Как найти с общ электротехника

В таблице представлены основные расчетные формулы по электротехнике для расчета тока, напряжения, сопротивления, мощности и других парметров электрических схем.

Измеряемые величины

Формулы

Обозначение и единицы измерения

Сопротивление проводника омическое (при постоянном токе)

— омическое сопротивление, Ом;

— удельное сопротивление, Ом

— длина, м;

s — сечение, мм2

Активное сопротивление при переменном токе

r — активное сопротивление, Ом;

k — коэффициент, учитывающий поверхностный эффект, а в магнитных проводниках — также явление намагничивания

Зависимость омического сопротивления проводника от температуры

, — сопротивление проводника в омах соответственно при температуре и °C

Индуктивное (реактивное) сопротивление

— индуктивное

сопротивление, Ом;

— угловая скорость; при частоте/= 50 Гц; = 314;

— емкостное сопротивление, Ом;

f— частота, Гц;

L — коэффициент самоиндукции (индуктивность), Гц;

С — емкость, Ф;

Z — полное сопротивление, Ом

Емкостное (реактивное) сопротивление

Полное реактивное сопротивление

Полное сопротивление переменному току

или

Емкость пластинчатого конденсатора

С — емкость, Ф;

S — площадь между двумя

электродами, см

n — число пластин;

— диэлектрическая постоянная изоляции;

b — толщина слоя диэлектрика, см

Общая емкость цепи:

а) при последовательном соединении емкостей

б) при параллельном соединении емкостей

, , — отдельные емкости, Ф

Закон Ома; цепь переменного тока с реактивным сопротивлением

или

I — ток в цепи, А;

U — напряжение цепи, В;

1-й закон Кирхгофа (для узла)

— токи в отдельных ответвлениях, сходящихся в одной

точке, А; i = 1, 2… n;

Е — ЭДС, действующая в контуре, В;

r — сопротивление отдельных

участков, Ом

— ток первой ветви, А;

— ток второй ветви А;

— сопротивление первой ветви, Ом;

— сопротивление второй ветви, Ом

2-й закон Кирхгофа (для замкнутого контура)

Распределение тока в двух параллельных ветвях цепи переменного тока

Закон электромагнитного индукции для синусоидального тока

— наведенная ЭДС, В;

f — частота, Гц;

w — число витков обмотки;

В — индукция магнитного поля в стали, Тс;

S — сечение магнитопровода, см2

Электродинамический эффект тока для двух параллельных проводников

F — сила, действующая на 1 (см) длины проводника, кГ;

, — амплитудные значения токов в параллельных проводниках, А;

а — расстояние между проводниками, си;

—длина проводника, см

Подъемная сила электромагнита

Р — подъемная сила, кГ;

В3 — индукция в воздушном

зазоре; В3 = 1000 Гс (электромагниты для подъема стружки и мелких деталей); В3 = 8000 — 10 000 Гс (электромагниты для подъема крупных деталей)

S — сечение стального сердечника, см2

Тепловой эффект тока

или

  — количество выделяемого

тепла, кал;

t— время протекания тока, сек;

r — сопротивление, Ом;

А — количество вещества, от-

ложившегося на электроде, мг;

α — электрохимический эквивалент вещества

Химический эффект тока

Зависимости в цепи переменного тока при частоте 50 Гц:

а) период изменения тока

б) угловая скорость

[радиан] или 360°

Т — период изменения тока, сек;

fчастота тока, Гц;

— угловая скорость

Зависимости токов и напряжений в цепи переменного тока:

а) ток в цепи

б) напряжение в цепи

I — полный ток в цепи, А;

— активная составляющая

тока, А;

— реактивная составляющая тока, А;

— угол сдвига (град) во времени между током и напряжением в цепи;

U— напряжение в цепи, В;

— активная составляющая

напряжения, В;

— реактивная составляющая напряжения, В

Соотношения токов и напряжений в трехфазной системе:

а) соединение в звезду

б) соединение в треугольник

— ток линейный, А;

— ток фазный, А;

— напряжение линейное, В;

— напряжение фазное, В

Коэффициент мощности

Р — активная мощность, Вт;

Q — реактивная мощность, нар;

S —полная мощность, B*А;

r — активное сопротивление,

z — полное сопротивление, Ом

Мощность в цепи постоянного тока

Мощность в цепи переменного тока:

а) цепь однофазно тока

б) цепь трехфазного тока

Энергия в цепи постоянного тока

— активная энергия, Вт*ч;

— реактивная энергия, вар*ч;

t —время ч

Энергия в цепи переменного тока:

а) цепь однофазного тока

б) цепь трехфазного тока

Основные законы электротехники для начинающих

Содержание

  • 1 Великий Ом
  • 2 Вычисление полного сопротивления цепи (Z)
  • 3 Определение полной мощности (S) в электротехнике
  • 4 Закон Джоуля-Ленца
  • 5 Первый закон Кирхгофа
  • 6 Второй закон Кирхгофа
  • 7 Видео по теме

Сегодня сложно представить мир без электричества, а также приборов, машин и устройств, работающих на нем. Электротехника окружает нас в быту и на улицах. Без нее до сих пор бы на производствах преобладал ручной труд. Чтобы развивать эту отрасль, следует знать основные законы электротехники.

Классическое колесо взаимосвязи составляющих электроцепи

Великий Ом

Его закон признан самым главным в физике электроцепей, ведь без него невозможно рассчитать в них ни силу тока, ни степень падения напряжения, ни уровень сопротивления. Открытый немецким ученым Омом закон определяет соотношение в электрической цепи ее составляющих. Формулировка представлена ниже на картинке.

Формулировка закона Ома

То есть, в электроцепи при высоком показателе напряжения показатели тока будут также высокие. С другой стороны, при высоком показателе сопротивления в ней меньше сила тока. Если сравнивать с потоком жидкости в трубе, то закон будет выглядеть так: при высоком давлении (в случае с током — напряжении) и малом сопротивлении стенок напор будет сильным, и наоборот.

Основной смысл закона Ома

Математически закон выглядит так: сопротивление (R) в цепи или на ее участке = 1 Ом, если по ней проходит ток с силой 1 Ампер при напряжении равном 1 Вольту. Величина тока (в А) определится, если напряжение (В) поделить на сопротивление (Ом).

Формула также может быть представлена в виде треугольника: если закрыть параметр, который требуется определить, оставшиеся два станут решением для его вычисления.

Использовать треугольник в качестве решения задач можно только в том случае, если параметры даются в вольтах (U), в омах (R) и в амперах (I).

Треугольник формул для определения основных параметров электроцепи

Ниже приведен пример, как действует этот закон электротехники. В нем источником напряжения является аккумулятор. Через него пропущено два провода, которые подсоединены к резистору с разных сторон. Формула на рисунке отображает, как рассчитать R (сопротивление в омах), разделив U (напряжение в вольтах) на I (ток в амперах).

Цепь демонстрирующая закон Ома

Под основной формулой в круге изображены ее варианты. Чтобы работать с ними, нужно закрыть любой параметр, проводя вычисления с оставшимися. Сделать это легко: если составляющие формулы расположены рядом, например, R и I, то их показатели нужно умножить, а если друг под другом, то производится деление.

Например, нужно найти величину R, используя показатели амперметра (I=2.6 А) и вольтметра (U=12 В). Сопротивление будет равно: R = 12:2.6 = 4.6 Ом.

Это основные формулы электротехники, благодаря им находим не только сопротивление в электрической цепи, но и напряжение, и силу тока (однофазного переменного с емкостным или индуктивным сопротивлением). Для начинающего электрика азами профессии является именно закон Ома.

Вычисление полного сопротивления цепи (Z)

Чтобы узнать показатель Z, нужно воспользоваться представленной ниже формулой:

Определение сопротивления цепи

Активное сопротивление — это какой-либо вид энергии, полученный путем перехода в нее электрической энергии в цепи или ее части. Например, она может превратиться в механическую, которая используется в электродвигателях, химическую или тепловую (электролиз и диэлектрики соответственно). Обозначается буквой R.

Емкостное сопротивление — это параметр, который обозначает уровень сопротивления электрической емкости цепи или ее части переменному току. То есть показатели тока или напряжения меняются из-за коэффициента самоиндукции или емкостного элемента. Обозначается Xc.

Индуктивное сопротивление — это степень сопротивления проводника, входящего в электрическую цепь переменного тока. То есть, индуктивность (обозначается L) в электроцепи создает состояние, когда электроток запаздывает по сравнению с электронапряжением. Обозначается XL.

Чтобы вычислить общее (полное) сопротивление Z в электрической цепи, необходимо знать параметры всех видов сопротивления. Все величины используются в ТОЭ для упрощения решения задач и проведения расчетов согласно формулам.

Определение полной мощности (S) в электротехнике

Мощность — важный показатель в электротехнике. Чтобы определить полную S, нужно использовать приведенную ниже формулу:

Определение мощности

В данной формуле представлены:

  • Активная мощность, то есть потребляемая, является частью полной. Обозначается P и выражается в Вт.
  • Реактивная мощность — величина, которая обозначает колебания энергии в работающих электрических устройствах. Обозначается буквой Q, измеряется в ВАр (вольт/ампер реактивный).
  • Полная мощность. Обозначается S и измеряется в ВА (вольт/ампер).

Чтобы определить уровень активной и реактивной мощностей, нужно воспользоваться приведенными ниже формулами:

Формулы активной и реактивной мощности

В которых:

  • U — напряжение;
  • I — сила тока;
  • cosΦ — коэффициент мощности.

Ниже представлены формулы для вычисления активной мощности для различных электрических цепей:

Определение мощности для различных электроцепей

Чтобы определить S, нужно произвести расчеты активной и реактивной мощностей, после чего воспользоваться формулой:

Формула полной мощности

Закон Джоуля-Ленца

Он применяется для определения теплового действия тока: Q = I2Rt. Благодаря этой формуле можно вычислить Q (теплоту в джоулях) при прохождении постоянного тока через проводник. При этом Q будет пропорционально силе тока в квадрате (I2 в амперах), сопротивлению проводника (R в омах) и времени прохождения тока (t в секундах).

Закон Джоуля-Ленца

Без определения уровня теплоты, выделяемого электротоком при прохождении через проводник, невозможно создание электрических нагревательных приборов и печей.

Первый закон Кирхгофа

Законы Кирхгофа универсальны для всех электротехнических задач, так как связаны с соотношением токов и напряжений в разветвленных цепях. Они подходят как для постоянных и переменных электротоков и электронапряжений, так и для линейных и нелинейных электрических цепей.

Первый закон представлен ниже:

Первый закон Кирхгофа

Краткий вариант этого закона гласит: если по электроцепи проходит только постоянный электроток, то в ней нет ни единой точки, в которой бы мог накапливаться электрозаряд, в противном случае он не был бы постоянным. То есть, первый закон Кирхгофа дает определение непрерывности потока электрического тока. При этом входящие в узлы и исходящие из них электротоки имеют разные заряды: одни — положительные, а другие — отрицательные. В виде формулы этот закон выглядит так:

Формула закона Кирхгофа

Ниже приведен пример использования первого закона:

Пример использования первого закона Кирхгофа

Второй закон Кирхгофа

Это правило относится к замкнутым контурам. Закон гласит:

Второй закон Кирхгофа

То есть суммы параметров электротоков и внешних/внутренних сопротивлений на всех участках контура будут равны сумме параметров сторонних электродвижущих сил (ЭДС), входящих в этот контур. Формула выглядит так:

Формула ЭДС

При этом:

  • Im и Rm — параметры падения напряжения;
  • N — количество участков контура.

Ниже приведен пример применения законов:

Пример применения законов Кирхгофа

Таково общее представление об основных законах электротехники.

Видео по теме


Загрузить PDF


Загрузить PDF

Элементы электрической цепи можно соединить двумя способами. Последовательное соединение подразумевает подключение элементов друг к другу, а при параллельном соединении элементы являются частью параллельных ветвей. Способ соединения резисторов определяет метод вычисления общего сопротивления цепи.

  1. Изображение с названием Calculate Total Resistance in Circuits Step 1

    1

    Определите, является ли цепь последовательной. Последовательное соединение представляет собой единую цепь без каких-либо разветвлений. Резисторы или другие элементы расположены друг за другом.

  2. Изображение с названием Calculate Total Resistance in Circuits Step 2

    2

    Сложите сопротивления отдельных элементов. Сопротивление последовательной цепи равно сумме сопротивлений всех элементов, входящих в эту цепь.[1]
    Сила тока в любых частях последовательной цепи одна и та же, поэтому сопротивления просто складываются.

    • Например, последовательная цепь состоит из трех резисторов с сопротивлениями 2 Ом, 5 Ом и 7 Ом. Общее сопротивление цепи: 2 + 5 + 7 = 14 Ом.
  3. Изображение с названием Calculate Total Resistance in Circuits Step 3

    3

    Вычислите сопротивление по известной силе тока и напряжению. Если сопротивление каждого элемента цепи не известно, воспользуйтесь законом Ома: V = IR, где V – напряжение, I – сила тока, R – сопротивление. Сначала найдите силу тока и общее напряжение.

    • Сила тока в любых частях последовательной цепи одна и та же.[2]
      Поэтому можно использовать известное значение силы тока на любом участке последовательной цепи.
    • Общее напряжение равно напряжению источника тока. Оно не равно напряжению на каком-либо элементе цепи.[3]
  4. Изображение с названием Calculate Total Resistance in Circuits Step 4

    4

    Подставьте известные значения в формулу, описывающую закон Ома. Перепишите формулу V = IR так, чтобы обособить сопротивление: R = V/I. Подставьте известные значения в эту формулу, чтобы вычислить общее сопротивление.

    • Например, напряжение источника тока равно 12 В, а сила тока равна 8 А. Общее сопротивление последовательной цепи: RO = 12 В / 8 А = 1,5 Ом.

    Реклама

  1. Изображение с названием Calculate Total Resistance in Circuits Step 5

    1

    Определите, является ли цепь параллельной. Параллельная цепь на некотором участке разветвляется на несколько ветвей, которые затем снова соединяются. Ток течет по каждой ветви цепи.

    • Если цепь включает элементы, расположенные до или после разветвления, или если на одной ветви два и более элементов, перейдите к третьему разделу этой статьи (такая цепь является комбинированной).
  2. Изображение с названием Calculate Total Resistance in Circuits Step 6

    2

    Вычислите общее сопротивление на основе сопротивления каждой ветви. Каждый резистор уменьшает силу тока, проходящего через одну ветвь, поэтому она оказывает небольшое влияние на общее сопротивление цепи. Формула для вычисления общего сопротивления: {frac  {1}{R_{O}}}={frac  {1}{R_{1}}}+{frac  {1}{R_{2}}}+{frac  {1}{R_{3}}}+...{frac  {1}{R_{n}}}, где R1 – сопротивление первой ветви, R2 – сопротивление второй ветви и так далее до последней ветви Rn.

  3. Изображение с названием Calculate Total Resistance in Circuits Step 7

    3

    Вычислите сопротивление по известной силе тока и напряжению. Сделайте это, если сопротивление каждого элемента цепи не известно.

    • В параллельной цепи напряжение на одной ветви равно общему напряжению в цепи.[4]
      Поэтому достаточно знать значение напряжение на любой ветви цепи. Общее напряжение также равно напряжению источника тока.
    • В параллельной цепи сила тока на каждой ветви разная. Поэтому необходимо знать значение общей силы тока, чтобы найти общее сопротивление.
  4. Изображение с названием Calculate Total Resistance in Circuits Step 8

    4

    Подставьте известные значения в формулу закона Ома. Если известны значения общей силы тока и напряжения в цепи, общее сопротивление вычисляется по закону Ома: R = V/I.

    • Например, напряжение в параллельной цепи равно 9 В, а общая сила тока равна 3 А. Общее сопротивление: RO = 9 В / 3 А = 3 Ом.
  5. Изображение с названием Calculate Total Resistance in Circuits Step 9

    5

    Поищите ветви с нулевым сопротивлением. Если у ветви параллельной цепи вообще нет сопротивления, то весь ток будет течь через такую ветвь. В этом случае общее сопротивление цепи равно 0 Ом.

    • В реальной жизни это означает, что резистор неисправен или шунтирован (замкнут); в этом случае большая сила тока может повредить другие элементы цепи.[5]

    Реклама

  1. Изображение с названием Calculate Total Resistance in Circuits Step 10

    1

    Разбейте комбинированную цепь на последовательную и параллельную. Комбинированная цепь включает элементы, которые соединены как последовательно, так и параллельно. Посмотрите на схему цепи и подумайте, как разбить ее на участки с последовательным и параллельным соединением элементов. Обведите каждый участок, чтобы упростить задачу по вычислению общего сопротивления.

    • Например, цепь включает резистор, сопротивление которого равно 1 Ом, и резистор, сопротивление которого равно 1,5 Ом. За вторым резистором схема разветвляется на две параллельные ветви – одна ветвь включает резистор с сопротивлением 5 Ом, а вторая – с сопротивлением 3 Ом. Обведите две параллельные ветви, чтобы выделить их на схеме цепи.
  2. Изображение с названием Calculate Total Resistance in Circuits Step 11

    2

    Найдите сопротивление параллельной цепи. Для этого воспользуйтесь формулой для вычисления общего сопротивления параллельной цепи: {frac  {1}{R_{O}}}={frac  {1}{R_{1}}}+{frac  {1}{R_{2}}}+{frac  {1}{R_{3}}}+...{frac  {1}{R_{n}}}.

  3. Изображение с названием Calculate Total Resistance in Circuits Step 12

    3

    Упростите цепь. После того как вы нашли общее сопротивление параллельной цепи, ее можно заменить одним элементом, сопротивление которого равно вычисленному значению.

    • В нашем примере избавьтесь от двух параллельных ветвей и замените их одним резистором с сопротивлением 1,875 Ом.
  4. Изображение с названием Calculate Total Resistance in Circuits Step 13

    4

    Сложите сопротивления резисторов, соединенных последовательно. Заменив параллельную цепь одним элементом, вы получили последовательную цепь. Общее сопротивление последовательной цепи равно сумме сопротивлений всех элементов, которые включены в эту цепь.

    • После упрощения цепи она состоит из трех резисторов со следующими сопротивлениями: 1 Ом, 1,5 Ом и 1,875 Ом. Все три резистора соединены последовательно: R_{O}=1+1,5+1,875=4,375Ом.
  5. Изображение с названием Calculate Total Resistance in Circuits Step 14

    5

    Воспользуйтесь законом Ома, чтобы найти неизвестные величины. Если сопротивление каждого элемента цепи не известно, попытайтесь вычислить его. Вычислить сопротивление по известной силе тока и напряжению можно по закону Ома: R = V/I.

    Реклама

  1. Изображение с названием Calculate Total Resistance in Circuits Step 15

    1

    Запомните формулы, включающие мощность. Электрическая мощность – это величина, которая характеризует скорость преобразования электроэнергии и скорость ее передачи (например, к лампочке).[6]
    Общая мощность цепи равна произведению общего напряжения на общую силу тока. Формула: P = VI.[7]

    • Запомните: чтобы вычислить общее сопротивления, нужно знать общую мощность. Значение мощности на одном элементе цепи для этих целей не подходит.
  2. Изображение с названием Calculate Total Resistance in Circuits Step 16

    2

    Вычислите сопротивление по известным значениям мощности и силы тока. В этом случае можно объединить две формулы, чтобы найти сопротивление.

    • P = VI (мощность = напряжение х сила тока)
    • Закон Ома: V = IR.
    • В первую формулу вместо V подставьте произведение IR: P = (IR)I = I2R.
    • Обособьте переменную R: R = P / I2.
    • Сила тока в любых частях последовательной цепи одна и та же. Это не так в параллельной цепи.
  3. Изображение с названием Calculate Total Resistance in Circuits Step 17

    3

    Вычислите сопротивление по известным значениям мощности и напряжения. В этом случае можно объединить две формулы, чтобы найти сопротивление. Учитывайте общее напряжение в цепи, которое равно напряжению источника тока.

    • P = VI
    • Перепишите закон Ома так: I = V/R
    • В первой формуле замените I на V/R: P = V(V/R) = V2/R.
    • Обособьте переменную R: R = V2/P.
    • В параллельной цепи напряжение на одной ветви равно общему напряжению в цепи. Это не так в последовательной цепи, где общее напряжение не равно напряжению на одном элементе цепи.

    Реклама

Советы

  • Мощность измеряется в ваттах (Вт).
  • Напряжение измеряется в вольтах (В).
  • Сила тока измеряется в амперах (А) или в миллиамперах (мА). 1 мА = 1*10^{{-3}}A = 0,001 А.
  • В приведенных формулах переменная Р – это мгновенная мощность, то есть мощность в определенный момент времени. Если цепь подключена к источнику переменного тока, мощность постоянно меняется. Поэтому для цепей с источником переменного тока специалисты вычисляют среднюю мощность; для этого используется формула: PСР = VIcosθ, где cosθ – это коэффициент мощности цепи.[8]

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 408 213 раз.

Была ли эта статья полезной?

Формулы, примеры решения задач: ТОЭ | Электрические машины | Высшая математика | Теоретическая механика

    Электрический ток, плотность тока, электрическое напряжение, энергия при протекании тока, мощность электрического тока

  • Электрический ток
    Электрический ток — это явление упорядоченного движения электрических зарядов. За направление электрического тока принимается направление движения положительных зарядов.
    Направление электрического тока
    Формула электрического тока:
    i=lim{Delta{t{right}0}}{{{Delta}{q}}/{{Delta}{t}}}
    Электрический ток измеряется в амперах. СИ: А.
    Электрический ток обозначается латинскими буквами i или I. Символом i(t) обозначается «мгновенное» значение тока, т.е. ток произвольного вида в любой момент времени. В частном случае он может быть постоянным или переменным.
    Виды электрического тока
    Прописной латинской буквой I обозначается, как правило, постоянное значение тока.
    В любом участке неразветвленной электрической цепи протекает одинаковый по величине ток, который прямо пропорционален напряжению на концах участка и обратно пропорционален его сопротивлению. Величина тока определяется по закону Ома:
    1) для цепи постоянного тока I=U/R
    2) для цепи переменного тока I=U/Z,
    где U — напряжение, В;
    R — омическое сопротивление, Ом;
    Z — полное сопротивление, Ом.
    Омическое сопротивление проводника:
    R={rho}*{l/s},
    где l — длина проводника, м;
    s — поперечное сечение, мм2;
    ρ — удельное сопротивление, (Ом · мм2) / м.
    Зависимость омического сопротивления от температуры:
    Rt = R20 [1 + α(t — 20°)],
    где R20 — сопротивление при 20°C, Ом;
    Rt — сопротивление при t°C, Ом;
    α — температурный коэффициент сопротивления.
    Полное сопротивление цепи переменного тока:
    Z=sqrt{r^2+({x_L}-{x_C})^2},
    где r — активное сопротивление, Ом;
    x_L=w*L=2*{pi}*f*L — индуктивное сопротивление, Ом;
    L — индуктивность, Гн;
    x_C=1/{w*C}=1/{2*{pi}*f*C} — емкостное сопротивление, Ом;
    C — ёмкость, Ф.
    Активное сопротивление больше омического сопротивления R:
    r={K_f}*R,
    где K_f — коэффициент, учитывающий увеличение сопротивления при переменном токе, зависящий от: частоты тока; магнитных свойств, проводимости и диаметра проводника.
    При промышленной частоте, для нестальных проводников, принимают K_f=1 и считают r=R.
  • Плотность тока
    Плотность тока (j) — это сила тока, рассчитанная на единицу площади поперечного сечения (s)
    j={di}/{ds}.
    Для равномерного распределения плотности тока и сонаправленности её с нормалью к поверхности, через которую протекает ток, формула плотности тока принимает вид:
    j=I/s,
    где I — сила тока через поперечное сечение проводника площадью s.
    СИ: А/м2
  • Электрическое напряжение
    При протекании тока, как и при всяком перемещении зарядов, происходит процесс преобразования энергии. Электрическое напряжение — количество энергии, которое необходимо затратить на перемещение единицы заряда из одной точки в другую.
    Формула электрического напряжения:
    u=lim{Delta{q{right}0}}{{{Delta}{w}}/{{Delta}{q}}}={dw}/{dq}
    Электрическое напряжение обозначается латинской буквой u. Символом u(t) обозначается «мгновенное» значение напряжения, а прописной латинской буквой U обозначается, как правило, постоянное напряжение.
    Электрическое напряжение измеряется в вольтах. СИ: В.
  • Энергия при протекании электрического тока
    Формула энергии, при протекании электрического тока:
    w=int{-{infty}}{t}{uidt}=int{-{infty}}{t}{pdt}
    СИ: Дж
  • Мощность при протекании электрического тока
    Формула мощности, при протекании электрического тока:
    p={dw}/{dt}
    СИ: Вт.
    Электрическая цепь

  • Электрическая цепь — это совокупность устройств, предназначенных для протекания по ним электрического тока.
    Эти устройства называются элементами цепи.
  • Источники электрической энергии — устройства, преобразующие различные виды энергии, например механическую или химическую, в энергию электрического тока.
  • Идеальный источник напряжения — источник, напряжение на зажимах которого не зависит от величины протекающего через него тока.
    Идеальный источник напряжения и его ВАХ
    Внутреннее сопротивление идеального источника напряжения можно условно принять равным нулю.
  • Идеальный источник тока — источник, величина протекающего тока через который не зависит от напряжения на его зажимах.
    Идеальный источник тока и его ВАХ
    Внутреннее сопротивление такого источника можно условно принять равным бесконечности.
  • Приемник — это устройство, потребляющее энергию или преобразующее электрическую энергию в другие виды энергии.
  • Двухполюсник — это цепь, имеющая два зажима для подключения (полюса).
  • Идеальный R-элемент (резистивный элемент, резистор) — это такой пассивный элемент цепи, в котором происходит необратимый процесс преобразования электрической энергии в тепловую.
    Основной параметр резистора — это его сопротивление.
    R=u/i
    Сопротивление измеряется в омах. СИ: Ом
    Проводимость — это обратная величина по отношению к сопротивлению.
    G=i/u=1/R.
    Измеряется проводимость в сименсах. СИ: См.
    Формула мощности R-элемента:
    p=ui=Ri^2=Gu^2.
    Формула энергии R-элемента:
    w=int{t_1}{t_2}{pdt}=int{t_1}{t_2}{uidt}=int{t_1}{t_2}{Ri^2dt}=int{t_1}{t_2}{Gu^2dt}.
  • Идеальный С-элемент (емкостной элемент, или конденсатор) — это такой пассивный элемент цепи, в котором происходит процесс преобразования энергии электрического тока в энергию электрического поля и наоборот. В идеальном C-элементе потери энергии отсутствуют.
    Формула ёмкости:
    C=q/u. Примеры: задача 1, задача 2.
    Ток в ёмкости:
    i=C{{du}/{dt}}
    Напряжения на ёмкости:
    u=u(0)+{1/C}int{0}{t}{idt}.
    Закон коммутации для емкостного элемента. При токе конечной амплитуды заряд на C-элементе не может измениться скачком: {q}{(0^+)}={q}{(0^{-})}.
    i={{dq}/{dt}}=lim{{dt}{right}0}{{dq}/{dt}}.
    При неизменной ёмкости, напряжение на емкостном элементе не может измениться скачком: {u_C}{(0^+)}={u_C}{(0^{-})}.
    Мощность C-элемента: p=ui.
    При p > 0 — энергия запасается, при p < 0 — энергия возвращается в источник.
    Энергия C-элемента:
    w=int{-{infty}}{t}{pdt}=int{-{infty}}{t}{uidt}, или
    w={w(0)}+int{0}{t}{uidt}.
    Если к моменту времени t=0, энергия равна 0, то
    w=int{0}{t}{C{{du}/{dt}}udt}=int{0}{t}{{Cu^2}/2}
    Емкость измеряется в фарадах. СИ: Ф.
  • Идеальный L-элемент (индуктивный элемент или катушка индуктивности) — это такой пассивный элемент цени, в котором происходит процесс преобразования энергии электрического тока в энергию магнитного поля и наоборот. В идеальном L-элементе потери энергии отсутствуют.
    Для линейного L-элемента формула индуктивности (L) имеет вид:
    L=psi/i,
    где psi — потокосцепление.
    Индуктивность обозначается буквой L и играет роль коэффициента пропорциональности между потоком psi и током i.
    Напряжение на индуктивном элементе:
    u=L{{di}/{dt}}.
    Ток в индуктивном элементе:
    i=i(0)+{1/L}int{0}{t}{udt}.
    Закон коммутации для индуктивного элемента. При напряжении конечной амплитуды, потокосцепление не может измениться скачком: {psi}{(0^+)}={psi}{(0^{-})}.
    u={{d{psi}}/{dt}}=lim{{dt}{right}0}{{d{psi}}/{dt}}.
    При неизменной индуктивности ток в индуктивном элементе не может измениться скачком: {i_L}{(0^+)}={i_L}{(0^{-})}.
    Мощность L-элемента: p=ui.
    При p > 0 — энергия запасается, при p < 0 — энергия возвращается в источник.
    Энергия L-элемента:
    w=int{-{infty}}{t}{pdt}=int{-{infty}}{t}{uidt}, или
    w={w(0)}+int{0}{t}{uidt}.
    Если к моменту времени t=0, энергия равна 0, то
    w=int{0}{t}{L{{di}/{dt}}idt}=int{0}{t}{{Li^2}/2}
    Индуктивность измеряется в генри. СИ: Гн
    Пример: задача 3.
  • R, L, C — основные пассивные двухполюсные элементы электрических цепей.
    Резистор, индуктивность, ёмкость
    Основные законы электрических цепей

  • Закон Ома для участка цепи, не содержащего источник ЭДС.
    Закон Ома для участка цепи, не содержащего источник ЭДС, устанавливает связь между током и напряжением на этом участке.
    Изображение к закону Ома для участка цепи, не содержащего источник ЭДС
    Применительно к данному рисунку, математическое выражение закона Ома имеет вид:
    U_{ab}=I*R, или I=U_{ab}/R=({{varphi}_a}-{{varphi}_b})/R
    Формулируется это равенство так: при неизменном сопротивлении проводника напряжение на нем пропорционально току в проводнике.
  • Закон Ома для участка цепи, содержащего источник ЭДС
    Для схемы
    Рисунок №1 к закону Ома для участка цепи, содержащего источник ЭДС
    I={({{varphi}_a}-{{varphi}_c})+E}/R={{U_{ac}}+E}/R.
    Для схемы
    Рисунок №2 к закону Ома для участка цепи, содержащего источник ЭДС
    I={({{varphi}_a}-{{varphi}_c})-E}/R={{U_{ac}}-E}/R.
    В общем случае
    I={({{varphi}_a}-{{varphi}_c}){pm}E}/R={{U_{ac}}{pm}E}/R.
  • Закон Джоуля-Ленца. Энергия, выделяемая на сопротивлении R при протекании по нему тока I, пропорциональна произведению квадрата силы тока и величины сопротивления:
    W=I^2*R*t
  • Законы Кирхгофа.
    Топология (строение) цепи.
    Электрическая схема — графическое изображение электрической цепи.
    Ветвь ‐ участок цепи, содержащий один или несколько последовательно соединенных элементов и заключенный между двумя узлами.
    Узел ‐ точка цепи, где сходится не менее трех ветвей. Узлы нумеруют произвольно, как правило, арабской цифрой. На схеме узел может быть обозначен точкой, а может и не быть обозначен. Как правило, не обозначают те узлы, расположение которых очевидно (т‐образные соединения). Если пересекающиеся ветви образуют узел, то он обозначается точкой. Если в месте пересечения ветвей точки нет, то и узла нет (провода лежат друг на друге).
    Контур – замкнутый путь, проходящий по нескольким ветвям. Контуры независимы, если отличаются хотя бы одной ветвью. Контура обозначают стрелкой с указанным направлением обхода и римской цифрой. Направление обхода выбирают произвольно. Независимых контуров в схеме может быть много, при этом не все эти контура необходимы для составления достаточного для решения задачи количества уравнений.
    Первый закон Кирхгофа:
    Первый закон Кирхгофа
    1) алгебраическая сумма токов, подтекающих к любому узлу схемы, равна нулю:
    sum{k=1}{n}{I_k}=0;
    {I_1}-{I_2}-{I_3}-{I_4}=0
    2) сумма подтекающих к любому узлу токов равна сумме утекающих от узла токов:
    {I_1}={I_2}+{I_3}+{I_4}. Пример 1. Первый закон Кирхгофа.
    Второй закон Кирхгофа:
    1) алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:
    sum{k=1}{n}{{I_k}{R_k}}=sum{p=1}{m}{E_p}
    2) алгебраическая сумма напряжений (не падений напряжения!) вдоль любого замкнутого контура равна нулю:
    sum{k=1}{n}{U_k}=0. Пример 2. Второй закон Кирхгофа.
  • Матричная форма записи уравнений Кирхгофа:
    A*I=B*E,
    где А, В — квадратные матрицы коэффициентов при токах и напряжениях порядка p х p (p — число ветвей схемы; q — число узлов схемы);
    I, E — матрицы-столбцы неизвестных токов и заданных ЭДС
    Элементами матрицы А являются коэффициенты при токах в левой части уравнений, составленных по первому и второму законам Кирхгофа. Первые q-1 строки матрицы А содержат коэффициенты при токах в уравнениях, составленных по первому закону Кирхгофа, и имеют элементы +1, -1, 0 в зависимости от того, с каким знаком входит данный ток в уравнение.
    Элементы следующих p-q+1 строк матрицы А равны значениям сопротивлении при соответствующих токах в уравнениях, составленных по второму закону Кирхгофа, с соответствующим знаком. Элементы матрицы В равны коэффициентам при ЭДС в правой части уравнений, составленных по законам Кирхгофа. Первые q-1 строки матрицы имеют нулевые элементы, так как ЭДС в правой части уравнений, записанных по первому закону Кирхгофа, отсутствуют. Остальные p-q+1строки содержат элементы +1, -1 в зависимости от того, с каким знаком входит ЭДС в уравнение, и 0, если ЭДС в уравнения не входит.
    Общее решение уравнений, составленных по законам Кирхгофа:
    I=(A^{-1}*B)*E=G*E,
    где G=A^{-1}*B — матрица проводимостей.
    G = (matrix{4}{4}{{G_{11}} {G_{12}} {...} {G_{1p}~} {G_{21}} {G_{22}} {...} {G_{2p}} {...} {...} {...} {...} {G_{p1}} {G_{p2}} {...} {G_{pp}}}).
    Токи в каждой ветви:
    I_1=G_{11}*E_{11}+G_{12}*E_{12}+...+G_{1p}*E_p;
    I_2=G_{21}*E_{21}+G_{22}*E_{22}+...+G_{2p}*E_p;
    ...
    I_p=G_{p1}*E_{p1}+G_{p2}*E_{p2}+...+G_{pp}*E_p.
    Режимы работы электрических цепей

  • Номинальный режим работы элемента электрической цепи — это режим, при котором он работает с номинальными параметрами.
  • Согласованный режим — это режим, при котором мощность, отдаваемая источником или потребляемая приемником, имеет максимальное значение. Такое значение получается при определенном соотношении (согласовании) параметров электрической цепи.
  • Режим холостого хода — это такой режим, при котором через источник или приемник не протекает электрический ток. При этом источник не отдает энергию во внешнюю часть цепи, а приемник не потребляет ее. Для двигателя это будет режим без механической нагрузки навалу.
  • Режим короткого замыкания — это режим, возникающий при соединении между собой разноименных зажимов источника или пассивного элемента, а также участка электрической цепи, находящегося под напряжением.
    Электрические цепи постоянного тока

  • Если ток постоянный, то отсутствует явление самоиндукции и напряжение на катушке индуктивности равно нулю:
    U_L=L*{{di}/{dt}},~{{di}/{dt}}=0, так как i=const.
  • Постоянный ток через емкость не проходит.
  • Простая цепь постоянного тока — это цепь с одним источником при последовательном, параллельном или смешанном соединение приемников.
    Простая цепь постоянного тока
    При последовательном соединении приемников:
    E=I*R_1+I*R_2+...+I*R_n=I*(R_1+R_2+...+R_n)=I×Rэкв;
    Rэкв=ΣRi.
    При параллельном соединении приемников напряжение на всех приемниках одинаково.
    По закону Ома токи в каждой ветви:
    I_1=E/R_1;~ I_2=E/R_2;~I_n=E/R_n.
    По первому закону Кирхгофа общий ток:
    I=I_1+I_2+...+I_n=E*(1/R_1+1/R_2+...+1/R_n)=E×Gэкв;
    Gэкв=G1+G2+…+Gn; Rэкв=1/Gэкв.
    При смешанном соединении:
    Rэкв=R_1+{{R_2*R_3}/{R_2+R_3}}.
  • Метод контурных токов.
    Метод основан на применении второго закона Кирхгофа и позволяет сократить при расчете сложных систем число решаемых уравнений.
    Во взаимно независимых контурах, где для каждого контура хотя бы одна ветвь входит только в этот контур, рассматривают условные контурные токи во всех ветвях контура.
    Контурные токи, в отличие от токов ветвей, имеют следующие индексы: I_{I},~I_{II},~I_{III},~... или I_{11},~I_{22},~I_{33},~...
    Уравнения составляют по второму закону Кирхгофа для контурных токов.
    Токи ветвей выражают через контурные токи по первому закону Кирхгофа.
    Число выбираемых контуров и число решаемых уравнений равно числу уравнений, составляемых по второму закону Кирхгофа: k=p-q+1.
    Сумма сопротивлений всех резистивных элементов каждого контура со знаком плюс является коэффициентом при токе контура, имеет следующие индексы: R_{I},~R_{II},~R_{III},~... или R_{11},~R_{22},~R_{33},~...
    Знак коэффициента при токе смежных контуров зависит от совпадения или несовпадения направления смежных контурных токов. ЭДС входят в уравнение со знаком плюс, если направления ЭДС и направление тока контура совпадают. Пример 3. Метод контурных токов.
  • Метод узловых потенциалов.
    Метод основан на применении первого закона Кирхгофа и позволяет сократить число решаемых уравнений при нахождении неизвестных токов до q-1. При составлении уравнений потенциал одного из узлов схемы принимают равным нулю, а токи ветвей выражают через неизвестные потенциалы остальных q-1 узлов схемы и для них записывают уравнения по первому закону Кирхгофа. Решение системы q-1 уравнений позволяет определить неизвестные потенциалы, а через них найти токи ветвей.
    При q-1

<p -q+1 следует отдавать предпочтение методу узловых потенциалов.
  • Формула двух узлов:
    U_{12}={sum{i=1}{m}{E_i/R_i}}/{sum{i=1}{n}{1/R_i}}={sum{i=1}{m}{E_i*G_i}}/{sum{i=1}{n}{G_i}}.
    Пример 4. Метод узловых потенциалов.
  • Метод пропорциональных величии.
    Метод применяют для нахождения неизвестных токов при цепочечном соединении резистивных элементов в электрических цепях с одним источником. Токи и напряжения, а также и известную ЭДС цепи выражают через ток самой удаленной от источника ветви. Задача сводится к решению одного уравнения с одним неизвестным.
  • Баланс мощностей
    На основании закона сохранения энергии мощность, развиваемая источниками электрической энергии, должна быть равна мощности преобразования в цепи электрической энергии в другие виды энергии:
    {Sigma}E*I={Sigma}I^2*R.
    {Sigma}E*I — сумма мощностей, развиваемых источниками;
    {Sigma}I^2*R — сумма мощностей всех приемников и необратимых преобразований энергии внутри источников.
    Баланс мощностей составляют, чтобы проверить правильность найденного решения. При этом сравнивают мощность, внесенную в цепь источниками энергии с мощностью, затрачиваемой потребителями.
    Формула мощности для одного резистора:
    P_n={I_n}^2*R_n
    Суммарная мощность потребителей:
    PП={I_1}^2*R_1+{I_2}^2*R_2+...+{I_n}^2*R_n
    Мощность источников:
    Pист = PE + PJ,
    где PE = ±EI — мощность источника ЭДС (определятся умножением его ЭДС на ток, протекающий в данной ветви. Ток берут со знаком, полученным в результате расчета. Минус перед произведением ставят, если направление тока и ЭДС не совпадают на схеме);
    PJ = JUJ — мощность источника тока (определятся умножением тока источника на падение напряжения на нем).
    Для определения UJ выбирают любой контур, который включал бы в себя источник тока. Обозначают падение UJ на схеме против тока источника, и записывают контурное уравнение. Все величины, кроме UJ, в данном уравнении уже известны, что позволяет рассчитать падение напряжения UJ.
    Сравнение мощностей: Pист = PП. Если равенство соблюдено, значит, баланс сошелся и расчет токов верен.
  • Алгоритм расчета цепи по законам Кирхгофа
      Топология цепи.

    • Определяем общее число ветвей p*.
    • Определяем число ветвей с источниками тока pит. Токи в данных ветвях считаем известными и равными токам источников.
    • Определяем число ветвей с неизвестными токами: p*‐pит
    • Находим количество узлов q.
    • Находим число уравнений, составляемых по первому закону Кирхгофа: q-1.
    • Находим число уравнений, составляемых по второму закону Кирхгофа: n=p-(q-1).
    1. Произвольно наносим на схему номера и направления неизвестных токов.
    2. Произвольно наносим на схему номера узлов.
    3. Составляем узловые уравнения для произвольно выбранных узлов (по первому закону).
    4. Обозначаем на схеме контура и выбираем направления их обхода.
    5. Количество обозначаемых контуров равно количеству уравнений, составляемых по второму закону Кирхгофа. При этом ни один из контуров не должен включать в себя ветвь с источником тока.
    6. Составляем контурные уравнения для выбранных контуров (по второму закону).
    7. Объединяем составленные уравнения в систему. Известные величины переносим в правую часть уравнений. Коэффициенты при искомых токах вносим в матрицу А (левые части уравнений)(о матрицах читаем здесь). Заполняем матрицу F, занося в нее правые части уравнений.
    8. Решаем полученную систему уравнений (примеры решения систем уравнений).
    9. Проверяем правильность решения составлением баланса мощностей.
      Пример: задача 4.
    Электрические цепи переменного тока

  • Электрическая цепь синусоидального тока — это электрическая цепь, в которой ЭДС, напряжения и и токи, изменяющиеся по синусоидальному закону:
    u=U_m*sin({omega}t+{psi}_u),~i=I_m*sin({omega}t+{psi}_i).
  • Переменный ток — это ток, периодически меняющийся по величине и направлению и характеризующийся амплитудой, периодом, частотой и фазой.
  • Амплитуда переменного тока — это наибольшее значение, положительное или отрицательное, принимаемое переменным током.
  • Период — это время, в течение которого происходит полное колебание тока в проводнике.
  • Частота — это величина, обратная периоду.
  • Фаза — это угол {omega}t или {omega}t{pm}{psi}, стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.
  • Периодический режим: I_0(t)=I_0(t+kT). К такому режиму может быть отнесен и синусоидальный:
    U_0(t)=U_0({omega}t)={U_m}sin({omega}t+{psi}_u),
    где U_m — амплитуда;
    {psi}_u — начальная фаза;
    {omega}={2{pi}}/T=2{pi}f — угловая скорость вращения ротора генератора.
    При f = 50 Гц T=1/f=1/50=0,02~c,~{omega}{approx}314 рад/с.
  • Синусоидальный ток — это ток изменяющийся во времени по синусоидальному закону:
    i={I_m}sin({2{pi}t}/T+{psi}})={I_m}sin({omega}t+{psi}).
  • Среднее значение синусоидального тока (ЭДС, напряжение), формула:
    I_cp=1/{T/2}int{0}{T/2}{{I_m}sin{omega}tdt=2/{pi}I_m},
    то есть среднее значение синусоидального тока составляет 2/{pi}=0,638 от амплитудного. Аналогично,
    E_cp={2E_m}/{pi};~U_cp={2U_m}/{pi}.
  • Действующее значение синусоидального тока (ЭДС, напряжение), формула:
    I=sqrt{{1/T}int{0}{T}{i^2dt}}=sqrt{{1/T}int{0}{T}{{{I_m}^2}{sin^2}{omega}tdt}}=I_m/{sqrt{2}}=0,707I_m. Аналогично,
    E=E_m/{sqrt{2}};~U=U_m/{sqrt{2}}.
  • Количество теплоты, выделенное за один период синусоидальным током, формула:
    int{0}{T}{R{i^2}tdt}=R*{I_m}^2*{T/2}.
    Действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты,что и синусоидальный ток.
    R*{I_m}^2*{T/2}=R×Iпост2×T или Iпост=I=I_m/{sqrt{2}}
  • Коэффициент амплитуды синусоидального тока (κa) — это отношение амплитуды синусоидального тока к действующему значению синусоидального тока: {kappa}_a=I_m/I={sqrt{2}}.
  • Коэффициент формы синусоидального тока (κф) — это отношение действующего значения синусоидального тока к среднему за пол периода значению синусоидального тока:
    κф=I/I_cp={I_m/{sqrt{2}}}/{{{2I_m}/{pi}}}={pi}/{2{sqrt{2}}}=1,11.
    Для несинусоидальных периодических токов κa{sqrt{2}}, κф≠1,11. Это отклонение косвенно свидетельствует о том, насколько несинусоидальный ток отличается от синусоидального.
    Резонансные явления в электрических цепях
    Идеальное активное сопротивление не зависит от частоты, индуктивное сопротивление линейно зависит от частоты, емкостное сопротивление зависит от частоты по гиперболическому закону:
    R=const;~X_L=j{omega}L;~X_C=-j{1/{{omega}C}}.
    График зависимости активного сопротивления о частоты
    График зависимости индуктивного сопротивления о частоты
    График зависимости емкостного сопротивления о частоты

  • Резонанс напряжений.
    Резонансом в электрических цепях называется режим участка электрической цепи, содержащей индуктивный и емкостной элементы, при котором разность фаз между напряжением и током равна нулю {varphi}=0.
    Режим резонанса может быть получен при изменении частоты ω питающего напряжения или изменением параметров L и C.
    При последовательном соединении возникает резонанс напряжения.
    Схема электрической цепи с последовательным соединением  R, L, C
    Ток в схеме равен:
    I=U/{sqrt{R^2+X^2}}=U/{sqrt{R^2+({X_L}^2-{X_C}^2)}}=U/{sqrt{R^2+({omega}L-1/{{omega}C})^2}}.
    При совпадении вектора тока с вектором напряжения по фазе:
    I=I_{max}=U/R;~ {varphi}=0;
    {{omega}_0}L-{1/{{omega}_0}C}=0;
    Z=sqrt{R^2+({omega_0}L-{1/{{omega_0}C}})^2}=R,
    где {omega_0} — резонансная частота напряжения, определяемая из условия
    delim{|}{X_L}{|}=delim{|}{X_C}{|};~{omega_0}L=1/{{omega_0}C}.
    Тогда
    {omega_0}^2=1/{LC}~right~omega_0=sqrt{1/{LC}}.
    Волновое или характеристическое сопротивление последовательного контура:
    delim{|}{X_L}{|}=delim{|}{X_C}{|}={omega_0}L=sqrt{L/C}=Z_B.
    Добротность контура — это отношение напряжения на индуктивности или емкости к напряжению на входе в режиме резонанса:
    Q={U_L}/{U_{BX}}={U_C}/{U_{BX}}={{X_L}I}/{RI}={X_L}/R.
    Добротность контура представляет собой коэффициент усиления по напряжению:
    ULрез=IрезXрез={U/R}X_L=U{{X_L}/R}.
    В промышленных сетях резонанс напряжений является аварийным режимом, так как увеличение напряжения на конденсаторе может привести к его пробою, а рост тока — к нагреву проводов и изоляции.
  • Резонанс токов.
    Схема параллельного соединения реактивных элементов
    Резонанс токов может возникнуть при параллельном соединении реактивных элементов в цепях переменного тока. В этом случае: b_L-b_C=0, где
    b_L={X_L}/{Z^2};~b_C={X_C}/{Z^2};
    тогда {varphi}=arctg{b_L-b_C}/{g_1+g_2}=0;
    underline{I}=underline{I}_L+underline{I}_C=underline{U}(g_L-jb_L+g_C+jb_C)=underline{U}(g-j(b_L-b_C)).
    При резонансной частоте реактивные составляющие проводимости могут сравниться по модулю и суммарная проводимость будет минимальной. При этом общее сопротивление становится максимальным, общий ток минимальным, вектор тока совпадает с вектором напряжения. Такое явление называется резонансом токов.
    Волновая проводимость: b_L=b_C=sqrt{C/L}=gamma.
    При g << bL ток в ветви с индуктивностью значительно больше общего тока, поэтому такое явление называется резонансом токов.
    Резонансная частота:
    ω*={1/sqrt{LC}}sqrt{{L/C-{R_L}^2}/{{L/C-{R_L}^2}}}={omega}sqrt{{{rho}^2-{R_L}^2}/{{{rho}^2-{R_L}^2}}}
    Из формулы следует:
    1) резонансная частота зависит от параметров не только реактивных сопротивлений, но и активных;
    2) резонанс возможен, если RL и RC больше или меньше ρ, в противном случае частота будет мнимой величиной и резонанс не возможен;
    3) если RL = RC = ρ, то частота будет иметь неопределенное значение, что означает возможность существования резонанса на любой частоте при совпадении фаз напряжения питания и общего тока;
    4) при RL = RC << ρ резонансная частота напряжения равна резонансной частоте тока.
    Энергетические процессы в цепи при резонансе токов аналогичны процессам при резонансе напряжений.
    Реактивная мощность при резонансе токов равна нулю. Подробно, реактивная мощность рассмотрена здесь.

Расчет простых цепей постоянного тока

В электротехнике принято считать, что простая цепь – это цепь, которая сводится к цепи с одним источником и одним эквивалентным сопротивлением. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. Расчет цепей постоянного тока производится с помощью закона Ома и Кирхгофа.  

Пример 1


  Два резистора подключены к источнику постоянного напряжения 50 В, с внутренним сопротивлением r= 0,5 Ом. Сопротивления резисторов  R1 = 20 и R2 = 32 Ом. Определить ток в цепи и напряжения на резисторах.

Схема простой электрической цепи 

Так как резисторы подключены последовательно, эквивалентное сопротивление будет равно их сумме. Зная его, воспользуемся законом Ома для полной цепи, чтобы найти ток в цепи. 

Формула 1Теперь зная ток в цепи, можно определить падения напряжений на каждом из резисторов. 

Формула 2

Проверить правильность решения можно несколькими способами. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. 

Формула 3

Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур. Более удобным способом проверки является баланс мощностей.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. 

Формула 4

Мощность источника определяется как произведение ЭДС на ток, а мощность полученная приемником как произведение падения напряжения на ток.

Формула 5

Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.

Пример 2


  Общий ток цепи, содержащей два соединенных параллельно резистора R1=70 Ом и R2=90 Ом, равен 500 мА. Определить токи в каждом из резисторов.

Схема для примера 2

Два последовательно соединенных резистора ничто иное, как делитель тока. Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов. 

Токи в резисторах Формула 6

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Формула 7

Если у вас возникли затруднения, прочтите статью законы Кирхгофа.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала рассчитать сопротивление цепи 

Формула 8

А затем напряжение 

Формула 9

Зная напряжения, найдем токи, протекающие через резисторы 

Формула 10

Как видите, токи получились теми же.

Пример 3

  В электрической цепи, изображенной на схеме R1=50 Ом, R2=180 Ом, R3=220 Ом. Найти мощность, выделяемую на резисторе R1, ток через резистор R2, напряжение на резисторе R3, если известно, что напряжение на зажимах цепи 100 В.

Схема для примера 3 

Чтобы рассчитать мощность постоянного тока, выделяемую на резисторе R1, необходимо определить ток I1, который является общим для всей цепи. Зная напряжение на зажимах и эквивалентное сопротивление цепи, можно его найти.

Эквивалентное сопротивление и ток в цепи 

Формула 11Отсюда мощность, выделяемая на R1 

Ток I2 определим с помощью формулы делителя тока, учитывая, что ток I1 для этого делителя является общим 

Формула 13

Так как, напряжение при параллельном соединении резисторов одинаковое, найдем U3, как напряжение на резисторе R2 

Формула 14

Таким образом производится расчет простых цепей постоянного тока.

  • Просмотров: 102102
  • Понравилась статья? Поделить с друзьями:
  • Как составить уведомление для сотрудника
  • Как найти клан на ивент в вот
  • Как составить реферат по биологии
  • This program requires windows service pack 1 or later как исправить на виндовс 7
  • План сетка вожатого как составить