Как найти реактивное сопротивление емкости

Реактивное сопротивление XL и XC

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию,
оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС,
равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения,
что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС,
равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая
пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со
сдвигом от функции напряжения на угол π/2 (90°).

Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома,
где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда –
накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное.
Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю.
Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току,
обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее
уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума.
Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt)
запишем выражение мгновенного значения тока следующим образом:

i = UampωCsin(ωt+π/2).

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.


Калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Расчитать реактивное сопротивление ёмкости или индуктивности:

Реактивное сопротивление ёмкости
XC = 1 /(2πƒC)


Реактивное сопротивление индуктивности
XL = 2πƒL


Расчитать ёмкость и индуктивность от сопротивления:

Расчёт ёмкости: C = 1 /(2πƒXC)


Расчёт индуктивности: L = XL /(2πƒ)



Похожие страницы с расчётами:

Расcчитать импеданс.

Расcчитать частоту резонанса колебательного контура LC.

Расcчитать реактивную мощность и компенсацию.

Прежде, чем мы приступим к расчётам разнообразных пассивных и активных фильтров, не плохо было бы сориентироваться в пространстве и
задуматься — а за счёт чего происходит процесс частотной фильтрации сигналов, какой неведомый зверь должен выбежать на свист царевича
после преобразования частотно-зависимыми цепями, и что это за цепи такие — частотно-зависимые?

Большая Энциклопедия Нефти и Газа учит нас, что частотно-зависимыми цепями называются электрические цепи с использованием емкостных и
резистивных элементов. Спасибо, господа нефтяники и газовики — будем знать. От себя добавлю, что индуктивные элементы в
частотно-зависимом хозяйстве также иногда пригождаются.

Для постоянного тока ни конденсаторы, ни катушки индуктивности никакого интереса не представляют. Сопротивление идеального конденсатора —
бесконечность, индуктивности — ноль. Другое дело — переменный ток, тут наши частотно-зависимые элементы, начинают приобретать
определённые значения сопротивлений, называемые реактивными сопротивлениями. Ясен пень, значения этих сопротивлений зависят от
частоты протекающего тока.
Для особо продвинутых, вымучаю из себя умную фразу — «Реактивное сопротивление – электрическое сопротивление переменному току,
обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах».

Графики, фазовые сдвиги, интегралы и прочие атрибуты студенческих знаний, как правило, мало кого интересуют. Если я не прав,
пусть первыми бросят в меня камень и с лёгкостью найдут необходимую информацию на других сайтах. А мы ребята весёлые, поэтому
сразу перейдём к делу и напишем всего пару формул:

Xс = 1 / 2πƒС,   Xl = 2πƒL, где
Xc — сопротивление конденсатора переменному току, а Xl — сопротивление индуктивности переменному току.

РИСУЕМ ТАБЛИЧКУ ДЛЯ РАСЧЁТА РЕАКТИВНОГО СОПРОТИВЛЕНИЯ КОНДЕНСАТОРА

   Ёмкость конденсатора С   

     

   Подаваемая частота f   

     

  

  Реактивное сопротивление Xc (Ом)  
     

  Реактивное сопротивление Xc (кОм)  
     

ТО ЖЕ САМОЕ ДЛЯ РАСЧЁТА РЕАКТИВНОГО СОПРОТИВЛЕНИЯ ИНДУКТИВНОСТИ

   Индуктивность катушки L   

     

   Подаваемая частота f   

     

  

  Реактивное сопротивление Xl (Ом)  
     

  Реактивное сопротивление Xl (кОм)  
     

В реальной жизни конденсаторы, помимо ёмкости, обладают также собственными последовательным и параллельным сопротивлениями и
индуктивностью, а катушки индуктивности — омическим сопротивлением провода обмотки и межвитковой паразитной ёмкостью.

Нужно Вам вооружаться этими знаниями, или нет, судить не возьмусь, а вот то, что электролитические конденсаторы имеют обыкновение
иногда взрываться при превышении допустимых уровней напряжений, либо перегреве, вызванным утечками вследствие старения —
знать надо обязательно.

Делают они это, ни кем не посоветовавшись, эффектно, громко, с выделение токсичных паров электролита в виде облака из дыма,
и с лёкгостью могут выбить глаз пытливому радиолюбителю.
Так что, если не хотите превратиться в одноглазого шахматиста из Васюков, соблюдайте технику безопасности, покупайте электролиты
приличных производителей.

Всё о реактивном сопротивлении конденсатора

Содержание

  • 1 Конструктивные особенности конденсатора
  • 2 Как проверить конденсатор омметром
  • 3 Как добиться протекания электротока через конденсатор
  • 4 Реактивное сопротивление конденсатора
  • 5 Пример расчета емкости в цепи переменного тока
  • 6 Видео по теме

Сопротивление конденсатора или емкости (емкостное сопротивление) — это мера противодействия изменению тока в этом компоненте. Согласно определению, электросопротивление характеризует противодействие электрической цепи в целом или отдельного ее компонента электротоку.

Взаимосвязь между электротоком и электронапряжением на конденсаторе

Конструктивные особенности конденсатора

В отличие от омического сопротивления, вызывающего безвозвратные потери энергии в цепи, при использовании идеальной емкости потерь электрической энергии нет. Конструктивно конденсатор — это две токопроводящие обкладки, разделенные слоем непроводящего диэлектрика. Из чего следует, что компонент не пропускает постоянный ток. Конструкция конденсатора предполагает бесконечное его сопротивление.

Принцип устройства конденсатора

Как проверить конденсатор омметром

Существует простой экспериментальный способ проверки целостности конденсатора омметром. При подключении к щупам омметра (самая простая схема которого — включенные последовательно элемент питания, резистор и чувствительный микроамперметр) исправного компонента стрелка прибора резко отклоняется (определяется емкостью конденсатора), после чего возвращается к началу шкалы.

Проверка исправности конденсатора омметром

Если «бесконечное» сопротивление связано с изолирующими свойствами диэлектрика, бросок показаний можно объяснить лишь кратковременным протеканием тока через конденсатор при подключении его к источнику напряжения. При полной зарядке идеального конденсатора до напряжения элемента питания прохождение тока через него прекращается.

Как добиться протекания электротока через конденсатор

Чтобы добиться протекания электротока через конденсатор в противоположном направлении, достаточно переполюсовать источник напряжения. Отсюда логический вывод — при постоянном изменении на выводах конденсатора полярности источника питания ток через конденсатор будет непрерывным, что можно интерпретировать как оказание им некоторого конечного сопротивления протекающему через него току.

При переполюсовке источника напряжения на конденсатор, по сути, подается переменное напряжение прямоугольной формы. При этом форма тока через компонент не повторяет форму напряжения на нем. И лишь при подаче переменного синусоидального напряжения через конденсатор протекает переменный синусоидальный ток.

Поведение конденсатора в электроцепи

Реактивное сопротивление конденсатора

Воспользовавшись законом Ома, можно приписать конденсатору определенное электрическое «сопротивление». Этот параметр может быть рассчитан как результат деления напряжения на компоненте к току через него. Но в отличие от резистора, где переменный ток совпадает по фазе с напряжением, емкостный ток в конденсаторе опережает напряжение на 90 градусов.

Ток в конденсаторе опережает напряжение

Чем чаще меняется полярность переменного напряжения на конденсаторе (чем выше его частота), тем больше протекающий ток. Из этого следует, что емкостное или реактивное сопротивление конденсатора обратно пропорционально частоте тока.

График емкостного сопротивления

Исходя из математических соображений, разнице фаз между током и напряжением в 90 градусов соответствует мнимое сопротивление. Отсюда выводится формула, с помощью которой можно найти емкостное сопротивление конденсатора:

Формула реактивного сопротивления

Иногда для емкостного сопротивления конденсатора используют положительное число, равное 1/(2πfC). Этого достаточно для вычисления тока через компонент при приложении к нему определенного переменного напряжения и решения обратной задачи. Расчет экспериментально определяемого реактивного сопротивления конденсатора осуществляется по напряжению на нем и току через него.

Но при включении конденсатора в сложную электрическую цепь (с резисторами и индуктивностями) не следует забывать о том, что в общем виде его сопротивление мнимое. Используя математические формализмы (действия с комплексными числами), удается применять для расчета электрических цепей известные правила последовательного и параллельного соединения сопротивлений и законы Кирхгофа.

Связь между сопротивлением конденсатора и частотой электротока

Пример расчета емкости в цепи переменного тока

Предположим, что надо запитать от бытовой электросети напряжением 220 В и частотой 50 Гц низковольтную лампочку накаливания с номинальным током 0.28 А при отсутствии понижающего трансформатора. Требуется найти емкость последовательно включенного с лампочкой конденсатора.

Включение низковольтной лампочки в сеть 220 В

Пренебрегая падением напряжения на лампочке, считаем все напряжение сети приложенным к конденсатору. Тогда реактивное сопротивление конденсатора находим, руководствуясь законом Ома:

Xc=U/I=220/0.28=786 Ом.

Параметр C из выражения Xc=1/(2πfC) может быть рассчитан через Xc. Следовательно, C=1/(Xc·2πf).

После подстановки получим:

C=1/(786·2·3.14·50)=0.000004 Ф=4 мкФ.

Таким образом, экспериментальную низковольтную лампочку с номинальным током 0.28 А можно запитать от домашней сети переменного тока через емкость 4 мкФ.

Видео по теме



Калькулятор электрического сопротивления ёмкости

При подключении конденсатора в цепь переменного тока возникает совокупность процессов заряда и разряда ёмкости,
т.е. накопление и отдача энергии электрическим полем между обкладками. По мере заряда ёмкости, ток через нее уменьшается.
Конденсатор будет заряжаться до максимального значения, пока ток не сменит направление на противоположное.
В моменты максимального значения напряжения на конденсаторе, ток в нём будет равен нулю.
Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.
Ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току Xc.

formula1

X C — сопротивление, Ом;
f — частота, Гц;
C — ёмкость, Ф.

Сопротивление конденсатора переменному току это отношение действующих значений напряжения к току.
Оно обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.
Фазы кривых тока и напряжения на конденсаторе смещены на 90 градусов, при этом ток опережает напряжение.

diagram

Расчет электрического сопротивления ёмкости

Для расчета введите значение ёмкости конденсатора и частоту переменного тока

Калькулятор вычисления действующих значений тока или напряжения на конденсаторе.

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом.
Соблюдайте технику безопасности во время работы с электронными компонентами!

Random converter

  • Калькуляторы
  • Электротехнические и радиотехнические калькуляторы

Калькулятор импеданса конденсатора

Scheme

Калькулятор определяет импеданс конденсатора для заданной частоты синусоидального сигнала. Определяется также угловая частота.

Пример. Рассчитать импеданс конденсатора 10 пФ на частоте 25 МГц.

Входные данные

Емкость, С

Частота, f

Поделиться ссылкой на этот калькулятор, включая входные параметры

Выходные данные

Угловая частота ω= рад/с

Емкостное реактивное сопротивление XC= Ом

Введите значения емкости и частоты, выберите единицы измерения и нажмите кнопку Рассчитать. Для ввода значения бесконечность наберите inf.

Отметим, что величина импеданса идеального конденсатора равна его реактивному сопротивлению. Однако это не идентичные величины, так как между током и напряжением в емкостной цепи существует фазовый сдвиг. Для расчетов используются указанная ниже формула:

Formula

Formula

Здесь

XC — реактивное сопротивление конденсатора в омах (Ом) ,

ZLC — импеданс конденсатора в омах (Ом),

ω = 2πf — угловая частота в рад/с,

j — мнимая единица.

f — частота в герцах (Гц),

С — емкость в фарадах (Ф), и

Для расчета выберите единицы измерения и введите емкость и частоту. Импеданс конденсатора будет показан в омах.

Picture

График зависимости реактивного сопротивления конденсатора XC и текущего через него тока I от частоты f для нескольких величин емкости показывает обратную пропорциональную зависимость от частоты реактивного сопротивления

Конденсатор представляет собой пассивный электрический элемент с двумя выводами, состоящий, в основном, из двух электрических проводников, часто в форме тонких металлических пластин, разделенных диэлектриком, например, пластмассовой пленкой, керамикой, бумагой или даже воздухом. Конденсаторы используются для хранения энергии в форме электрического заряда.

Если незаряженный конденсатор подключить к источнику постоянного напряжения, он заряжается до приложенного напряжения и его зарядный ток экспоненциально уменьшается от максимального значения в начальной точке заряда до нуля. В то же время, напряжение на конденсаторе увеличивается до напряжения источника постоянного тока.

Таким образом, когда напряжение на конденсаторе становится максимальным, ток через него достигает минимума. Скорость изменения тока определяется постоянной времени цепи, в которую включен конденсатор. Полностью заряженный конденсатор блокирует ток и действует как временный накопитель энергии.

Идеальный конденсатор поддерживает полный заряд в течение неограниченно долгого времени даже в том случае, если отключить источник постоянного напряжения. Однако в реальной жизни конденсаторы, особенно электролитические, не могут хранить энергию постоянно, так как у них имеется относительно низкое сопротивление утечки и, следовательно, большой ток утечки.

Если к конденсатору приложить синусоидальное напряжение, он заряжается сначала в одном направлении, а затем в противоположном. Полярность его заряда изменяется со скоростью изменения переменного напряжения. Как уже упоминалось выше, когда напряжение достигает максимума, ток становится минимальным и когда напряжение достигает минимума, ток достигает максимума. Ток через конденсатор пропорционален скорости изменения напряжения, причем ток максимален, когда напряжение изменяется быстрее всего, а это происходит, когда синусоида напряжения пересекает нулевую точку. На рисунке показан график напряжения на конденсаторе, заряда на нем и протекающего через него тока выглядит.

Picture

В чисто емкостной цепи величина тока зависит от скорости изменения напряжения. Ток заряжает конденсатор и когда ток медленно понижается до нуля, конденсатор полностью заряжен и напряжение на нем достигает максимума. VC — напряжение, QC — заряд, IC — ток, φ = –90° = –π/2 — фазовый сдвиг. 1 — конденсатор начинает заряжаться, ток достиг положительного максимума, скорость его изменения нулевая и напряжение на конденсаторе, а также его заряд — нулевые; 2 — конденсатор полностью заряжен, ток через него равен нулю, скорость его изменения в этот момент максимальна, а напряжение на конденсаторе и его заряд в этот момент максимальны и положительны; 3 — конденсатор заряжается в противоположном направлении, ток через него достиг отрицательного максимума, скорость его изменения нулевая, напряжение и заряд конденсатора также нулевые; 4 — конденсатор полностью заряжен, ток через него нулевой, скорость его изменения максимальна, а заряд и напряжение на конденсаторе достигли своих отрицательных максимумов

Как мы видим, напряжение на конденсаторе отстает от тока в нем по времени и фазе на 90°, так ток должен течь достаточно долго, чтобы на конденсаторе возник заряд и, соответственно, возросло напряжение. Можно также сказать, что ток опережает напряжение. Величина этого опережения зависит от соотношения величин реактивного сопротивления и активного сопротивления в цепи. Если сопротивления в цепи нет, то отставание (опережение) будет на 90° (ток нулевой, когда напряжение максимально). Этот угол называется фазовым сдвигом.

Аналогичное явление можно наблюдать и в природе. Сравните: Солнце светит сильнее всего в астрономический полдень (солнечный свет — напряжение), однако самая жаркая часть дня обычно бывает через несколько часов после полудня (температура — ток). Или другой пример. День зимнего солнцестояния в северном полушарии (самый короткий день) — в конце декабря, однако самые холодные месяцы еще впереди. В зависимости от того, где вы живете, это будет январь или февраль. Вспомните поговорку «Солнце — на лето, зима — на мороз». Это как раз о поведении емкости, только в природной аналогии. Такой сезонный «сдвиг фаз» или отставание вызван поглощением энергии Солнца огромными массами воды в океанах. Они отдадут эту запасенную энергию, но позже — точно так же, как это делают конденсаторы.

День зимнего солнцестояния

День зимнего солнцестояния

Рассчитанный этим калькулятором импеданс представляет собой меру сопротивления конденсатора пропускаемому через него сигналу на определенной частоте. Емкостное реактивное сопротивление обратно пропорционально частоте приложенного переменного напряжения. Приведенные выше формула и график показывают, что реактивное сопротивление конденсатора XС мало при высоких частотах и велико при низких частотах (катушки индуктивности ведут себя с точностью до наоборот). При нулевой частоте (при постоянном напряжении) емкостное реактивное сопротивление становится бесконечно большим и прерывает протекающий ток. С другой стороны, при очень высоких частотах конденсатор проводит очень хорошо — отсюда правило, которое мы выучили в школе: конденсаторы не пропускают постоянный ток и пропускают переменный. Если частота очень высокая, конденсаторы пропускают сигнал очень хорошо.

Импеданс измеряется в омах, так же, как и сопротивление. Импеданс мешает прохождению электрического тока так же, как и сопротивление, и показывает как сильно конденсатор противодействует прохождению тока через него. Но тогда возникает вопрос: в чем же разница между импедансом и сопротивлением? А разница заключается в зависимости импеданса от частоты приложенного сигнала. Сопротивление от частоты не зависит, а импеданс конденсаторов от частоты зависит. С увеличением частоты импеданс конденсатора уменьшается и наоборот.

Этот калькулятор предназначен для расчета импеданса идеальных конденсаторов. Реальные конденсаторы всегда имеют некоторую индуктивность и сопротивление. Для расчета импеданса реальных конденсаторов пользуйтесь калькулятором импеданса RLС-цепей.

Конденсаторы советского производства, выпущенные в конце 60-х гг. прошлого века

Конденсаторы советского производства, выпущенные в конце 60-х гг. прошлого века

Примеры расчетов

Электротехнические и радиотехнические калькуляторы

Электроника — область физики и электротехники, изучающая методы конструирования и использования электронной аппаратуры и электронных схем, содержащих активные электронные элементы (диоды, транзисторы и интегральные микросхемы) и пассивные электронные элементы (резисторы, катушки индуктивности и конденсаторы), а также соединения между ними.

Радиотехника — инженерная дисциплина, изучающая проектирование и изготовление устройств, которые передают и принимают радиоволны в радиочастотной области спектра (от 3 кГц до 300 ГГц), также обрабатывают принимаемые и передаваемые сигналы. Примерами таких устройств являются радио- и телевизионные приемники, мобильные телефоны, маршрутизаторы, радиостанции, кредитные карточки, спутниковые приемники, компьютеры и другое оборудование, которое передает и принимает радиосигналы.

В этой части Конвертера физических единиц TranslatorsCafe.com представлена группа калькуляторов, выполняющих расчеты в различных областях электротехники, радиотехники и электроники.

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

Понравилась статья? Поделить с друзьями:
  • Как найти растяжение пружины зная массу груза
  • Слепая дева как найти этот сайт
  • Как найти слово без одной буквы
  • Как найти обьем прямоугольного параллелепипеда
  • Как найти значение слова по далю