Как найти самую большую сторону треугольника

Для определения самой большой стороны треугольника, зная два угла, необходимо использовать теорему синусов. Данная теорема утверждает, что отношение длины стороны треугольника к синусу её противолежащего угла является постоянной величиной для всех трёх сторон и углов треугольника.

Рассмотрим задачу на примере треугольника BCM:

Дано: $angle B = 60^{circ}, angle C = 45^{circ}, BC = 5.$

Необходимо найти самую большую сторону треугольника.

Решение:

Сначала найдём длину стороны BM с помощью теоремы синусов:

$$frac{BM}{sinangle BCM} = frac{BC}{sinangle MBC}$$

$$frac{BM}{sin 60^{circ}} = frac{5}{sin 75^{circ}}$$

$$BM approx 4,079$$

Затем найдём длину стороны CM с помощью той же теоремы:

$$frac{CM}{sinangle BCM} = frac{BC}{sinangle MCB}$$

$$frac{CM}{sin 60^{circ}} = frac{5}{sin 45^{circ}}$$

$$CM approx 5,774$$

Самую большую сторону можно найти, обратившись к теореме о треугольнике:

$$BC < BM + CM$$

$$5 < 4,079 + 5,774$$

Таким образом, самой большой стороной треугольника BCM является сторона CM, длина которой равна приблизительно 5,774 единицам.

Как проверить, существует ли треугольник, если известны три его стороны?

Необходимым и достаточным условием существования треугольника является выполнение следующих неравенств:

a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0),

где a, b и с — длины сторон треугольника.

Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.

автор вопроса выбрал этот ответ лучшим

Kuzmi­ch291­192
[7K]

9 лет назад 

Условие существования треугольника можно представить в следующем виде: пусть a b c стороны треугольника. Тогда, что бы треугольник существовал необходимо, что бы сумма двух любых его сторон была больше третьей стороны a+b>c или a+c>b или b+c>a (если сумма будет равна какой-либо стороне, то такой треугольник называется вырожденным). Рассмотрим пример: пусть дан треугольник со сторонами 3, 6, 5. Возьмём две любые стороны, например, 3 и 6. Проверим условие существования: 3+6=9>5, следовательно треугольник существует.

Так же условие сущесвтвования треугольника можно представить в виде векторной суммы. Пусть вектора a b c задают стороны треугольника(и эти вектора не равны нуль-вектору), тогда треугольник существует, если векторная сумма a+b+c=0.

Mefod­y66
[35.1K]

9 лет назад 

Kuzmich291192 написал в общем, все правильно, но с одним маленьким уточнением:

нужно взять самую большую сторону, и проверить, что сумма двух других сторон больше, чем эта большая сторона.

Возьмем, например, числа 1, 2 и 10. Если мы сложим 1 + 10 > 2, 2 + 10 > 1, значит, треугольник существует?

НЕТ! 1 + 2 < 10. Поэтому треугольник не существует.

У м к а
[69.4K]

6 лет назад 

В геометрии есть теорема под названием «Неравенство треугольника», которая гласит о том, что любая из сторон треугольника не будет превосходить по своему значению сумму двух других его сторон. Примечательно, что данная теорема также имеет доказательство.

Таким образом, вам необходимо всего лишь поочерёдно просуммировать по две стороны треугольника и сравнить полученное значение с размером третьей стороны, которая не участвовала с сложении.

Galin­a7v7
[120K]

4 года назад 

Когда такой вопрос конкретно задаётся, причём, в цифрах, то нужно проверить величину каждой стороны, чтобы на была меньше суммы двух других сторон.

Вот треугольник со сторонами 3,4, и 5 существует, а изменив только одну из сторон, например, 5 см на 7 см, то такого треугольника не существует, так 3 + 4 = 7, а не больше, как положено для существования треугольника.

Начинать проверку нужно для большей стороны, и если она меньше суммы двух меньших сторон, то этот треугольник существует.

Требование к углам треугольника тоже не маловажное, потому что если даны углы треугольника, и сумма их не равна 180 градусам, то треугольник не существует.

Если известны длины трех сторон треугольника, то еще до его построения можно определить может ли такой треугольник существовать реально. Есть даже простенькая программа для вычисления этого на компьютере, но все что нам надо это найти самую длинную сторону из заданных и проверить является ли сумма двух других сторон больше. Примерно так: заданы три сторона а, в, с, причем в сторона самая длинная. Условием возможности существования треугольника будет выполнение неравенства в<а+с.

Если большая сторона будет равна сумме двух других сторон, то это случай вырожденного треугольника, когда все вершины лежат на одной прямой:

Azama­tik
[55.3K]

6 лет назад 

Имеем треугольник АВС, где АВ, ВС и СА — это три его стороны.

Треугольник существует в тех случаях, когда АВ + ВС > СА; АВ + СА > ВС; ВС + СА > АВ, то есть в том случае, если сложить любые две стороны любого треугольника, сумма должна быть больше третьей его стороны.

Например, АВ = 5 см, ВС = 6 см, СА = 8 см – треугольник существует.

И другой пример: АВ = 4 см, ВС = 3 см, СА = 9 см. Получается, что одна сторона больше суммы двух других — треугольник не существует.

morel­juba
[62.5K]

6 лет назад 

Чтобы проверить существование треугольника нужно сложить все три угла треугольника ивот если они в сумме не дадут 180-ти градусов, то такого треугольника просто как раз не существует.

А также треугольника не существует в том случае, когда одна сторона будет по длине больше чем длина в сумме двух других сторон.

Помощ­ни к
[57K]

6 лет назад 

Если одна из сторон треугольника будет больше (по длине), чем две других стороны, то из этих катетов не получится сделать один треугольник. Получится фигура, напоминающая флажок, состоящая из треугольника и присоединенной линии.

Любая сторона не может быть больше сумму двух оставшихся сторон треугольника.

Smile­dimas­ik
[32.1K]

6 лет назад 

Самое главное во всех правилах существования треугольника то, что сума двух меньших сторон треугольника или как называются они «катеты» должна быть больше самой большой стороны треугольника. Если сума этих сторон совпадет с самой большой стороной, то это будет обычная прямая с точками на ней.

MarkT­olkie­n
[85.3K]

6 лет назад 

Длина каждой из сторон треугольника должна быть меньше сумы остальных двух сторон, иначе этот треугольник не сложится. Углы треугольника в сумме дают 180 градусов, это еще один критерий для проверки, позволяющий вычислить, существует ли треугольник.

Roxri­te
[79.2K]

9 лет назад 

Если одна сторона треугольника окажется больше суммы двух остальных сторон, то такого треугольника не существует.

Если сумма всех 3-х углов треугольника не будет равна 180°, то такого треугольника не существует.

Знаете ответ?

Свойства сторон и углов треугольника

Рассматриваются три точки, не лежащие на одной прямой, и три отрезка, соединяющие эти точки.

Треугольником называют часть плоскости, ограниченную этими отрезками, отрезки называют сторонами треугольника , а концы отрезков – вершинами треугольника .

Длины сторон треугольника удовлетворяют неравенству треугольника : длина любой стороны треугольника меньше суммы длин двух других сторон.

a неравенству треугольника : длина любой стороны треугольника больше модуля разности длин двух других сторон.

Сумма углов треугольника равна 180°

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Величина большего угла треугольника не может быть меньшей, чем 60°.

,

где α – больший угол треугольника.

Величина меньшего угла треугольника не может быть большей, чем 60°.

,

где β – меньший угол треугольника.

,

Фигура Рисунок Формулировка
Треугольник
Большая сторона треугольника Против большей стороны треугольника лежит больший угол
Больший угол треугольника Против большего угла треугольника лежит большая сторона
Меньшая сторона треугольника Против меньшей стороны треугольника лежит меньший угол
Меньший угол треугольника Против меньшего угла треугольника лежит меньшая сторона
Длины сторон треугольника
Углы треугольника
Внешний угол треугольника
Больший угол треугольника
Меньший угол треугольника
Теорема косинусов
Теорема синусов

Рассматриваются три точки, не лежащие на одной прямой, и три отрезка, соединяющие эти точки.

Определение . Треугольником называют часть плоскости, ограниченную этими отрезками, отрезки называют сторонами треугольника , а концы отрезков – вершинами треугольника .

Длины сторон треугольника удовлетворяют неравенству треугольника : длина любой стороны треугольника меньше суммы длин двух других сторон.

a неравенству треугольника : длина любой стороны треугольника больше модуля разности длин двух других сторон.

Сумма углов треугольника равна 180°

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Величина большего угла треугольника не может быть меньшей, чем 60°.

,

где α – больший угол треугольника.

Величина меньшего угла треугольника не может быть большей, чем 60°.

,

где β – меньший угол треугольника.

,

Треугольник
Большая сторона треугольника
Против большей стороны треугольника лежит больший угол
Больший угол треугольника
Против большего угла треугольника лежит большая сторона
Меньшая сторона треугольника
Против меньшей стороны треугольника лежит меньший угол
Меньший угол треугольника
Против меньшего угла треугольника лежит меньшая сторона
Длины сторон треугольника
Углы треугольника
Внешний угол треугольника
Больший угол треугольника
Меньший угол треугольника
Теорема косинусов
Теорема синусов
Треугольник

Рассматриваются три точки, не лежащие на одной прямой, и три отрезка, соединяющие эти точки.

Определение . Треугольником называют часть плоскости, ограниченную этими отрезками, отрезки называют сторонами треугольника , а концы отрезков – вершинами треугольника .

Большая сторона треугольника

Свойство большей стороны треугольника:

Против большей стороны треугольника лежит больший угол

Больший угол треугольника

Свойство большего угла треугольника:

Против большего угла треугольника лежит большая сторона

Меньшая сторона треугольника

Свойство меньшей стороны треугольника:

Против меньшей стороны треугольника лежит меньший угол

Меньший угол треугольника

Свойство меньшего угла треугольника:

Против меньшего угла треугольника лежит меньшая сторона

Длины сторон треугольника

Длины сторон треугольника удовлетворяют неравенству треугольника : длина любой стороны треугольника меньше суммы длин двух других сторон.

a неравенству треугольника : длина любой стороны треугольника больше модуля разности длин двух других сторон.

Углы треугольника

Свойство углов треугольника:

Сумма углов треугольника равна 180°

Внешний угол треугольника

Свойство внешнего угла треугольника:

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Больший угол треугольника

Свойство большего угла треугольника:

Величина большего угла треугольника не может быть меньшей, чем 60°.

,

где α – больший угол треугольника.

Меньший угол треугольника

Свойство меньшего угла треугольника:

Величина меньшего угла треугольника не может быть большей, чем 60°.

,

где β – меньший угол треугольника.

Теорема косинусов

Теорема синусов

Свойство меньшего угла треугольника:

,

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Треугольник. Формулы определения и свойства треугольников.

В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.

Содержание:

Определение треугольника

Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.

Треугольник ABC (△ABC)

  • Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
  • Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
  • Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.

Углы треугольника, также, можно обозначать специальным символом — . После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:

Классификация треугольников

Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.

1.Разносторонний – треугольник, у которого все стороны имеют разную длину.

2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β

3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°

5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).

Свойства треугольника

1.Свойства углов и сторон треугольника.

  • Сумма всех углов треугольника равна 180°:
  • Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
  • В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

2.Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c
sin α sin β sin γ

3. Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

4. Теорема о проекциях

Для остроугольного треугольника:

Медианы треугольника

Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Свойства медиан треугольника:

1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)

2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

AO = BO = CO = 2
OD OE OF 1

3. Медиана треугольника делит треугольник на две равновеликие по площади части

4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

5. Из векторов, образующих медианы, можно составить треугольник.

Формулы медиан треугольника

Формулы медиан треугольника через стороны:

источники:

http://ru.onlinemschool.com/math/formula/triangle/

http://binary2hex.ru/triangle.html

Калькулятор длин сторон треугольника онлайн умеет вычислять длину сторон 14 способами.
Калькулятор может:

  1. Найти все стороны треугольника.
  2. Найти все углы треугольника.
  3. Найти площадь (S) и периметр (P) треугольника.
  4. Найти радиус (r) вписанной окружности.
  5. Найти радиус (R) описанной окружности.
  6. Найти высоту (h) треугольника.

Просто введите любые имеюшиеся данные и, если их достаточно, то калькулятор сам подберет нужные формулы для вычислений и покажет подробный расчет с выводом формул.
 

Сторона треугольника (или длина сторон) может быть найдена различными методами. 
В большинстве случаев достаточно воспользоваться одной из ниже приведенных формул. Однако не редки случаи когда для нахождения искомой стороны понадобиться обратиться к дополнительным материалам или решения в два действия.

Как найти длину стороны треугольника?

Найти длину сторон треугольника очень просто на нашем онлайн калькуляторе. Так же длина может быть найдена самостоятельно по формулам. Выбор нужной формулы зависит от того какие данные известны.

Для прямоугольного треугольника:

1) Найти катет через гипотенузу и другой катет



где a и b — катеты, с — гипотенуза.

2) Найти гипотенузу по двум катетам



где a и b — катеты, с — гипотенуза.

3) Найти катет по гипотенузе и противолежащему углу



где a и b — катеты, с — гипотенуза,α° и β° — углы напротив катетов.

4) Найти гипотенузу через катет и противолежащий угол



где a и b — катеты, с — гипотенуза,α° и β°- углы напротив катетов.

Для равнобедренного треугольника:

1) Найти основание через боковые стороны и угол между ними



где a — искомое основание, b — известная боковая сторона,α° — угол между боковыми сторонами.

2) Найти основание через боковые стороны и угол при основании



где a — искомое основание,b — известная боковая сторона,β° — угол при осноавнии.

3) Найти боковые стороны по углу между ними



где b — искомая боковая сторона, a — основание,α° — угол между боковыми сторонами.

4) Найти боковые стороны по углу при основании



где b — искомая боковая сторона, a — основание,β° — угол при осноавнии.

​​​​​Для равностороннего треугольника:

1) Найти сторону через площадь



где a — искомая сторона, S — площадь треугольника.

2) Найти сторону через высоту



где a — искомая сторона,h — высота треугольника.

3) Найти сторону через радиус вписанной окружности



где a — искомая сторона,r — радиус вписанной окружности.

4) Найти сторону через радиус описанной окружности



где a — искомая сторона,R — радиус описанной окружности.

​​​​​Для произвольного треугольника:

1) Найти сторону через две известные стороны и один угол (теорема косинусов)



где a — искомая сторона, b и с — известные стороны, α° — угол напротив неизвестной стороны.

2) Найти сторону через одну известную сторону и два угла (теорема синусов)



где a — искомая сторона, b — известная сторона, α° и β° известные углы.

Скачать все формулы в формате Word

Triangle is a closed figure which is formed by three line segments. It consists of three angles and three vertices. The angles of triangles can be the same or different depending on the type of triangle. There are different types of triangles based on line and angles properties.

Properties of a Triangle:

1. Each triangle has 3 sides and 3 angles.

2. Sum of all the angles of triangles is 180°

3. Perimeter of a triangle is the sum of all three sides of the triangle.

4. A triangle has 3 vertices.

Types of Triangles based on line Properties

Scalene Triangle: Scalene Triangle is a type of triangle in which all the sides are of different lengths. All the angles of a scalene triangle are different from one another.

Isosceles Triangle: Isosceles Triangle is another type of triangle in which two sides are equal and the third side is unequal. In this triangle, the two angles are also equal and the third angle is different.

Right-angled Triangle: A right-angled triangle is one that follows the Pythagoras Theorem and one angle of such triangles is 90 degrees which is formed by the base and perpendicular. The hypotenuse is the longest side in such triangles.

Equilateral Triangle: An equilateral triangle is a triangle in which all the three sides are of equal size and all the angles of such triangles are also equal.

Finding Third Side of a Triangle given Two Sides

Lets assume that the triangle is Right Angled Triangle because to find a third side provided two sides are given is only possible in a right angled triangle.

We know that the right-angled triangle follows Pythagoras Theorem

According to Pythagoras Theorem, the sum of squares of two sides is equal to the square of the third side. 

(Perpendicular)2 + (Base)2 = (Hypotenuse)2 

Using the above equation third side can be calculated if two sides are known.

Example: Suppose two sides are given one of 3 cm and the other of 4 cm then find the third side.

Lets take perpendicular P = 3 cm and Base B = 4 cm.

using Pythagoras theorem 

P2 + B2 = H2

(3)2 + (4)2 = H2

9 + 16 = H2

25 = H2

H = 5

Sample Questions

Question 1: Find the measure of base if perpendicular and hypotenuse is given, perpendicular = 12 cm and hypotenuse = 13 cm.

Solution: 

Perpendicular = 12 cm

Hypotenuse = 13 cm

Using Pythagoras Theorem 

P2 + B2 = H2

B2 = H2 – P2

B2 = 132 – 122

B2 = 169 – 144

B2 = 25

B = 5

Question 2: Perimeter of the equilateral triangle is 63 cm find the side of the triangle.

Solution: 

Perimeter of an equilateral triangle =  3×side

3×side = 64

side = 63/3

side = 21 cm

Question 3: Find the measure of the third side of a right-angled triangle if the two sides are 6 cm and 8 cm.

Solution: 

Perpendicular = 6 cm

Base = 8 cm

Using Pythagoras Theorem

H2 = P2 + B2 

H2 = P2 + B2

H2 = 62 + 82 

H2 = 36 + 64

H2 = 100

H = 10 cm

Question 4: Find whether the given triangle is a right-angled triangle or not, sides are 48, 55, 73?

Solution: 

A right-angled triangle follows the Pythagorean theorem so we need to check it .

Sum of squares of two small sides should be equal to the square of the longest side

so 482 + 552 must be equal to 732

2304 + 3025 = 5329 which is equal to 732 = 5329

Hence the given triangle is a right-angled triangle because it is satisfying the Pythagorean theorem.

Question 5: Find the hypotenuse of a right angled triangle whose base is 8 cm and whose height is 15 cm?

Solution: 

Using Pythagorean theorem, a2 + b2 = c2

So 82 + 152 = c2  

hence c = √(64 + 225)

          c = √289

          c = 17 cm

Last Updated :
15 Feb, 2022

Like Article

Save Article

Понравилась статья? Поделить с друзьями:
  • Как найти свою собаку в симс 4
  • Как найти дело в прокуратуре по номеру
  • Как найти тангенс числа на числовой окружности
  • Как исправить карму человека безденежья
  • Как найти скопированную ссылку на компьютере