Как найти ростояние от точки к плоскости

Данная статья рассказывает об определении расстояния от точки до плоскости. произведем разбор методом координат, который позволит находить расстояние от заданной точки трехмерного пространства. Для закрепления рассмотрим примеры нескольких задач.

Расстояние от точки до плоскости – определение

Расстояние от точки до плоскости  находится посредством известного расстояния от точки до точки, где одна из них заданная, а другая – проекция на заданную плоскость.

Когда в пространстве задается точка М1 с плоскостью χ, то через точку можно провести перпендикулярную плоскости прямую. Н1 является общей точкой их пересечения. Отсюда получаем, что отрезок М1Н1 – это перпендикуляр, который провели из точки М1 к плоскости χ, где точка Н1 – основание перпендикуляра.

Определение 1

Расстоянием от точки до плоскости называют расстояние от заданной точки к основанию перпендикуляра, который провели из заданной точки к заданной плоскости.

Определение может быть записано разными формулировками.

Определение 2

Расстоянием от точки до плоскости называют длину перпендикуляра, который провели из заданной точки к заданной плоскости.

Расстояние от точки до плоскости – определение

Расстояние от точки М1 к плоскости χ определяется так: расстояние от точки М1 до плоскости χ будет являться наименьшим от заданной точки до любой точки плоскости. Если точка Н2 располагается в плоскости χ и не равна точке Н2, тогда получаем прямоугольный треугольник вида М2H1H2 , который является прямоугольным, где имеется катет М2H1, М2H2 – гипотенуза. Значит, отсюда следует, что M1H1<M1H2. Тогда отрезок М2H1 считается наклонной, которая проводится из точки М1 до плоскости χ. Мы имеем, что перпендикуляр, проведенный из заданной точки к плоскости, меньше наклонной, которую проводят из точки к заданной плоскости. Рассмотрим этот случай на рисунке, приведенном ниже.

Расстояние от точки до плоскости – определение

Расстояние от точки до плоскости – теория, примеры, решения

Существует ряд геометрических задач, решения которых должны содержать расстояние от точки до плоскости. Способы выявления этого могут быть разными. Для разрешения применяют теорему Пифагора или подобия треугольников. Когда по условию необходимо рассчитать расстояние от точки до плоскости, заданные в прямоугольной системе координат трехмерного пространства, решают методом координат. Данный пункт рассматривает этот метод.

По условию задачи имеем, что задана точка трехмерного пространства с координатами M1(x1, y1, z1) с плоскостью χ, необходимо определить расстояние от М1 к плоскости χ. Для решения применяется несколько способов решения.

Первый способ

Данный способ основывается на нахождении расстояния от точки до плоскости при помощи координат точки Н1, которые являются основанием перпендикуляра из точки М1 к плоскости χ. Далее необходимо вычислить расстояние между М1 и Н1.

Для решения задачи вторым способом применяют нормальное уравнение заданной плоскости.

Второй способ

По условию имеем, что Н1 является основанием перпендикуляра, который опустили из точки М1 на плоскость χ.  Тогда определяем координаты (x2, y2, z2) точки Н1. Искомое расстояние от М1 к плоскости χ находится  по формуле M1H1=(x2-x1)2+(y2-y1)2+(z2-z1)2, где M1(x1, y1, z1) и H1(x2, y2, z2). Для решения необходимо узнать координаты точки Н1.

Имеем, что Н1 является точкой пересечения плоскости χ с прямой a, которая проходит через точку М1, расположенную перпендикулярно плоскости χ. Отсюда следует, что необходимо составление уравнения прямой, проходящей через заданную точку перпендикулярно к заданной плоскости. Именно тогда сможем определить координаты точки Н1. Необходимо  произвести вычисление координат точки пересечения прямой и плоскости.

Алгоритм нахождения расстояния от точки с координатами M1(x1, y1, z1) к плоскости χ:

Определение 3
  • составить уравнение прямой а, проходящей через точку М1 и одновременно
  • перпендикулярной к плоскости χ;
  • найти и вычислить координаты (x2, y2, z2) точки Н1, являющимися точками
  • пересечения прямой a с плоскостью χ;
  • вычислить расстояние от М1 до χ, используя формулу M1H1=(x2-x1)2+(y2-y1)2+z2-z12.

Третий способ

В заданной прямоугольной системе координат Охуz имеется плоскость χ, тогда получаем нормальное уравнение плоскости вида cos α· x+cos β·y+cos γ·z-p=0. Отсюда получаем, что расстояние M1H1 с точкой M1(x1, y1, z1) , проведенной на плоскость χ, вычисляемое по формуле M1H1=cos α· x+cos β·y+cos γ·z-p. Эта формула справедлива, так как это установлено благодаря теореме.

Теорема

Если задана точка M1(x1, y1, z1) в трехмерном пространстве, имеющая нормальное уравнение плоскости χ вида cos α· x+cos β·y+cos γ·z-p=0, тогда вычисление расстояния от точки до плоскости M1H1 производится из формулы M1H1=cos α· x+cos β·y+cos γ·z-p, так как x=x1, y=y1, z=z1.

Доказательство

Доказательство теоремы сводится к нахождению расстояния от точки до прямой. Отсюда получаем, что расстояние от M1 до плоскости χ — это и есть модуль разности числовой проекции радиус-вектора M1 с расстоянием от начала координат к плоскости χ. Тогда получаем выражение M1H1=npn→OM→-p. Нормальный вектор плоскости χ имеет вид n→=cos α, cos β, cos γ, а его длина равняется единице, npn→OM→ — числовая проекция вектора OM→=(x1, y1, z1) по направлению, определяемым вектором n→.

Применим формулу вычисления скалярных векторов. Тогда получаем выражение для нахождения вектора вида n→, OM→=n→·npn→OM→=1·npn→OM→=npn→OM→, так как n→=cos α, cos β, cos γ·z и OM→=(x1, y1, z1). Координатная форма записи примет вид n→, OM→=cos α· x1+cos β·y1+cos γ·z1, тогда M1H1=npn→OM→-p=cos α· x1+cos β·y1+cos γ·z1-p. Теорема доказана.

Отсюда получаем, что расстояние от точки M1(x1, y1, z1) к плоскости χ вычисляется при помощи подстановки в левую часть нормального уравнения плоскости cos α· x+cos β·y+cos γ·z-p=0 вместо х, у, z координаты x1, y1 и z1 ,относящиеся к точке М1, взяв абсолютную величину полученного значения.

Рассмотрим примеры нахождения расстояния от точки с координатами до заданной плоскости.

Пример 1

Вычислить расстояние от точки с координатами M1(5, -3, 10) к плоскости 2x-y+5z-3=0.

Решение

Решим задачу двумя способами.

Первый способ начнется с вычисления направляющего вектора прямой a. По условию имеем, что заданное уравнение 2x-y+5z-3=0 является уравнением плоскости общего вида, а n→=(2, -1, 5) является нормальным вектором заданной плоскости. Его применяют в качестве направляющего вектора прямой a, которая перпендикулярна относительно заданной плоскости. Следует записать каноническое уравнение прямой в пространстве, проходящее через M1(5, -3, 10) с направляющим вектором с координатами 2, -1, 5.

Уравнение получит вид x-52=y-(-3)-1=z-105⇔x-52=y+3-1=z-105.

Следует определить точки пересечения. Для этого нежно объединить уравнения в систему для перехода от канонического  к уравнениям двух пересекающихся прямых. Данную точку примем за Н1.  Получим, что

x-52=y+3-1=z-105⇔-1·(x-5)=2·(y+3)5·(x-5)=2·(z-10)5·(y+3)=-1·(z-10)⇔⇔x+2y+1=05x-2z-5=05y+z+5=0⇔x+2y+1=05x-2z-5=0

После чего необходимо разрешить систему

x+2y+1=05x-2z-5=02x-y+5z-3=0⇔x+2y=15x-2z=52x-y+5z=3

Обратимся к правилу решения системы по Гауссу:

120-150-252-153~120-10-10-2100-555~120-10-10-2100060⇒⇒z=06=0, y=-110·10+2·z=-1, x=-1-2·y=1

Получаем, что H1(1, -1, 0).

Производим вычисления расстояния от заданной точки до плоскости. Берем точки M1(5, -3, 10) и H1(1, -1, 0) и получаем

M1H1=(1-5)2+(-1-(-3))2+(0-10)2=230

Второй способ решения заключается в том, чтобы для начала привести заданное уравнение 2x-y+5z-3=0 к нормальному виду. Определяем нормирующий множитель и получаем 122+(-1)2+52=130. Отсюда выводим уравнение плоскости 230·x-130·y+530·z-330=0. Вычисление левой части уравнения производится посредствам подстановки x=5, y=-3, z=10, причем нужно взять расстояние от M1(5, -3, 10)  до 2x-y+5z-3=0 по модулю. Получаем выражение:

M1H1=230·5-130·-3+530·10-330=6030=230

Ответ: 230.

Когда плоскость χ задается одним из способов раздела способы задания плоскости, тогда нужно для начала получить уравнение плоскости χ и вычислять искомое расстояние при помощи любого метода.

Пример 2

 В трехмерном пространстве задаются  точки с координатами M1(5, -3, 10), A(0, 2, 1), B(2, 6, 1), C(4, 0, -1). Вычислить расстяние от М1 к плоскости АВС.

Решение

Для начала необходимо записать уравнение плоскости, проходящее через заданные три точки с координатами M1(5, -3, 10), A(0, 2, 1), B(2, 6, 1), C(4, 0, -1).

Получим:

x-0y-2z-12-06-21-14-00-2-1-1=0⇔xy-2z-12404-2-2=0⇔⇔-8x+4y-20z+12=0⇔2x-y+5z-3=0

Отсюда следует, что задача имеет аналогичное предыдущему решение. Значит, расстояние от точки М1 к плоскости АВС имеет значение 230.

Ответ: 230.

Нахождение расстояния от заданной точки на плоскости или к плоскости, которым они параллельны, удобнее, применив формулу M1H1=cos α·x1+cos β·y1+cos γ·z1-p. Отсюда получим, что нормальные уравнения плоскостей получают в несколько действий.

Пример 3

Найти расстояние от заданной точки с координатами M1(-3, 2, -7) к координатной плоскости Охуz и плоскости, заданной уравнением 2y-5=0.

Решение

Координатная плоскость Оуz соответствует уравнению вида х=0. Для плоскости Оуz оно является нормальным. Поэтому необходимо подставить в левую часть выражения значения х=-3 и взять модуль значения расстояния от точки с координатами M1(-3, 2, -7) к плоскости. Получаем значение, равное -3=3.

После преобразования нормальное уравнение плоскости 2y-5=0 получит вид y-52=0. Тогда можно найти искомое расстояние от точки с координатами M1(-3, 2, -7) к плоскости2y-5=0. Подставив и вычислив, получаем 2-52=52-2.

Ответ: Искомое расстояние от M1(-3, 2, -7) до Оуz имеет значение 3, а до 2y-5=0 имеет значение 52-2.

Автор статьи

Сергей Евгеньевич Грамотинский

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Поиск расстояния от точки до плоскости — частая задача, возникающая при решении различных задач аналитической геометрии, например, к этой задаче можно свести нахождение расстояния между двумя скрещивающимися прямыми или между прямой и параллельной ей плоскостью.

Рассмотрим плоскость $β$ и точку $M_0$ с координатами $(x_0;y_0; z_0)$, не принадлежащую плоскости $β$.

Определение 1

Кратчайшим расстоянием между точкой и плоскостью будет перпендикуляр, опущенный из точки $М_0$ на плоскость $β$.

Расстояние от точки, до плоскости. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Расстояние от точки, до плоскости. Автор24 — интернет-биржа студенческих работ

Ниже рассмотрено как найти расстояние от точки до плоскости координатным методом.

Вывод формулы для координатного метода поиска расстояния от точки до плоскости в пространстве

Перпендикуляр из точки $M_0$, пересекающийся с плоскостью $β$ в точке $M_1$ с координатами $(x_1;y_1; z_1)$, лежит на прямой, направляющим вектором которой является нормальный вектор плоскости $β$. При этом длина единичного вектора $n$ равна единице. Соответственно этому, расстояние от $β$ до точки $M_0$ составит:

$ρ= |vec{n} cdot vec{M_1M_0}|left(1right)$, где $vec{M_1M_0}$ — нормальный вектор плоскости $β$, а $vec{n}$ — единичный нормальный вектор рассматриваемой плоскости.

В случае, когда уравнение плоскости задано в общем виде $Ax+ By + Cz + D=0$, координаты нормального вектора плоскости представляют собой коэффициенты уравнения ${A;B;C}$, а единичный нормальный вектор в этом случае имеет координаты, вычисляемые по следующему уравнению:

$vec{n}= frac{{A;B;C}}{sqrt{A^2 + B^2 + C^2}}left(2right)$.

Теперь можно найти координаты нормального вектора $vec{M_1M_0}$:

«Расстояние от точки до плоскости» 👇

$vec{M_0M_1}= {x_0 – x_1;y_0-y_1;z_0-z_1}left(3right)$.

Также выразим коэффициент $D$, используя координаты точки, лежащей в плоскости $β$:

$D= Ax_1+By_1+Cz_1$

Координаты единичного нормального вектора из равенства $(2)$ можно подставить в уравнение плоскости $β$, тогда мы имеем:

$ρ= frac{|A(x_0 -x_1) + B(y_0-y_1)+C(z_0-z_1)|}{sqrt{A^2+B^2+C^2}}= frac{|Ax_0+ By_0 + Cz_0-(Ax_1+By_1+Cz_1)|}{sqrt{A^2+B^2+C^2}} = frac{Ax_0+ By_0 + Cz_0 + D}{sqrt{A^2+B^2+C^2}}left(4right)$

Равенство $(4)$ является формулой для нахождения расстояния от точки до плоскости в пространстве.

Общий алгоритм для нахождения расстояния от точки $M_0$ до плоскости

  1. Если уравнение плоскости задано не в общей форме, для начала необходимо привести его к общей.
  2. После этого необходимо выразить из общего уравнения плоскости нормальный вектор данной плоскости через точку $M_0$ и точку, принадлежащую заданной плоскости, для этого нужно воспользоваться равенством $(3)$.
  3. Следующий этап — поиск координат единичного нормального вектора плоскости по формуле $(2)$.
  4. Наконец, можно приступить к поиску расстояния от точки до плоскости, это осуществляется с помощью вычисления скалярного произведения векторов $vec{n}$ и $vec{M_1M_0}$.

Пример 1

Найдите расстояние от точки $M_0$, заданной координатами $(1;2;3)$ до плоскости $β$, заданной уравнением $5x+2y-z+3=0$

Воспользуемся формулой $(4)$:

$ρ=frac{|5 cdot 1 + 2 cdot 2 -3 cdot1+3|}{sqrt{5^2 + 2^2 + (-1)^2}}=frac{9}{sqrt{30}}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Определение расстояния от точки до плоскости

Расстояние от точки до плоскости равно длине перпендикуляра, опущенного из точки на плоскость, и в начертательной геометрии определяется графически согласно следующему алгоритму.

Алгоритм построения

  1. Плоскость переводят в проецирующее положение с помощью методов преобразования ортогональных проекций.
  2. Из точки на плоскость опускают перпендикуляр и находят его длину. Направление проекции перпендикуляра определяется на основании теоремы о проецировании прямого угла.

Задача № 1

Рассмотрим, как реализуется составленный нами алгоритм на практике. На рисунке ниже представлены графические построения, необходимые для определения расстояния между точкой N и плоскостью α, заданной треугольником ABC.

Определение расстояния от точки до плоскости

Ход решения

  • Через вершину B» треугольника A»B»C» проводим проекцию h» горизонтали h. По линиям связи находим h’.
  • Переводим ABC в проецирующее положение. Для этого перпендикулярно h вводим новую фронтальную плоскость П4. Проецируем на неё точку N и треугольник ABC.
  • Из точки N»1 проводим N»1⊥ A»11. Длина отрезка N»11 – искомое расстояние между плоскостью треугольника ABC и точкой N.

Задача № 2

Требуется определить величину расстояния между точкой K и плоскостью β, заданной следами. В отличие от предыдущей задачи здесь нет необходимости проводить линию уровня, так как её роль выполняет проекция h.

Расстояние до плоскости, заданной следами

Ход решения

  • Переводим плоскость β в проецирующее положение. Для этого перпендикулярно следу h0β вводим дополнительную фронтальную плоскость П4. На прямой f0β берем произвольную точку E, определяем её проекции E», E’ и E»1. Через E»1 и X0α1 проводим прямую f0β1, которая является следом плоскости β на П4. По линии связи определяем проекцию K»1 точки K.
  • Из K»1 проводим перпендикуляр K»11 в направлении прямой f0β1. Длина отрезка K»11 – величина искомого расстояния от K до β.

Если требуется перевести отрезок KM в исходную систему плоскостей, то это делается с помощью обратных преобразований, как показано на следующем рисунке.

Определение проекций отрезка KM

Похожие задачи:

  • Определение расстояния от точки до прямой
  • Расстояние между параллельными плоскостями
  • Определение натуральной величины отрезка

В статье мы расскажем о нескольких способах того, как найти расстояние от точки до плоскости, а для лучшего понимания рассмотрим пример на эту тему.

Определение расстояние от точки до плоскости

Пусть дана плоскость χ, а в пространстве задана точка M1. Через неё проходит прямая, перпендикулярная нашей χ. H1 обозначим общую точку их пересечения. Отрезок M1H1 является перпендикуляром из M1 к [χ]. В обсуждаемом случае H1 есть основание перпендикуляра. 

Определение 1

Под расстоянием от точки до плоскости понимают расстояние между этой точкой и основанием перпендикуляра, проходящего через неё к указанной плоскости.

Расстояние от точки до плоскости

Определение 2

Под расстоянием от точки [M_{1}] до плоскости χ понимают длину перпендикуляра, проведённого из [M_{1}] к χ. Оно является наименьшим от M1 до любой из точек плоскости.

Докажем это:

Расстояние от точки до плоскости 1

Если H2 на χ не совпадает с H1, то мы имеем прямоугольный треугольник M2H1H2. При этом M2H1 есть его катет, а M2H2 гипотенуза. Длина гипотенузы треугольника всегда больше, чем длина катета. Доказательство завершено.

Нет времени решать самому?

Наши эксперты помогут!

Способы найти расстояние от точки до плоскости

Мы имеем точку M1 в трёхмерном пространстве с декартовыми координатами x1, y1, z1 и плоскость [χ]. Покажем, как в этом случае найти расстояние от M1 до [χ].

  • Первый способ.

    Он основан на использовании координат точки H1, которая является основанием перпендикуляра, проведённого из M1 к [χ]. После этого вычисление искомой величины происходит достаточно просто.

  • Второй способ.

    Сначала составляем уравнение прямой, которая перпендикулярна χ и проходит через M1. Затем выясняем координаты (x2, y2, z2) пересечения прямой [a] и [χ]. Вычисляем расстояние от точки M1 до плоскости χ, формула, по которой это делается, следующая:

[mathrm{M}_{1} mathrm{H}_{1}=sqrt{left(mathrm{x}_{2}-mathrm{x}_{1}right)^{2}+left(mathrm{y}_{2}-mathrm{y}_{1}right)^{2}+left(mathrm{z}_{2}-mathrm{z}_{1}right)^{2}}]

  • Третий способ.

    В прямоугольной декартовой системе координат у нас имеется плоскость χ. Её нормальное уравнение можно записать в виде:

    cosα * x + cosβ * y + cosγ * z – p = 0

    M1H1 вычисляется с помощью формулы:

    M1H1 = cosα * x + cosβ * y + cosγ * z – p

Это следует из теоремы, гласящей, что если в трёхмерном пространстве имеется точка M1(x1,y1,z1) и имеется нормальное уравнение плоскости, которое можно записать в виде cosα * x + cosβ * y + cosγ * z – p = 0, то расстояние от точки до плоскости будет равно

M1H1 = cosα * x + cosβ * y + cosγ * z – p

потому что x=x1, y=y1, z=z1.

Задача

Требуется найти расстояние точки [M_{1}](-3, √2, -7) до лежащих около неё плоскостей:

  1. 0xy
  2. 2y-5=0

Решение:

  1. Т. к. данная координатная плоскость соответствует уравнению вида x=0, для 0yz оно нормальное. Поэтому в левую часть выражения следует подставить значения -3. Затем берём модуль значения расстояния от точки с указанными координатами. Получаем число 3.
  2. Делим 2y-5=0 на 2. Это позволяет нам привести его к виду y-(5/2) = 0. После соответствующих подстановок и вычисления получаем искомую величину. Она равна (5/2) — √2.

Расстояние от точки до плоскости

Чтобы найти расстояние между точкой и плоскостью, нужно построить между ними перпендикуляр, длина которого и будет ему равна. Существует несколько методов построения перпендикуляра между точкой и плоскостью.

ПОСТРОЕНИЕ ПЕРПЕНДИКУЛЯРА ИЗ ТОЧКИ НА ПЛОСКОСТЬ

Самый простой способ – просто провести искомый перпендикуляр. Сложность этого метода в том, что не всегда очевидно, куда именно упадет перпендикуляр. Если это перпендикуляр к плоскости, то по признаку перпендикулярности он должен быть перпендикулярен любой прямой на этой плоскости.

Значит этот перпендикуляр упадет так, что мы сможем доказать его перпендикулярность к плоскости. Точка пересечения перпендикуляра и плоскости будет единственной возможной.

Из точки (M), не лежащей в плоскости α, проведем перпендикуляр (text{MH}):

Этот метод стоит применять тогда, когда мы знаем, чему равны две стороны получившегося прямоугольного треугольника (text{MHA}), чтобы иметь возможность найти длину перпендикуляра (text{MH} )как третью сторону треугольника.

ПОСТРОЕНИЕ ПЕРПЕНДИКУЛЯРА ИЗ ТОЧКИ НА ПРЯМОЙ К ПЛОСКОСТИ

Если с построением перпендикуляра из точки возникают трудности, можно использовать этот способ.

Вместо того, чтобы сразу проводить перпендикуляр из точки M, можно провести через неё прямую (a), так, что (a parallel alpha). Таким образом каждая точка на этой прямой будет находиться на равном расстоянии от плоскости, что и точка М. Так мы сможем выбрать более удобную точку, проведя перпендикуляр из которой будет легко доказать, что это действительно перпендикуляр к плоскости.

Снова перпендикулярность прямой к плоскости будет доказываться через признак перпендикулярности.

Например, в данном случае прямая, проведенная через точку K будет падать в точку H – точку пересечения прямых на плоскости, так, что KH перпендикулярна каждой из этих прямых:

ПОСТРОЕНИЕ ПЕРПЕНДИКУЛЯРА ИЗ ТОЧКИ ПЛОСКОСТИ К ПЛОСКОСТИ

Аналогично можно построить через точку (M) плоскость β так, что (beta parallel alpha). Тогда любая другая точка на этой плоскости буде находится от плоскости (alpha) на том же расстоянии, что и точка (M). Так можно выбрать любую другую удобную точку, например точку (А), и найти расстояние от неё до плоскости (alpha).

НАХОЖДЕНИЕ ДЛИНЫ ПЕРПЕНДИКУЛЯРА ЧЕРЕЗ ОБЪЕМ

Если в задаче возникают трудности с построением перпендикуляра каким-либо способом выше, то можно решить задачу алгебраически. Самый простой способ найти длину перпендикуляра – представить его как высоту геометрического тела. Тогда, зная его объем, можно будет выразить высоту, а значит найти расстояние от точки до плоскости.

Например:

Дана пирамида (text{SABC}). Отрезок (text{SA}) перпендикулярен плоскости (text{ABC}). Выразите длину от точки (A) до плоскости (text{SBC}).

В данной задаче мы не можем построить перпендикуляр ни от точки, ни от прямой, ни от плоскости, т. к. не знаем, куда этот перпендикуляр упадет. Решим задачу через объем пирамиды.

  1. Если (text{AS}) перпендикулярна плоскости (text{ABC}), то можем использовать этот отрезок как высоту пирамиды и представить её объем так:

(V_{text{SABC}} = frac{1}{3}S_{text{ABC}} bullet SA)

  1. С другой стороны, можем представить (text{AH })как высоту пирамиды (text{ASBC}) с вершиной (A):

(V_{text{ASBC}} = frac{1}{3}S_{text{SBC}} bullet AH)

  1. Таким образом можем приравнять два объема, т. к. по сути мы выразили два одинаковых объема по-разному:

(V_{text{SABC}} = V_{text{ASBC}})

(frac{1}{3}S_{text{ABC}} bullet SA = frac{1}{3}S_{text{SBC}} bullet AH)

(AH = frac{S_{text{ABC}} bullet SA}{S_{text{SBC}}})

Понравилась статья? Поделить с друзьями:
  • Как найти учеников по фортепиано
  • Точка v10 как найти
  • Как найти значение каждого заряда
  • Как найти картридж для смесителя
  • Как правильно составить тезис на итоговом сочинении