^{235}_{phantom{1} 92}rm{U} могут встречаться такие комбинации осколков (как говорят, реакция идёт по следующим каналам).

• Барий и криптон: vphantom{1}^{235}_{phantom{1} 92}rm{U} + vphantom{1}^{1}_{0}rm{n} rightarrow vphantom{1}^{144}_{phantom{1} 56}rm{Ba} + vphantom{1}^{89}_{36}rm{Kr} + 3 vphantom{1}^{1}_{0}rm{n}.

• Цезий и рубидий: vphantom{1}^{235}_{phantom{1} 92}rm{U} + vphantom{1}^{1}_{0}rm{n} rightarrow vphantom{1}^{140}_{phantom{1} 55}rm{Cs} + 2vphantom{1}^{1}_{0}rm{n}.

• Ксенон и стронций: vphantom{1}^{235}_{phantom{1} 92}rm{U} + vphantom{1}^{1}_{0}rm{n} rightarrow vphantom{1}^{140}_{phantom{1} 54}rm{Xe} + vphantom{1}^{94}_{38}rm{Sr} + 2vphantom{1}^{1}_{0}rm{n}.

В каждой из этих реакций выделяется очень большая энергия — порядка 200  МэВ. Сравните эту величину с найденным выше энергетическим выходом реакции (2), равным 17,4  МэВ! Откуда берётся такое количество энергии?

Начнём с того, что из-за большого числа протонов (92 штуки), упакованных в ядре урана, кулоновские силы отталкивания, распирающие ядро, очень велики. Ядерные силы, конечно, ещё в состоянии удерживать ядро от распада, но могучий кулоновский фактор готов сказать своё слово в любой момент. И такой момент настаёт, когда в ядре застревает нейтрон (рис. 2 — изображение с сайта investingreenenergy.com).

Рис. 2. Деформация, колебания и разрыв ядра

Застрявший нейтрон вызывает деформацию ядра. Начнутся колебания формы ядра, которые могут стать столь интенсивными, что ядро вытянется в «гантельку». Короткодействующие ядерные силы, скрепляющие небольшое число соседних нуклонов перешейка, не справятся с силами электрического отталкивания половинок гантельки, и в результате ядро разорвётся.

Осколки разлетятся с огромной скоростью — около 1/30 скорости света. Они и уносят большую часть высвобождающейся энергии (около 170  МэВ из 200).

Деление тяжёлых ядер можно истолковать с точки зрения уже известного нам графика зависимости удельной энергии связи ядра от его массового числа (рис. 3).

Рис. 3. Деление тяжёлых ядер энергетически выгодно

Цветом выделена область 50 leqslant A leqslant 90, в которой удельная энергия связи достигает наибольшего значения 8,7  МэВ/нуклон. Это область наиболее устойчивых ядер. Справа от этой области удельная энергия связи плавно уменьшается до 7,6  МэВ/нуклон у ядра урана.

Процесс превращения менее устойчивых ядер в более устойчивые является энергетически выгодным и сопровождается выделением энергии. При делении ядра урана, как видим, удельная энергия связи повышается примерно на 1  МэВ/нуклон; эта энергия как раз и выделяется в процессе деления. Умножив это на число нуклонов в ядре урана, получим приблизительно те самые 200  МэВ энергетического выхода, о которых говорилось выше.

к оглавлению ▴

Цепная ядерная реакция

Появление двух-трёх нейтронов в процессе деления ядра урана — важнейший факт. Эти нейтроны «первого поколения» могут попасть в новые ядра и вызвать их деление; в результате деления новых ядер возникнут нейтроны «второго поколения», которые попадут в следующие ядра и вызовут их деление; возникнут нейтроны «третьего поколения», которые приведут к делению очередных ядер и т. д. Так идёт цепная ядерная реакция, в ходе которой высвобождается колоссальное количество энергии.

Для протекания цепной ядерной реакции необходимо, чтобы число N_i высвободившихся нейтронов в очередном поколении было не меньше числа N_{i-1} нейтронов в предыдущем поколении. Величина

k = frac{displaystyle N_i}{displaystyle N_{i-1} vphantom{1^a}}

называеся коэффициентом размножения нейтронов. Таким образом, цепная реакция идёт при условии k > 1. Если k < 1, то цепная реакция не возникает.

В случае k > 1 происходит лавинообразное нарастание числа освобождающихся нейтронов, и цепная реакция становится неуправляемой. Так происходит взрыв атомной бомбы.

В ядерных реакторах происходит управляемая цепная реакция деления с коэффициентом размножения k = 1. Стационарное течение управляемой цепной реакции обеспечивается введением в активную зону реактора (то есть в ту область, где протекает реакция) специальных управляющих стержней, поглощающих нейтроны. При полностью введённых стержнях поглощение ими нейтронов настолько велико, что k < 1 и реакция не идёт. В процессе запуска реактора стержни постепенно выводят из активной зоны, пока выделяемая мощность не достигнет требуемого уровня. Этот уровень тщательно контролируется, и при его превышении включаются устройства, вводящие управляющие стержни назад в активную зону.

к оглавлению ▴

Термоядерная реакция

Наряду с реакцией деления тяжёлых ядер энергетически возможным оказывается и обратный в некотором смысле процесс — синтез лёгких ядер, то есть слияние ядер лёгких элементов (расположенных в начале периодической таблицы) с образованием более тяжёлого ядра.

Чтобы началось слияние ядер, их нужно сблизить вплотную — чтобы вступили в действие ядерные силы. Для такого сближения нужно преодолеть кулоновское отталкивание ядер, резко возрастающее с уменьшением расстояния между ними. Это возможно лишь при очень большой кинетической энергии ядер, а значит — при очень высокой температуре (в десятки и сотни миллионов градусов). Поэтому реакция ядерного синтеза называется термоядерной реакцией.

В качестве примера термоядерной реакции приведём реакцию слияния ядер дейтерия и трития (тяжёлого и сверхтяжёлого изотопов водорода), в результате которой образуется ядро гелия и нейтрон:

vphantom{1}^{2}_{1}rm{H} + vphantom{1}^{3}_{1}rm{H} rightarrow vphantom{1}^{4}_{2}rm{He} + vphantom{1}^{1}_{0}rm{n}. (9)

Эта реакция идёт с выделением энергии, равной 17,6  МэВ (попробуйте сами провести расчёты и получить данную величину). Это очень много, если учесть, что в реакции участвуют всего 5 нуклонов! В самом деле, в расчёте на один нуклон в реакции (9) выделяется энергия примерно 3,5  МэВ, в то время как при делении ядра урана выделяется «всего» 1  МэВ на нуклон.

Таким образом, термоядерные реакции служат источником ещё большего количества энергии, чем реакции деления ядер. С физической точки зрения это понятно: энергия реакции 6 ядерного деления есть в основном кинетическая энергия осколков, разогнанных электрическими силами отталкивания, а при ядерном синтезе энергия высвобождается в результате разгона нуклонов навстречу друг другу под действием куда более мощных ядерных сил притяжения.

Проще говоря, при делении ядер высвобождается энергия электрического взаимодействия, а при синтезе ядер — энергия сильного (ядерного) взаимодействия.

В недрах звёзд достигаются температуры, подходящие для синтеза ядер. Свет Солнца и далёких звёзд несёт энергию, выделяющуяся в термоядерных реакциях — при слиянии ядер водорода в ядра гелия и последующем слиянии ядер гелия в ядра более тяжёлых элементов, расположенных в средней части периодической системы. Направление термоядерного синтеза показано на рис. 4; синтез лёгких ядер энергетически выгоден, так как направлен в сторону увеличения удельной энергии связи ядра.

Рис. 4. Синтез лёгких ядер энергетически выгоден

Неуправляемая термоядерная реакция осуществляется при взрыве водородной бомбы. Сначала взрывается встроенная атомная бомба — это нужно для создания высокой температуры на первой ступени термоядерного взрыва. При достижении необходимой температуры в термоядерном горючем бомбы начинаются реакции синтеза, и происходит взрыв собственно водородной бомбы.

Осуществление управляемой термоядерной реакции остаётся пока нерешённой проблемой, над которой физики работают уже более полувека. Если удастся добиться управляемого течения термоядерного синтеза, то человечество получит в своё распоряжение фактически неограниченный источник энергии. Это чрезвычайно важная задача, стоящая перед нынешним и будущими поколениями — в свете угрожающей перспективы истощения нефтегазовых ресурсов нашей планеты.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Ядерные реакции» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Химия

ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ

3. Строение атома

Ядро атома и радиоактивные превращения. В настоящее время в ядре атома открыто большое число элементарных частиц. Важнейшими из них являются протоны (символ p ) и нейтроны (символ n ). Обе эти частицы рассматриваются как два различных состояния ядерной частицы нуклона. Элементарные частицы характеризуются определенной массой и зарядом. Протон обладает массой 1,0073 а.е.м. и зарядом +1. Масса нейтрона равна 1,0087 а.е.м., а его заряд — нулю (частица электрически нейтральна). Можно сказать, что массы протона и нейтрона почти одинаковы.

Вскоре после открытия нейтрона , была создана протонно-нейтронная теорию строения ядра. Согласно этой теории ядра всех атомов, кроме ядра атома водорода, состоят из Z протонов (А — Z) нейтронов, где Z — порядковый номер элемента, А — массовое число.

Массовое число А указывает суммарное число протонов Z и нейтронов N в ядре атома, т.е.

Силы, удерживающие протоны и нейтроны в ядре, называются ядерными. Это чрезвычайно большие силы, действующие на очень коротких расстояниях (порядка 10 -15 м) и превосходящие силы отталкивания. Природу этих сил изучает ядерная физика. В ядре сосредоточена почти вся масса атома. Массой электронов по сравнению с массой ядра можно практически пренебречь. Свойства ядра определяются главным образом числом протонов и нейтронов, т.е. составом ядра. Состав ядер атомов различных химических элементов не одинаков, а потому элементы отличаются по атомной массе. И поскольку в состав ядра входят протоны, ядро заряжено положительно. Так как заряд ядра численно равен порядковому номеру элемента Z , то он определяет число электронов в электронной оболочке атома и ее строение, а тем самым и свойства химического элемента. Поэтому положительный заряд ядра, а не атомная масса является главной характеристикой атома, а значит, и элемента.

Наряду с химическими реакциями, в которых принимают участие только электроны, существуют различные превращения, в которых изменению подвергаются ядра атомов (ядерные реакции).

Изотопы. Исследования показали, что в природе существуют атомы одного и того же элемента с разной массой. Так, встречаются атомы хлора с массой 35 и 37. Ядра этих атомов содержат одинаковое число протонов, но разное число нейтронов.

Атомы одного и того же элемента, имеющие разную массу (массовое число), называют изотопами. Каждый изотоп характеризуется двумя величинами: массовым числом (проставляется вверху слева от химического знака) и порядковым номером (проставляется внизу слева от химического знака) и обозначается символом соответствующего элемента. Например, изотоп углерода с массовым числом 12 записывается так: 12 6 С, или 12 С, или словами: “углерод-12”. Эта форма записи распространена и на элементарные частицы: электрон 0 1 е, нейтрон 1 0 n, протон 1 1 p или 1 1 Н, нейтрино 0 0 n . Изотопы известны для всех химических элементов.

Обычно изотопы различных элементов не имеют специальных названий. Единственным исключением является водород, изотопы которого имеют специальные химические символы и названия: 1 H — протий, 2 D — дейтерий, 3 T — тритий. Это связано с тем, что относительное отличие масс изотопов для водорода является максимальным среди всех химических элементов.

Атомная масса элемента равна среднему значению из масс всех его природных изотопов с учетом их распространенности.

Так, например, природный хлор состоит из 75,4% изотопа с массовым числом 35 и из 24,6% изотопа с массовым числом 37; средняя атомная масса хлора 35,453. Средняя атомная масса природного лития, содержащего 92,7% 7 3 Li и 7,3% 6 3 Li равна 6,94 и т.д. Атомные массы элементов, приводимые в периодической системе Д. И. Менделеева, есть средние массовые числа природных смесей изотопов. Это одна из причин, почему они отличаются от целочисленные значений. Наряду с термином “изотопы” используется термин “нуклид”. Нуклид — это атом со строго определенным значением массового числа, т.е. с фиксированным значением числа протонов и нейтронов в ядре. Радиоактивный нуклид сокращенно называют радионуклид. Термин “изотопы” следует применять только для обозначения стабильных и радиоактивных нуклидов одного элемента.

Устойчивые и неустойчивые изотопы. Все изотопы подразделяются на стабильные и радиоактивные. Стабильные изотопы не подвергаются радиоактивному распаду, поэтому они и сохраняются в природных условиях. Примерами стабильных изотопов являются 16 О, 12 С, 19 F. Большинство природных элементов состоит из смеси двух или большего числа стабильных изотопов. Из всех элементов наибольшее число стабильных изотопов имеет олово (10 изотопов). В редких случаях, например у алюминия, в природе встречается только один стабильный изотоп, а остальные изотопы неустойчивы.

Радиоактивные изотопы подразделяются, в свою очередь, на естественные и искусственные — и те и другие самопроизвольно распадаются, испуская при этом a — или b -частипы до тех пор, пока не образуется стабильный изотоп. Химические свойства всех изотопов в основном одинаковы. Эти свойства определяются главным образом зарядом ядра, а не его массой.

С помощью ядерных реакций получают изотопы, обладающие радиоактивностью (радиоактивные изотопы). Все они неустойчивы и в результате радиоактивного распада превращаются в изотопы других элементов.

Радиоактивные изотопы получены для всех химических элементов. Их известно около 1500. Элементы, состоящие только из радиоактивных изотопов, называются радиоактивными. Это элементы с Z = 43, 61 и 84 — 107.

Стабильных (нерадиоактивных) изотопов известно около 300. Из них состоит большинство химических элементов периодической системы элементов Д.И. Менделеева. У некоторых элементов наряду со стабильными имеются и долгоживущие радиоактивные изотопы. Это 40 19 K, 87 37 Rb, 115 49 In и др.

По химическим свойствам радиоактивные изотопы почти не отличаются от стабильных. Поэтому они служат в качестве “меченых” атомов, позволяющих по измерению их радиоактивности следить за поведением всех атомов данного элемента и за их передвижением. Радиоактивные изотопы широко применяются в научных исследованиях, в промышленности, сельском хозяйстве, медицине, биологии и химии. В настоящее время их получают в больших количествах.

Виды радиоактивного распада. Существует три основных вида самопроизвольных ядерных превращений.

1. a — распад. Ядро испускает a — частицу, которая представляет собой ядро атома гелия 4 Не и состоит из двух протонов и двух нейтронов. При a — распаде массовое число изотопа уменьшается на 4, а заряд ядра — на 2 :

2. b -распад. В неустойчивом ядре нейтрон превращается в протон, при этом ядро испускает электрон ( b -частицу) и антинейтрино:

При b -распаде массовое число изотопа не изменяется, поскольку общее число протонов и нейтронов сохраняется, а заряд ядра увеличивается на 1:

3. g -распад. Возбужденное ядро испускает электромагнитное излучение с очень малой длиной волны и очень высокой частотой ( g -излучение), при этом энергия ядра уменьшается, массовое число и заряд ядра остаются неизменными.

Радиоактивные превращения . Ядерные реакции — это превращение атомных ядер в результате их взаимодействия с элементарными частицами и друг с другом. Написание уравнений таких реакций основано на законах сохранения массы и заряда. Это означает, что сумма масс и сумма зарядов в левой части уравнения должна быть равна сумме масс и сумме зарядов в правой части уравнения :

Это уравнение показывает, что при взаимодействии атома алюминия с a -частицей образуются атом кремния и протон.

Более употребительна краткая запись ядерных реакций. Вначале записывают химический знак исходного ядра, затем (в скобках) кратко обозначают частицу, вызвавшую реакцию, и частицу, образовавшуюся в результате реакции, после чего ставят химический знак конечного ядра. При этом у символов исходного и конечного ядер обычно проставляются только массовые числа, так как заряды ядер легко определять по периодической системе элементов Д.И. Менделеева. Сокращенная запись рассмотренных ранее ядерных реакций следующая:

где a — обозначение a -частицы ( 4 2 Не); р — протона ( 1 1 Н); черточка означает отсутствие действующей частицы в случае радиоактивного распада.

Важнейшей особенностью ядерных реакций является выделение огромного количества энергии в форме кинетической энергии образующихся частиц или в форме энергии излучения. В химических реакциях энергия выделяется главным образом в форме теплоты. Энергия ядерных реакций превышает энергию химических реакций в миллионы раз. Этим объясняется неразрушимость ядер атомов при протекании химических реакций.

Скорость радиоактивного распада. Период полураспада. Скорости распада радиоактивных элементов сильно отличаются от одного элемента к другому и не зависят от внешних условий, таких, например, как температура (в этом состоит важное отличие ядерных реакций от обычных химических превращений). Каждый радиоактивный элемент характеризуется периодом полураспада t 1/2 , т. е. временем, за которое самопроизвольно распадается половина атомов исходного вещества. Для разных элементов период полураспада имеет сильно отличающиеся значения. Так, для урана 238 U период полураспада t 1/2 = 4,5 × 10 9 лет. Именно поэтому активность урана в течение нескольких лет заметно не меняется. Для радия 226 Ra период полураспада t 1/2 = 1600 лет, поэтому и активность радия больше, чем урана. Ясно, что чем меньше период полураспада, тем быстрее протекает радиоактивный распад. Для разных элементов период полураспада может изменяться от миллионных долей секунды до миллиардов лет.

На примере естественного распада урана 238 U показаны превращения, которые через промежуточные радиоактивные элементы приводят к устойчивому элементу — свинцу 206 Р b . Схема хорошо иллюстрирует различие в периодах полураспада t 1/2 для различных элементов (периоды полураспада даны внизу под стрелкой, частицы, испускаемые радиоактивными элементами, — над стрелкой).

Уравнение радиоактивного распада. Математическое уравнение, описывающее закон радиоактивного распада, связывает значение массы m(t) радиоактивного изотопа в момент времени t с начальной массой m 0 :

Кроме приведенного на рисунке естественного ряда радиоактивных элементов (так называемого ряда урана), известны еще два других естественных ряда — это ряд актиния, начинающийся с 235 U и заканчивающийся 208 Р b , и ряд тория, начинающийся с 232 Т h и заканчивающийся 208 Р b . Существует еще и четвертый ряд радиоактивных изотопов, этот ряд получен искусственно.

Искусственные превращения , ядерный синтез. Первая искусственная ядерная реакция была осуществлена Резерфордом путем бомбардировки атомов азота a частицами :

В настоящее время, чтобы осуществить искусственные превращения, чаще используют протоны или нейтроны, например:

В ядерных реакциях (в случае естественного или искусственного превращения элементов) сумма атомных масс (сумма индексов слева вверху) реагентов и продуктов всегда одинакова. Это относится и к зарядам ядер (индексы слева внизу, которые часто опускаются).

В 1930 г. был создан первый в мире циклотрон (ускоритель элементарных частиц — “снарядов” для бомбардировки ядер атомов), после чего было открыто и изучено множество разнообразных ядерных реакций. В настоящее время специальная область химии, ядерная химия, занимается изучением превращений элементов.

Особую важность представлял синтез неизвестных ранее элементов: технеция, франция, астата и др., а также всех трансурановых элементов (элементов, порядковый номер которых превышает 92). В настоящее время получено 17 трансурановых элементов (от Z = 93 до Z = 109 включительно). Работы в этой области проводятся в Объединенном институте ядерных исследований в г. Дубне. Там впервые были синтезированы элементы с порядковыми номерами 102, 103, 104, 105, 106, 107. Ведутся работы по синтезу элементов с более тяжелыми ядрами.

Радиоактивность

Известно 2500 атомных ядер, и 90 % из них являются нестабильными.

Радиоактивность – это способность нестабильных ядер превращаться в другие ядра с испусканием частиц.

Большие ядра получают нестабильность, как результат конкурирования притяжения нуклонов ядерными силами и кулоновского отталкивания протонов. Стабильных ядер с зарядовым числом Z > 83 и массовым числом A > 209 не существует. Однако радиоактивными свойствами могут обладать ядра атомов со значимо меньшими значениями чисел Z и A . Когда в составе ядра количество протонов существенно превышает число нейтронов, нестабильность объясняется излишком энергии кулоновского взаимодействия. Если же ядро содержит больше нейтронов, оно становится нестабильным, как следствие факта, что масса нейтрона больше массы протона. Если увеличивается масса ядра, растет и его энергия.

Явление радиоактивности открыл физик А.Беккерель в 1896 году: было обнаружено, что соли урана испускают неизвестное излучение, имеющее способность проходить сквозь препятствия и вызывать почернение фотоэмульсии. А спустя пару лет физики М. и П. Кюри зафиксировали радиоактивность тория и открыли два новых радиоактивных элемента – полоний Po 84 210 и радий Ra 88 226 .

В дальнейшем за изучение природы радиоактивных излучений принимались многие ученые, например, Э. Резерфорд со своими учениками. Было обнаружено, что радиоактивные ядра способны испускать три вида частиц: положительно заряженные, отрицательно заряженные и нейтральные.

α -, β — и γ -излучения – это излучения, на которые способны радиоактивные ядра (соответственно заряженное положительно, отрицательно и нейтрально).

Рис. 6 . 7 . 1 отображает схему опыта, результатом которого стало обнаружение сложного состава радиоактивного излучения. В магнитном поле α — и β -лучи отклоняются в противоположных друг другу направлениях (отклонение β -лучей значимо больше); γ -лучи в магнитном поле вообще не получают отклонения.

Рисунок 6 . 7 . 1 . Схема эксперимента по обнаружению α -, β — и γ -излучений. К – свинцовый контейнер, П – радиоактивный препарат, Ф – фотопластинка, B → – магнитное поле.

Обнаруженные учеными три типа радиоактивных излучений имеют существенные отличия друг от друга в отношении способности ионизировать атомы вещества, а значит и по проникающей способности. Наименьшая проникающая способность характерна для α -излучения. В воздушной среде при нормальных условиях α -лучи проходят путь в несколько сантиметров. β -лучи, в свою очередь, менее поглощаемы веществом. Они имеют возможность проходить сквозь слой алюминия толщиной в несколько м м . Наконец, наибольшая проникающая способность принадлежит γ -лучам, имеющим способность проникать через слой свинца толщиной 5 – 10 с м .

В 20 -х годах XX века, после того, как Э. Резерфорд открыл ядерное строение атомов, появилось твердое утверждение, что радиоактивность является свойством атомных ядер. В ходе изучения было определено, что α -лучи есть поток α -частиц – ядер гелия He 2 4 , β -лучи представляют собой поток электронов, а γ -лучи — это коротковолновое электромагнитное излучение при очень малой длине волны λ 10 – 10 м и, как следствие, ярко выраженных корпускулярных свойствах (эти лучи есть поток частиц – γ -квантов).

Рассмотрим подробнее существующие виды радиоактивного распада.

Альфа-распад

Альфа-распад – это самопроизвольное преобразование атомного ядра с числом протонов Z и нейтронов N в иное (дочернее) ядро, в котором содержится число протонов Z – 2 и нейтронов N – 2 , сопровождающееся испусканием α -частицы – ядра атома гелия He 2 4 .

Образцом альфа-распада может служить α -распад радия:

Ra 88 226 → Rn 86 222 + He 2 4

α -частицы, которые испускают ядра атомов радия, Резерфорд применял, проводя экспериментальное рассеивание на ядрах тяжелых элементов. Измерение по кривизне траектории в магнитном поле установило скорость α -частиц, испускаемых при α -распаде ядер радия: порядка 1 , 5 · 10 7 м / с . Размер кинетической энергии при этом — примерно 7 , 5 · 10 – 13 Д ж (около 4 , 8 М э В ). Эта величина несложно определяется, когда известны значения масс материнского и дочернего ядер и ядра гелия. Скорость испускаемой α -частицы очень велика, однако она равна лишь 5 % от скорости света, т.е. в расчетах допустимо использовать нерелятивистское выражение для кинетической энергии.

Также результатом исследований стал факт, что радиоактивное вещество способно испускать
α -частицы с несколькими дискретными значениями энергий. Объяснение этому явлению заключается в способности ядер находиться, аналогично атомам, в различных возбужденных состояниях. В одном из таких состояний может оказаться дочернее ядро при α -распаде. Далее ядро переходит в основное состояние, и испускается γ -квант. Схема α -распада радия с испусканием α -частиц с двумя значениями кинетических энергий указана на рис. 6 . 7 . 2 .

Рисунок 6 . 7 . 2 . Энергетическая диаграмма α -распада ядер радия. Продемонстрировано возбужденное состояние ядра радона Rn * 86 222 . При переходе из возбужденного состояния ядра радона в основное происходит излучение γ -кванта с энергией 0 , 186 М э В .

Итак, α -распад ядра во множестве случаев происходит совместно с γ -излучением.

Теория α -распада также содержит предположение о возможном образовании ядер групп, включающих в себя два протона и два нейтрона, т. е. α -частицу. Материнское ядро служит для
α -частиц потенциальной ямой, ограниченной потенциальным барьером. Количество энергии
α -частицы в ядре не хватает, чтобы преодолеть данный барьер (рис. 6 . 7 . 3 ).

Испускание α -частицы из ядра возможно лишь благодаря такому квантово-механическому явлению, как туннельный эффект.

Квантовая механика гласит, что существует неравная нулю вероятность прохождения частицы под потенциальным барьером. Явление туннелирования носит вероятностный характер.

Рисунок 6 . 7 . 3 . Туннелирование α -частицы сквозь потенциальный барьер.

Бета-распад

В процессе бета-распада ядро испускает электрон. Вообще существование в ядре электрона невозможно, т.е. появление электрона – лишь результат β -распада, сопровождающегося превращением нейтрона в протон. Такой процесс происходит как внутри ядра, так и со свободными нейтронами. Среднее время жизни свободного нейтрона равно примерно 15 минутам. При радиоактивном распаде нейтрон n 0 1 превращается в протон p 1 1 и электрон e — 1 0 .

В результате измерений было выявлено, что при бета-распаде наблюдается кажущееся нарушение закона сохранения энергии, поскольку суммарно энергия протона и электрона, появившихся при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули предположил выделение при распаде нейтрона еще одной частицы с нулевыми значениями массы и заряда, уносящей с собой часть энергии.

Нейтрино (маленький нейтрон) – частица с нулевыми значениями массы и заряда, возникающая при распаде нейтрона. Была открыта в 1953 году.

Нейтрино плохо взаимодействует с атомами вещества, поскольку не обладает зарядом и массой, и вследствие этого ее обнаружение в ходе эксперимента очень затруднительно. Ионизирующая способность нейтрино является настолько малой, что один акт ионизации в воздухе приходится приблизительно на 500 к м пути. На данный момент известно, что существует несколько типов нейтрино.

Электронный антинейтрино – частица, возникающая вследствие распада нейтрона и обозначаемая v e

Запись реакции распада нейтрона выглядит так:

n 0 1 → p 1 1 + e — 1 0 + v e

Те же явления происходят внутри ядер при β -распаде. При распаде одного их ядерных нейтронов образуется электрон, сразу же выбрасываемый из «родительского дома» (ядра) с очень большой скоростью, отличающейся от скорости света на небольшую долю процента. Поскольку распределение энергии, выделяющейся при β -распаде, между электроном, нейтрино и дочерним ядром имеет случайный характер, β -электроны способны обладать разными скоростями в широком интервале значений.

β -распад сопровождается увеличением зарядового числа Z на единицу при неизменности массового числа A . Дочернее ядро в данном случае есть ядро одного из изотопов элемента, чей атомный номер в периодической системе Менделеева на единицу превышает атомный номер исходного ядра. В качестве характерного примера β -распада можно рассмотреть преобразование изотона тория
Th 90 234 , возникающего при α -распаде урана U 92 238 , в протактиний Pa 91 234 :

Th 90 234 → Pa 91 234 + e — 1 0 + v e

Совместно с электронным β -распадом было определено такое явление, как позитронный β + -распад: ядро испускает позитрон e + 1 0 и нейтрино v e 0 0 .

Позитрон является частицей-двойником электрона, отличающейся от него лишь знаком заряда.

Существование позитрона предсказывалось еще в 1928 г. великим физиком П. Дираком. Спустя несколько лет позитрон обнаружили, как составляющую космических лучей. Позитроны возникают в результате реакции преобразования протона в нейтрон по следующей схеме:

p 1 1 → n 0 1 + e 1 0 + v e 0 0

Гамма-распад

В отличие от α — и β -радиоактивности, γ -радиоактивность ядер не имеет связи с изменением внутренней структуры ядра, а также при гамма-распаде не изменяется зарядовое или массовое число. При α — или β -распаде дочернее ядро способно войти в некоторое возбужденное состояние и получить излишнюю энергию. Переход ядра из возбужденного состояния в основное происходит совместно с испусканием одного или более γ -квантов, чья энергия способна достигать уровня нескольких М э В .

Закон радиоактивного распада

Любой образец радиоактивного вещества имеет в своем составе множество радиоактивных атомов. Поскольку для процесса радиоактивного распада характерна случайность, не зависящая от внешних условий, то закономерность в убывании количества N ( t ) нераспавшихся к данному моменту времени t ядер становится важнейшей статистической характеристикой процесса радиоактивного распада.

Допустим, число нераспавшихся ядер N ( t ) изменилось на Δ N 0 в течение небольшого промежутка времени Δ t . Поскольку вероятность распада каждого ядра неизменна во времени, то количество распадов пропорционально количеству ядер N ( t ) и промежутку времени Δ t :

Коэффициент пропорциональности λ – это вероятность распада ядра за время Δ t = 1 с .

Это выражение означает, что скорость d N d t изменения функции N ( t ) прямо пропорциональна самой функции.

Такая зависимость имеет место во многих физических процессах (к примеру, при разряде конденсатора через резистор). Решение этого уравнения дает возможность записать экспоненциальный закон:

N ( t ) = N 0 e – λ t

Здесь N 0 является начальным числом радиоактивных ядер при t = 0 .

Среднее время жизни радиоактивного ядра, обозначаемое, как τ , и равное: τ = 1 λ — это время, за которое количество нераспавшихся ядер уменьшается в e ≈ 2 , 7 раза.

В целях практического применения закон радиоактивного распада оптимально записать в ином виде, беря за основание число 2 , а не e :

N ( t ) = N 0 · 2 – t T .

Период полураспада, обозначаемый, как Т , – это время, за которое произойдет распад 1 2 первоначального количества радиоактивных ядер.

Величины τ и Т связаны друг с другом соотношением:

T = 1 λ ln 2 = τ ln 2 = 0 , 693 τ

Рисунок 6 . 7 . 4 дает представление о законе радиоактивного распада.

Рисунок 6 . 7 . 4 . Закон радиоактивного распада.

Период полураспада является основной величиной, описывающей скорость радиоактивного распада. Чем меньше Т , тем интенсивность распада выше. Например, для урана T ≈ 4 , 5 млрд лет, а для радия период полураспада составляет примерно 1600 лет: таким образом, активность радия во много раз больше, чем активность урана. Существуют радиоактивные элементы с периодом полураспада в доли секунды.

При α — и β -радиоактивном распаде дочернее ядро тоже может стать нестабильным. Т.е. допустимы серии последовательных радиоактивных распадов, заканчивающихся тем, что образуются стабильные ядра. В природе существует несколько подобных серий. Самая длинная серия — серия
U 92 238 , включающая в себя 14 последовательных распадов ( 8 α -распадов и 6 β -распадов). Эта серия заканчивается стабильным изотопом свинца Pb 82 206 (рис. 6 . 7 . 5 ).

Рисунок 6 . 7 . 5 . Схема распада радиоактивной серии U 92 238 с указанием периодов полураспада.

Известно еще несколько радиоактивных серий, подобных серии U 92 238 . Существует последовательность от нептуния Np 93 237 (не обнаруженного в естественных условиях) до висмута Bi 83 209 . Эта серия радиоактивных распадов характерна для ядерных реакторов.

Радиоактивность была интересным образом использована в методе, который используется для датирования археологических и геологических находок. Датирование производится на основании концентрации радиоактивных изотопов. Чаще применяют радиоуглеродный метод датирования. Нестабильный изотоп углерода C 6 14 появляется в атмосфере в результате ядерных реакций, которые вызываются космическими лучами. Малый процент этого изотопа имеется в воздухе совместно с обычным стабильным изотопом C 6 12 . Растения и прочие организмы потребляют углерод из воздуха, накапливая оба изотопа в такой же пропорции, что и в воздушной среде. Растение гибнет и, естественно, перестает потреблять углерод, тогда нестабильный изотоп в результате β -распада постепенно превращается в азот N 7 14 с периодом полураспада 5730 лет. Точным измерением относительной концентрации радиоактивного углерода C 6 14 в останках древних организмов возможно установить время их гибели.

Радиоактивное излучение всех типов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают сильнейшее биологическое воздействие на живые организмы. Это воздействие включает в себя процессы возбуждения и ионизации атомов и молекул, составляющих живые клеток. Воздействуя на клетки, ионизирующая радиация разрушает сложные молекулы и клеточные структуры, следствием чего является лучевое поражение организма, а потому крайне важны меры радиационной защиты людей, работающих с неким источником радиации и имеющим шанс попасть в зону действия излучения.

Серьезность проблемы в том, что человек может испытать на себе действие ионизирующей радиации и в бытовых условиях. Особую опасность для здоровья человека представляет инертный, бесцветный, радиоактивный газ радон Rn 86 222 . Схема, изображенная на рисунке 6 . 7 . 5 , демонстрирует, что радон — продукт α -распада радия с периодом полураспада T = 3 , 82 сут. Радий в небольших количествах содержится в почве, в камнях, в разного рода строительных конструкциях. Концентрация радона имеет относительно небольшое время жизни, но постоянно пополняется в результате новых распадов ядер радия, поэтому радон может накапливаться в закрытых помещениях. Попав в легкие, радон испускает α -частицы и преобразуется в полоний Po 84 218 , не являющийся химически инертным. Далее происходит цепь радиоактивных преобразований серии урана (рис. 6 . 7 . 5 ). По данным Американской комиссии радиационной безопасности и контроля, человек в среднем получает 55 % ионизирующей радиации за счет радона и только 11 % за счет медицинских процедур. Доля космических лучей здесь — около 8 % . Общая доза облучения, получаемая человеком за жизнь, много меньше предельно допустимой дозы (ПДД), установленной для людей некоторых профессий, которые подвергаются дополнительному облучению ионизирующей радиацией.

Уравнение радиоактивного распада с примерами

Радиоактивность заключается в самопроизвольном (спонтанном) распаде ядер с испусканием одной или нескольких частиц. Такие ядра и соответствующие им нуклиды называют радиоактивными (в отличие от стабильных ядер). Радиоактивное ядро называют материнским, а ядра, образующиеся в результате распада, дочерними.

Необходимое условие радиоактивного распада заключается в том, что масса исходного ядра должна превышать сумму масс продуктов распада. Поэтому каждый радиоактивный распад происходит с выделением энергии.

Радиоактивность подразделяют на естественную и искусственную. Первая относится к радиоактивным ядрам, существующим в природных условиях, вторая – к ядрам, полученным посредством ядерных реакций в лабораторных условиях. Принципиально они не отличаются друг от друга.

К основным типам радиоактивности относятся α-, β- и γ-распады. Прежде чем характеризовать их более подробно, рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Одинаковые ядра претерпевают распад за различные времена, предсказать которые заранее нельзя. Поэтому можно считать, что число ядер, распадающихся за малый промежуток времени dt, пропорционально как числу N имеющихся ядер в этот момент, так и dt:

dN – убыль числа ядер за время dt (это и есть число распавшихся ядер за промежуток dt), λ – постоянная распада, величина, характерная для каждого радиоактивного препарата.

Интегрирование уравнения (3.4) дает:

N0, N(t) – начальное и текущее значение количества радиоактивного нуклида, λ – постоянная распада, представляющая собой вероятность распада в единицу времени.

Соотношение (3.5) называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.

Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (3.4) видно, что эта величина | dN / dt | = λN. Ее называют активностью A. Таким образом активность:

Ее измеряют в беккерелях (Бк) , 1 Бк = 1 распад /с; а также в кюри (Ки) , 1 Ки = 3.7∙10 10 Бк.

Активность в расчете на единицу массы радиоактивного препарата называют удельной активностью.

Вернемся к формуле (3.5). Наряду с постоянной λ и активностью A процесс радиоактивного распада характеризуют еще двумя величинами: периодом полураспада T1/2 и средним временем жизни τ ядра.

Период полураспада T1/2 – время, за которое исходное число радиоактивных ядер в среднем уменьшится в двое:

откуда

.

Среднее время жизни τ определим следующим образом. Число ядер δN(t), испытавших распад за промежуток времени (t, t + dt), определяется правой частью выражения (3.4): δN(t) = λNdt. Время жизни каждого из этих ядер равно t. Значит сумма времен жизни всех N0 имевшихся первоначально ядер определяется интегрированием выражения tδN(t) по времени от 0 до ∞. Разделив сумму времен жизни всех N0 ядер на N0, мы и найдем среднее время жизни τ рассматриваемого ядра:

Остается подставить сюда выражение (3.5) для N(t) и выполнить интегрирование по частям, после чего мы получим:

Заметим, что τ равно, как следует из (3.5) промежутку времени, за которое первоначальное количество ядер уменьшается в e раз.

Сравнивая (3.8) и (3.9.2), видим, что период полураспада T1/2 и среднее время жизни τ имеют один и тот же порядок и связаны между собой соотношением:

Сложный радиоактивный распад

Сложный радиоактивный распад может протекать в двух случаях:

    В первом случае исследуемый препарат содержит несколько сортов радиоактивных ядер. Пусть исследуемый препарат содержит два сорта радиоактивных ядер с постоянными распада λ1 и λ2. В этом случае общее число радиоактивных ядер будет изменяться со временем по закону:

    N1, N2 – количества ядер соответствующего сорта при t = 0.

    Во втором случае происходит последовательные распады одного и того же ядра. Часто бывает что ядро, получившееся в результате радиоактивного распада, само оказывается радиоактивным, так что происходит последовательный распад исходного ядра 1 в ядро 2, а ядро 2 в ядро 3:

    В этом случае изменение числа N1 ядер 1 и числа N2 ядер 2 определяется системой уравнений:

    .

    Физический смысл этих уравнений состоит в том, что количество ядер 1 убывает за счет их распада, а количество ядер 2 пополняется за счет распада ядер 1 и убывает за счет своего распада. Например, в начальный момент времени t = 0 имеется N01 ядер 1 и N02 ядер 2. С такими начальными условиями решение системы имеет вид:

    Система (3.13) значительно упрощается, если T1 >> T2 (λ1 −λt и (1 − e −λt ). При этом ввиду особых свойств функции e −λt очень удобно ординаты кривой строить для значений t, соответствующих T, 2T, … и т.д. (см. таблицу 3.1). Соотношение (3.13.3) и рисунок 3.2 показывают, что количество радиоактивного дочернего вещества возрастает с течением времени и при t >> T2 (λ2t >> 1) приближается к своему предельному значению:

    Из таблицы 3.1 видно, что при t > 10T равенство (3.14) выполняется уже с точностью около 0.1%. Обычно оно записывается в форме:

    и носит название векового , или секулярного равновесия . Физический смысл векового уравнения очевиден.

    t e −λt 1 − e −λt
    0 1 0
    1T 1/2 = 0.5 0.5
    2T (1/2) 2 = 0.25 0.75
    3T (1/2) 3 = 0.125 0.875
    . . .
    10T (1/2) 10 ≈ 0.001

    0.999

    Рисунок 3.3. Сложный радиоактивный распад. Так как, согласно уравнению (3.4), λN равно числу распадов в единицу времени, то соотношение λ1N1 = λ2N2 означает, что число распадов дочернего вещества λ2N2 равно числу распадов материнского вещества, т.е. числу образующихся при этом ядер дочернего вещества λ1N1. Вековое уравнение широко используется для определения периодов полураспада долгоживущих радиоактивных веществ. Этим уравнением можно пользоваться при сравнении двух взаимно превращающихся веществ, из которых второе имеет много меньший период полураспада, чем первое (T2 > T2 (T2 226 , испуская с периодом полураспада T1 >> 1600 лет α-частицы, превращается в радиоактивный газ радон (88Rn 222 ), который сам является радиоактивным и испускает α-частицы с периодом полураспада T2 ≈ 3.8 дня. В этом примере как раз T1 >> T2, так что для моментов времени t

    Для дальнейшего упрощения надо, чтобы начальное количество ядер Rn было равно нулю (N02 = 0 при t = 0). Это достигается специальной постановкой опыта, в котором изучается процесс превращения Ra в Rn. В этом опыте препарат Ra помещается в стеклянную колбочку с трубкой, соединенной с насосом. Во время работы насоса выделяющийся газообразный Rn сразу же откачивается, и концентрация его в колбочке равна нулю. Если в некоторый момент при работающем насосе изолировать колбочку от насоса, то с этого момента, который можно принять за t = 0, количество ядер Rn в колбочке начнет возрастать по закону (3.13.3):

    Выбирая TRn или

    Это условие означает, что с некоторого достаточно большого t (t >> TRn) количество распадающихся ядер Rn равно количеству ядер Rn, возникающих при распаде Ra. Например, при t > 40 дней (t > 10TRn) соотношение (3.17) выполняется с точностью 0.1%.

    Три величины из четырех, входящих в равенство (3.17) могут быть измерены непосредственно: NRa и NRn – точным взвешиванием, а λRn – по определению периода полураспада Rn, который имеет удобное для измерений значение 3.8 дня. Таким образом, четвертая величина λRa может быть вычислена. Это вычисление дает для периода полураспада радия TRa ≈ 1600 лет, что совпадает с результатами определения TRa методом абсолютного счета испускаемых α-частиц.

    Радиоактивность Ra и Rn была выбрана в качестве эталона при сравнении активностей различных радиоактивных веществ. За единицу радиоактивности – 1 Ки – приняли активность 1 г радия или находящегося с ним в равновесии количества радона. Последнее легко может быть найдено из следующих рассуждений.

    Известно, что 1 г радия претерпевает в секунду

    3.7∙10 10 распадов. Следовательно:

    λRnNRn = λRaNRa = 3.7∙10 10 ,

    NRa – число ядер Ra в 1 г, NRn – число ядер Rn, находящихся в равновесии с 1 г радия.

    Отсюда:

    Чтобы найти весовое выражение NRnнадо вычислить количество ядер Rn в 1 г:

    источники:

    http://zaochnik.com/spravochnik/fizika/atomy-jadra/radioaktivnost/

    http://www.lib.tpu.ru/fulltext/m/2010/m2/glava_3.2.html

Понравилась статья? Поделить с друзьями:
  • Как найти трусы от купальника
  • Как найти марафон на учи ру
  • Как найти сестру в одноклассниках
  • Как найти объект недвижимости по условному номеру
  • Как найти белую лису в майнкрафте