Как найти реактивное сопротивление на конденсаторе

Реактивное сопротивление XL и XC

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию,
оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС,
равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения,
что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС,
равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая
пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со
сдвигом от функции напряжения на угол π/2 (90°).

Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома,
где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда –
накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное.
Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю.
Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току,
обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее
уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума.
Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt)
запишем выражение мгновенного значения тока следующим образом:

i = UampωCsin(ωt+π/2).

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.


Калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Расчитать реактивное сопротивление ёмкости или индуктивности:

Реактивное сопротивление ёмкости
XC = 1 /(2πƒC)


Реактивное сопротивление индуктивности
XL = 2πƒL


Расчитать ёмкость и индуктивность от сопротивления:

Расчёт ёмкости: C = 1 /(2πƒXC)


Расчёт индуктивности: L = XL /(2πƒ)



Похожие страницы с расчётами:

Расcчитать импеданс.

Расcчитать частоту резонанса колебательного контура LC.

Расcчитать реактивную мощность и компенсацию.

Всё о реактивном сопротивлении конденсатора

Содержание

  • 1 Конструктивные особенности конденсатора
  • 2 Как проверить конденсатор омметром
  • 3 Как добиться протекания электротока через конденсатор
  • 4 Реактивное сопротивление конденсатора
  • 5 Пример расчета емкости в цепи переменного тока
  • 6 Видео по теме

Сопротивление конденсатора или емкости (емкостное сопротивление) — это мера противодействия изменению тока в этом компоненте. Согласно определению, электросопротивление характеризует противодействие электрической цепи в целом или отдельного ее компонента электротоку.

Взаимосвязь между электротоком и электронапряжением на конденсаторе

Конструктивные особенности конденсатора

В отличие от омического сопротивления, вызывающего безвозвратные потери энергии в цепи, при использовании идеальной емкости потерь электрической энергии нет. Конструктивно конденсатор — это две токопроводящие обкладки, разделенные слоем непроводящего диэлектрика. Из чего следует, что компонент не пропускает постоянный ток. Конструкция конденсатора предполагает бесконечное его сопротивление.

Принцип устройства конденсатора

Как проверить конденсатор омметром

Существует простой экспериментальный способ проверки целостности конденсатора омметром. При подключении к щупам омметра (самая простая схема которого — включенные последовательно элемент питания, резистор и чувствительный микроамперметр) исправного компонента стрелка прибора резко отклоняется (определяется емкостью конденсатора), после чего возвращается к началу шкалы.

Проверка исправности конденсатора омметром

Если «бесконечное» сопротивление связано с изолирующими свойствами диэлектрика, бросок показаний можно объяснить лишь кратковременным протеканием тока через конденсатор при подключении его к источнику напряжения. При полной зарядке идеального конденсатора до напряжения элемента питания прохождение тока через него прекращается.

Как добиться протекания электротока через конденсатор

Чтобы добиться протекания электротока через конденсатор в противоположном направлении, достаточно переполюсовать источник напряжения. Отсюда логический вывод — при постоянном изменении на выводах конденсатора полярности источника питания ток через конденсатор будет непрерывным, что можно интерпретировать как оказание им некоторого конечного сопротивления протекающему через него току.

При переполюсовке источника напряжения на конденсатор, по сути, подается переменное напряжение прямоугольной формы. При этом форма тока через компонент не повторяет форму напряжения на нем. И лишь при подаче переменного синусоидального напряжения через конденсатор протекает переменный синусоидальный ток.

Поведение конденсатора в электроцепи

Реактивное сопротивление конденсатора

Воспользовавшись законом Ома, можно приписать конденсатору определенное электрическое «сопротивление». Этот параметр может быть рассчитан как результат деления напряжения на компоненте к току через него. Но в отличие от резистора, где переменный ток совпадает по фазе с напряжением, емкостный ток в конденсаторе опережает напряжение на 90 градусов.

Ток в конденсаторе опережает напряжение

Чем чаще меняется полярность переменного напряжения на конденсаторе (чем выше его частота), тем больше протекающий ток. Из этого следует, что емкостное или реактивное сопротивление конденсатора обратно пропорционально частоте тока.

График емкостного сопротивления

Исходя из математических соображений, разнице фаз между током и напряжением в 90 градусов соответствует мнимое сопротивление. Отсюда выводится формула, с помощью которой можно найти емкостное сопротивление конденсатора:

Формула реактивного сопротивления

Иногда для емкостного сопротивления конденсатора используют положительное число, равное 1/(2πfC). Этого достаточно для вычисления тока через компонент при приложении к нему определенного переменного напряжения и решения обратной задачи. Расчет экспериментально определяемого реактивного сопротивления конденсатора осуществляется по напряжению на нем и току через него.

Но при включении конденсатора в сложную электрическую цепь (с резисторами и индуктивностями) не следует забывать о том, что в общем виде его сопротивление мнимое. Используя математические формализмы (действия с комплексными числами), удается применять для расчета электрических цепей известные правила последовательного и параллельного соединения сопротивлений и законы Кирхгофа.

Связь между сопротивлением конденсатора и частотой электротока

Пример расчета емкости в цепи переменного тока

Предположим, что надо запитать от бытовой электросети напряжением 220 В и частотой 50 Гц низковольтную лампочку накаливания с номинальным током 0.28 А при отсутствии понижающего трансформатора. Требуется найти емкость последовательно включенного с лампочкой конденсатора.

Включение низковольтной лампочки в сеть 220 В

Пренебрегая падением напряжения на лампочке, считаем все напряжение сети приложенным к конденсатору. Тогда реактивное сопротивление конденсатора находим, руководствуясь законом Ома:

Xc=U/I=220/0.28=786 Ом.

Параметр C из выражения Xc=1/(2πfC) может быть рассчитан через Xc. Следовательно, C=1/(Xc·2πf).

После подстановки получим:

C=1/(786·2·3.14·50)=0.000004 Ф=4 мкФ.

Таким образом, экспериментальную низковольтную лампочку с номинальным током 0.28 А можно запитать от домашней сети переменного тока через емкость 4 мкФ.

Видео по теме



Прежде, чем мы приступим к расчётам разнообразных пассивных и активных фильтров, не плохо было бы сориентироваться в пространстве и
задуматься — а за счёт чего происходит процесс частотной фильтрации сигналов, какой неведомый зверь должен выбежать на свист царевича
после преобразования частотно-зависимыми цепями, и что это за цепи такие — частотно-зависимые?

Большая Энциклопедия Нефти и Газа учит нас, что частотно-зависимыми цепями называются электрические цепи с использованием емкостных и
резистивных элементов. Спасибо, господа нефтяники и газовики — будем знать. От себя добавлю, что индуктивные элементы в
частотно-зависимом хозяйстве также иногда пригождаются.

Для постоянного тока ни конденсаторы, ни катушки индуктивности никакого интереса не представляют. Сопротивление идеального конденсатора —
бесконечность, индуктивности — ноль. Другое дело — переменный ток, тут наши частотно-зависимые элементы, начинают приобретать
определённые значения сопротивлений, называемые реактивными сопротивлениями. Ясен пень, значения этих сопротивлений зависят от
частоты протекающего тока.
Для особо продвинутых, вымучаю из себя умную фразу — «Реактивное сопротивление – электрическое сопротивление переменному току,
обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах».

Графики, фазовые сдвиги, интегралы и прочие атрибуты студенческих знаний, как правило, мало кого интересуют. Если я не прав,
пусть первыми бросят в меня камень и с лёгкостью найдут необходимую информацию на других сайтах. А мы ребята весёлые, поэтому
сразу перейдём к делу и напишем всего пару формул:

Xс = 1 / 2πƒС,   Xl = 2πƒL, где
Xc — сопротивление конденсатора переменному току, а Xl — сопротивление индуктивности переменному току.

РИСУЕМ ТАБЛИЧКУ ДЛЯ РАСЧЁТА РЕАКТИВНОГО СОПРОТИВЛЕНИЯ КОНДЕНСАТОРА

   Ёмкость конденсатора С   

     

   Подаваемая частота f   

     

  

  Реактивное сопротивление Xc (Ом)  
     

  Реактивное сопротивление Xc (кОм)  
     

ТО ЖЕ САМОЕ ДЛЯ РАСЧЁТА РЕАКТИВНОГО СОПРОТИВЛЕНИЯ ИНДУКТИВНОСТИ

   Индуктивность катушки L   

     

   Подаваемая частота f   

     

  

  Реактивное сопротивление Xl (Ом)  
     

  Реактивное сопротивление Xl (кОм)  
     

В реальной жизни конденсаторы, помимо ёмкости, обладают также собственными последовательным и параллельным сопротивлениями и
индуктивностью, а катушки индуктивности — омическим сопротивлением провода обмотки и межвитковой паразитной ёмкостью.

Нужно Вам вооружаться этими знаниями, или нет, судить не возьмусь, а вот то, что электролитические конденсаторы имеют обыкновение
иногда взрываться при превышении допустимых уровней напряжений, либо перегреве, вызванным утечками вследствие старения —
знать надо обязательно.

Делают они это, ни кем не посоветовавшись, эффектно, громко, с выделение токсичных паров электролита в виде облака из дыма,
и с лёкгостью могут выбить глаз пытливому радиолюбителю.
Так что, если не хотите превратиться в одноглазого шахматиста из Васюков, соблюдайте технику безопасности, покупайте электролиты
приличных производителей.

Калькулятор электрического сопротивления ёмкости

При подключении конденсатора в цепь переменного тока возникает совокупность процессов заряда и разряда ёмкости,
т.е. накопление и отдача энергии электрическим полем между обкладками. По мере заряда ёмкости, ток через нее уменьшается.
Конденсатор будет заряжаться до максимального значения, пока ток не сменит направление на противоположное.
В моменты максимального значения напряжения на конденсаторе, ток в нём будет равен нулю.
Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.
Ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току Xc.

formula1

X C — сопротивление, Ом;
f — частота, Гц;
C — ёмкость, Ф.

Сопротивление конденсатора переменному току это отношение действующих значений напряжения к току.
Оно обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.
Фазы кривых тока и напряжения на конденсаторе смещены на 90 градусов, при этом ток опережает напряжение.

diagram

Расчет электрического сопротивления ёмкости

Для расчета введите значение ёмкости конденсатора и частоту переменного тока

Калькулятор вычисления действующих значений тока или напряжения на конденсаторе.

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом.
Соблюдайте технику безопасности во время работы с электронными компонентами!

В этой статье мы поведем речь о таких параметрах, как активное и реактивное сопротивление.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента  — резистора, который, как говорят, обладает активным сопротивлением. Еще иногда его называют омическим.  Как нам говорит вики-словарь, «активный  — это деятельный, энергичный, проявляющий инициативу». Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

Активное и реактивное сопротивление

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от катушки индуктивности и конденсатора? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

Активное и реактивное сопротивление

На схеме мы видим генератор частоты и резистор.

Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится генератор частоты

генератор частоты

А также цифровой осциллограф:

цифровой осциллограф

С помощью него мы будем смотреть напряжение и силу тока. 

Что?

Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта.

Кто не помнит —  напомню. Имеем обыкновенный резистор:

Активное и реактивное сопротивление

Что будет, если через него прогнать электрический ток?

Активное и реактивное сопротивление

На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах

принцип работы шунта

И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи: I=U/R. Отсюда U=IR. Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи. Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на  самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока ;-)

Осциллограмма силы тока на активном сопротивлении

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому,  наша схема примет вот такой вид:

как измерить форму силы тока в цепи

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также  его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма — это напряжение с генератора Uген , а желтая осциллограмма  — это напряжение с шунта Uш , в нашем случае  — сила тока.  Смотрим, что у нас получилось:

Частота 28 Герц:

осциллограмма активного сопротивления

Частота 285 Герц:

Активное и реактивное сопротивление

Частота 30 Килогерц:

Активное и реактивное сопротивление

Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:

Активное и реактивное сопротивление

Активное и реактивное сопротивление

Как мы видим, сила тока  полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно, то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Конденсатор в цепи переменного тока

Ну а теперь давайте вместо резистора поставим конденсатор.

Активное и реактивное сопротивление

Смотрим осциллограммы:

конденсатор в цепи переменного тока

Как вы видите, конденсатор обладает сопротивлением, так  как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.

Вспоминаем алгебру старшие классы. Итак, полный период T — это

Активное и реактивное сопротивление

Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:

Активное и реактивное сопротивление

Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока

заряд конденсатора

Красная осциллограмма — это напряжение, которое мы подаем на конденсатор, а желтая — это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:

50 Герц.

Активное и реактивное сопротивление

100 Герц

Активное и реактивное сопротивление

200 Герц

Активное и реактивное сопротивление

Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Реактивное сопротивление конденсатора

Как мы увидели с прошлого опыта, с увеличением частоты растет сила тока! Кстати, у резистора не росла. То есть получается в данном случае из закона Ома, что сопротивление конденсатора зависит от частоты! Да, все так оно и есть. Но называется оно не просто сопротивлением, а реактивным сопротивлением и вычисляется по формуле:

формула реактивного сопротивления

где

Хс — реактивное сопротивление конденсатора, Ом

П — постоянная и приблизительно равна 3,14

F — частота, Гц

С — емкость конденсатора, Фарад

Катушка индуктивности в цепи переменного тока

Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:

Активное и реактивное сопротивление

Проводим все аналогичные операции, как и с конденсатором. Смотрим на осциллограммы в цепи с катушкой индуктивности:

Активное и реактивное сопротивление

Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:

Активное и реактивное сопротивление

Видите разницу? На катушке индуктивности ток отстает от напряжения на  90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас или 360 градусов).

Так-так-так…. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током,  ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.

Почему на катушке ток отстает от напряжения?

Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.

напряжение и ток на катушке индуктивности

Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.

Давайте вспомним, как это было у конденсатора:

Активное и реактивное сопротивление

Все с точностью наоборот! Можно даже сказать, что катушка — это полная противоположность конденсатору ;-)

Ну и напоследок давайте еще побалуемся частотой:

240 Килогерц

Активное и реактивное сопротивление

34 Килогерца

катушка в цепи переменного тока

17 Килогерц

Активное и реактивное сопротивление

10 Килогерц

Активное и реактивное сопротивление

Вывод?

С уменьшением частоты сила тока через катушку увеличивается.

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

реактивное сопротивление катушки

где

ХL —  реактивное сопротивление катушки, Ом

П — постоянная и приблизительно равна 3,14

F — частота, Гц

L — индуктивность, Генри

Мощность в цепи с реактивными радиоэлементами

Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:

Активное и реактивное сопротивление

Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или π/2.

Активное и реактивное сопротивление

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность — это сила тока помноженное на напряжение, то есть P=IU. Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2. Здесь ток со знаком «плюс», а напряжение со знаком «минус». В итоге плюс на минус дает минус. Получается мощность со знаком «минус». А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Активное и реактивное сопротивление

Не знаю, какое было у вас детство, но я когда был пацаном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

Активное и реактивное сопротивление

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем «плющить» пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить. То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно  к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно — это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо — это уже другая история.

В третий промежуток времени  t3 и ток и напряжение у нас со знаком «минус». Минус на минус — это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4, снова ее отдает, так как плюс на минус дает минус.

Активное и реактивное сопротивление

В результате за весь период у нас суммарное потребление энергии равно чему?

Активное и реактивное сопротивление

Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

Эквивалентная схема реальной катушки индуктивности выглядит вот так:

Активное и реактивное сопротивление

где

R— это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи.  Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

L — собственно сама индуктивность катушки

С — межвитковая емкость.

А вот и эквивалентная схема реального конденсатора:

Активное и реактивное сопротивление

где

r — сопротивление диэлектрика и корпуса между обкладками

С — собственно сама емкость конденсатора

ESR — эквивалентное последовательное сопротивление

ESI (ESL) — эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r  и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Резюме

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением.

В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов.

Сопротивление катушки вычисляется по формуле

Активное и реактивное сопротивление

Сопротивление конденсатора вычисляется по формуле:

Активное и реактивное сопротивление

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Реальные катушка и конденсатор имеют в своем составе паразитные параметры, которые имеют некоторое сопротивление. Поэтому реальные катушка и конденсатор не обладают чисто реактивным сопротивлением.

Понравилась статья? Поделить с друзьями:
  • Как найти убер диабло
  • Гоблин разведчик как найти
  • Как найти свою электронную птс на автомобиль
  • Роблокс error code 268 как исправить
  • Как найти память в телефоне самсунг а50