Как найти ребро тетраэда

Как найти ребро тетраэдра

Объемная геометрическая фигура, которую образуют четыре грани, называется тетраэдром. Каждая из граней такой фигуры может иметь только треугольную форму. Любая из четырех вершин многогранника образуется тремя ребрами, а общее число ребер равно шести. Возможность рассчитать длину ребра существует не всегда, но если она есть, то конкретный способ вычислений зависит от имеющихся исходных данных.

Как найти ребро тетраэдра

Инструкция

Если рассматриваемая фигура является «правильным» тетраэдром, то она составлена из граней, имеющих форму равносторонних треугольников. Все ребра такого многогранника имеют одинаковую длину. Если вам известен объем (V) правильного тетраэдра, то для расчета длины любого его ребра (a) извлеките кубический корень из частного от деления увеличенного в двенадцать раз объема на квадратный корень из двойки: a=?v(12*V/v2). Например, при объеме в 450см? правильный тетраэдр должен иметь ребро, длиной ?v(12*450/v2) ? ?v(5400/1,41) ? ?v3829,79 ? 15,65см.

Если из условий задачи известна площадь поверхности (S) правильного тетраэдра, то для нахождения длины ребра (a) тоже не обойтись без извлечения корней. Поделите единственную известную величину на квадратный корень из тройки, а из полученного значения тоже извлеките квадратный корень: a=v(S/v3). Например, правильный тетраэдр, площадь поверхности которого составляет 4200см?, должен иметь длину ребра, равную v(4200/v3) ? v(4200/1,73) ? V2427,75 ? 49,27см.

Если известна высота (H), проведенная из любой вершины правильного тетраэдра, то этого тоже достаточно для расчета длины ребра (a). Поделите утроенную высоту фигуры на квадратный корень из шестерки: a=3*H/v6. Например, при высоте правильного тетраэдра в 35см длина его ребра должна быть равна 3*35/v6 ? 105/2,45 ? 42,86см.

Если никаких исходных данных самой фигуры нет, но известен радиус вписанной в правильный тетраэдр сферы (r), то найти длину ребра (a) этого многогранника тоже возможно. Чтобы это сделать увеличьте радиус в двенадцать раз и разделите на квадратный корень из шестерки: a=12*r/v6. Например, если радиус равен 25см, то длина ребра будет составлять 12*25/v6 ? 300/2,45 ? 122,45см.

Если известен радиус не вписанной, а описанной около правильного тетраэдра сферы (R), то длина ребра (a) должна быть в три раза меньше. Увеличьте радиус на этот раз только в четыре раза и снова разделите на квадратный корень из шести: a=4*r/v6. Например, чтобы радиус описанной сферы был равен 40см, длина ребра должна иметь величину в 4*40/v6 ? 160/2,45 ? 65,31см.

Источники:

  • Правильная четырёхугольная пирамида

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Этот калькулятор поможет быстро найти ребро тетраэдра. Для этого нужно заполнить всего лишь одну ячейку – остальные значения определятся автоматически. Таким образом можно найти не только ребро тетраэдра, но и высоту, объем, площадь, длину всех ребер, площадь грани тетраэдра и другие значения. Также решению задач помогут формулы расчетов, которые будут даны в ответе.

Введите данные:

Достаточно ввести только одно значение, остальное калькулятор посчитает сам.

Радиус вписанной сферы (r)

Радиус описанной сферы (R)

Высота грани тетраэдра (Hg)

Площадь грани тэтраэдра (Sg)

Округление:

* — обязательно заполнить

Зная ребро тетраэдра, нужно в первую очередь найти площадь одной его грани, а также радиус вписанной и описанной окружностей грани. Периметр тетраэдра равен стороне, умноженной на их количество, а площадь одной грани тетраэдра – произведению квадрата стороны на корень из трех, деленный на четыре. Соответственно площадь полной поверхности будет представлять собой четыре площади одной грани – по их количеству.
P=6a
S_1=(√3 a^2)/4
S_(п.п.)=4S_1=√3 a^2

Чтобы найти радиусы вписанной и описанной в грань окружностей для тетраэдра, необходимо взять стандартные формулы для равностороннего треугольника и подставить в них значение ребра тетраэдра.
r=a/(2√3)
R=a/√3

Вычислив все параметры одной грани, можно перейти к объемным показателям тетраэдра, таким как высота и апофема. И для высоты, и для апофемы тетраэдра можно вывести индивидуальные формулы из теоремы Пифагора в прямоугольных треугольниках с радиусами вписанных и описанных окружностей грани, являющейся основанием тетраэдра. (рис. 60.1)
h=√(2/3) a
l=(√3 a)/2

Объем тетраэдра вычисляется через ребро тетраэдра по преобразованной формуле для простой пирамиды.
V=a^3/(6√2)

Поскольку тетраэдр является правильной пирамидой, у которой все ребра равны, в него можно вписать сферу, а также описать сферу около него. Радиус вписанной в тетраэдр сферы будет равен ребру тетраэдра, деленному на два корня из шести, а радиус сферы, описанной около тетраэдра, — боковому ребру тетраэдра, умноженному на коэффициент корень из трех, деленный на два корня из двух. (рис.60.2, 60.3)
r_1=a/(2√6)
R_1=(√3 a)/(2√2)

Материал урока.

В начале изучения
курса «Стереометрии» мы говорили, что все геометрические тела делятся на тела
вращения и многогранники. В процессе изучения геометрии в десятом классе, мы
будем подробно рассматривать с вами свойства тех или иных фигур.

Сегодня мы
познакомимся с такой фигурой как тетраэдр. Прежде чем приступить к изучению
пространственной фигуры, давайте вернемся в планиметрию и вспомним такую фигуру
как многоугольник.

Напомню, что многоугольником
называется либо замкнутая линия без самопересечений либо часть плоскости, ограниченная
этой линией, включая ее саму.

Для стереометрии
нам естественно подходит второе определение. Это определение показывает, что
каждый многоугольник представляет собой плоскую поверхность.

Напомним, что простейшим
многоугольником является треугольник.
Возьмем треугольник ABC
и точку D, которая не лежит в плоскости треугольника ABC. Соединим точку D с каждой
вершиной треугольника ABC. Таким образом, мы получим
три новых треугольника DAB, DBC,
DCA. Тогда фигуру, которая состоит из четырех
треугольников ABC, DAB, DBC, DCA, называют тетраэдром и
обозначают так: DABC.

Треугольники, из
которых состоит тетраэдр, называются гранями, стороны этих треугольников
называют ребрами, вершины этих треугольников называются вершинами
тетраэдра
.

 Нетрудно посчитать,
что тетраэдр имеет четыре грани, 6 ребер и четыре вершины. Два ребра тетраэдра,
которые не имеют общих вершин, называются противоположными. Давайте
запишем пары противоположных ребер тетраэдра, который изображен на рисунке.

Это будут ребра AD и BC, BDи AC, CD и AB.
Иногда одну из граней тетраэдра называют основанием, а три другие – боковыми
гранями
.

Слово тетраэдр
произошло от древнегреческих слов теторес – четыре и эдра
основание или грань.

Если все грани
тетраэдра – равносторонние треугольники, то такой тетраэдр называется правильным.
Правильный тетраэдр является одним из пяти правильных многогранников. Они еще
называются телами Платона. Это — тетраэдр, гранями которого
являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр,
имеющий восемь треугольных граней, додекаэдр, гранями которого являются
двенадцать правильных пятиугольников, и икосаэдр с двадцатью
треугольными гранями.

Последователи
Пифагорейской философской школы форму тетраэдра придавали стихии огня.

Тетраэдр, все грани
которого равные между собой треугольники, называется равногранным тетраэдром.

Если ребра
тетраэдра, которые прилегают к одной вершине, перпендикулярны между собой, то
такой тетраэдр называется прямоугольным.

Тетраэдры обычно
изображаются в виде выпуклого или невыпуклого четырехугольника с диагоналями. При
этом штриховыми линиями изображаются невидимые ребра.

На этом рисунке
невидимым является только ребро AC.

А на этом рисунке
невидимыми являются ребра ЕК, KF, KL.

Тетраэдр образует
жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней,
часто используется в качестве основы для пространственных несущих конструкций
пролётов зданий, перекрытий, балок, ферм, мостов.

Ярким примером
тетраэдра является разработанное для Нового Орлеана «здание-город», которое
возвышается на 360 метров, включает в себя 20000 квартир, суммарная жилая
площадь которых 2040000 квадратных метров. Здание использует экологичное
энергоснабжение — энергию ветра, воды и солнца. Кроме квартир в тетраэдре
помещаются коммерческие организации, три отеля, культурные объекты, школа,
больницы и казино. И, учитывая место, под которое создавался проект, его
немаловажная особенность — способность держаться на плаву.

Решим насколько
задач.

Задача. Назовите
все пары скрещивающихся рёбер тетраэдра . Сколько таких пар рёбер имеет тетраэдр?

Решение.

Напомним, что две
прямые называются скрещивающимися, если они не лежат в одной плоскости.

Нетрудно увидеть,
что скрещивающимися будут ребра AB и СD,
АC и BD, АD
и BC. То есть в тетраэдре есть три пары скрещивающихся
ребер.

Задача. В
тетраэдре  , , , , , . Найти рёбра основания  данного
тетраэдра.

Решение.

Задача. Пусть
точки  и  – середины рёбер  и  тетраэдра . Доказать, что прямая  параллельна плоскости .

Доказательство.

Что и
требовалось доказать.

Подведем итоги
урока.
Сегодня на уроке мы познакомились с пространственным многогранником
– тетраэдром. Познакомились с элементами тетраэдра, решили несколько задач по
данной теме.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Тетраэдр и его элементы

Как построить тетраэдр? Возьмем произвольный треугольник АВС. Произвольную точку D, не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B, C, Dвершины тетраэдра.
AB, AC, AD, BC, BD, CDребра тетраэдра.
ABC, ABD, BDC, ADCграни тетраэдра.

Замечание: можно принять плоскость АВС за основание тетраэдра, и тогда точка является вершиной тетраэдра. Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ – это пересечение плоскостей АВD и АВС. Каждая вершина тетраэдра – это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС, АВD, АDС. Точка А – это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВСАВDАСD. 

Тетраэдр определение

Итак, тетраэдр — это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра — линия перечесения двух плоскостей тетраэдра.

Задача 1 на построение тетраэдра

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек – это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Задача 2 Построить сечение тетраэдра плоскостью

Дан тетраэдр АВСD. Точка M принадлежит ребру тетраэдра АВ, точка N принадлежит ребру тетраэдра ВD и точка Р принадлежит ребру DС (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP.

Рис. 2. Рисунок к задаче 2 — Построить сечение тетраэдра плоскостью

Решение
Рассмотрим грань тетраэдра DВС. В этой грани точки N и P принадлежат грани DВС, а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP – это линия пересечения двух плоскостей: плоскости грани DВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости DВС. Найдем точку пересечения прямых NP и ВС. Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP, так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP.

Также точка Е лежит в плоскости АВС, потому что она лежит на прямой ВС из плоскости АВС.

Получаем, что ЕМ – линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях — АВС и MNP. Соединим точки М и Е, и продолжим прямую ЕМ до пересечения с прямой АС. Точку пересечения прямых ЕМ и АС обозначим Q.

Итак, в этом случае NPQМ — искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC. Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС, то прямая NP параллельна всей плоскости АВС.

Искомая плоскость сечения проходит через прямую NP, параллельную плоскости АВС, и пересекает плоскость по прямой МQ. Значит, линия пересечения МQ параллельна прямой NP. Получаем, NPQМ — искомое сечение.

Задача 3 Построить сечение тетраэдра плоскостью

Точка М лежит на боковой грани АDВ тетраэдра АВСD. Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС.

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ, АС, ВС
В плоскости АВD через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВD. Аналогично в плоскости АСD через точку Р проведем прямую РR параллельно АС. Получили точку R. Две пересекающиеся прямые PQ  и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС, значит, плоскости АВС и РQR параллельны. РQR – искомое сечение. Задача решена.

Задача 4

Дан тетраэдр АВСD. Точка М – точка внутренняя, точка грани тетраэдра АВD. N – внутренняя точка отрезка DС (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС.

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость DМN. Пусть прямая DМ пересекает прямую АВ в точке К (Рис. 7.). Тогда, СКD – это сечение плоскости DМN и тетраэдра. В плоскости DМN лежит и прямая NM, и полученная прямая СК. Значит, если NM не параллельна СК, то они пересекутся в некоторой точке Р. Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС.

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Задача 5 Построить сечение тетраэдра плоскостью

Дан тетраэдр АВСD. М – внутренняя точка грани АВD. Р – внутренняя точка грани АВС. N – внутренняя точка ребра DС (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М, N и Р

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС. В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС. Это точка К, она получена с помощью вспомогательной плоскости DМN, т.е. мы проводим DМ и получаем точку F. Проводим СF и на пересечении MN получаем точку К.

Рис. 9. Рисунок к задаче 5. Нахождение точки К 

Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в плоскости АВС. Получаем точки Р1 и Р2. Соединяем Р1 и М и на продолжении получаем точку М1. Соединяем точку Р2 и N. В результате получаем искомое сечение Р1Р21. Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС. Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р1Р2, тогда прямая Р1Р2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р1М и получим точку М1. Р1Р21 – искомое сечение.

Итоги урока по теме «Тетраэдр», «Ребро тетраэдра», «Грани тетраэдра», «Поверхность тетраэдра», «Вершины тетраэдра»

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

Список рекомендованной литературы по теме «Тетраэдр»

1. И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М. : Мнемозина, 2008. – 288 с. : ил. Геометрия. 10-11 класс: учебник         для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. – 6-е издание, стереотип. – М. : Дрофа, 008. – 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных             учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

1. Сечения тетраэдра (Источник).

2. Как построить сечение тетраэдра. Математика (Источник).

3. Фестиваль педагогических идей (Источник).

Сделай дома задачи по теме «Тетраэдр», как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. –       5-е издание, исправленное и дополненное – М.: Мнемозина, 2008. – 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС. Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е.

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р – грани ВМС, точка К – ребру АС. Постройте сечение тетраэдра плоскостью, проходящей       через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

Понравилась статья? Поделить с друзьями:
  • Квашеная капуста потемнела как исправить
  • Как найти код в сафари
  • Как найти мужа в лесу
  • Как найти хорошего доброго парня
  • Как найти персонажа по описанию внешности