Как найти сечение магнитопровода трансформатора

Типы магнитопроводов силовых трансформаторов.

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Простой расчет понижающего трансформатора.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

Магнитопроводы бывают:

1, 4 – броневые,
2, 5 – стержневые,
6, 7 – кольцевые.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Трансформаторы с витыми кольцевыми магнитопроводами.

Как определить габаритную мощность трансформатора.

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.
Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

P = B * S² / 1,69

Где:
P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

Пример:

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

P = 1,5 * 6,25² / 1,69 = 35 Ватт

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

S = ²√ (P * 1,69 / B)

Пример:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции.

КАК РАССЧИТАТЬ ПОНИЖАЮЩИЙ ТРАНСФОРМАТОР.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.

В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт.
Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.

В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.

Если вы найдете лампочку другой мощности, например на 40 ватт, нет ничего страшного — подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р2 = U2 • I2 = 60 ватт

Где:
Р2 – мощность на выходе трансформатора, нами задана 60 ватт;
U2 — напряжение на выходе трансформатора, нами задано 36 вольт;
I2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8.
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р1 = Р2 / η = 60 / 0,8 = 75 ватт.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1, мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S.

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 • √P1

Где:
S — площадь в квадратных сантиметрах,
P1 — мощность первичной сети в ваттах.

S = 1,2 • √75 = 1,2 • 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

w = 50 / S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50 / 10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U1 • w = 220 • 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U2 • w = 36 • 4,8 = 172.8 витков, округляем до 173 витка.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I1 = P1 / U1 = 75 / 220 = 0,34 ампера.

Ток во вторичной обмотке трансформатора:

I2 = P2 / U2 = 60 / 36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:

d = 0,8 √I

Для первичной обмотки диаметр провода будет:

d1 = 0,8 √I 1 = 0,8 √0,34 = 0,8 * 0,58 = 0,46 мм. Возьмем 0,5 мм.

Диаметр провода для вторичной обмотки:

d2 = 0,8 √I 2 = 0,8 √1,67 = 0,8 * 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 • d²

где: d — диаметр провода.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм равна:

s = 0,8 • d² = 0,8 • 1,1² = 0,8 • 1,21 = 0,97 мм²

Округлим до 1,0 мм².

Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм. и площадью по 0,5 мм².

Или два провода:

— первый диаметром 1,0 мм. и площадью сечения 0,79 мм²,
— второй диаметром 0,5 мм. и площадью сечения 0,196 мм².
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.

Простейший расчет силового трансформатора позволяет
найти сечение сердечника, число витков в обмотках и диаметр
провода. Переменное напряжение в сети бывает 220 В, реже 127 В и
совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в
некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных
ламп чаще всего используют постоянное напряжение 150 — 300 В, для
питания накальных цепей ламп переменное
напряжение 6,3 В. Все напряжения, необходимые для какого-либо
устройства, получают от одного трансформатора, который называют
силовым.

Силовой трансформатор выполняется на разборном
стальном сердечнике из изолированных друг от друга тонких
Ш-образных, реже П-образных пластин, а так же вытыми ленточными
сердечниками типа ШЛ и ПЛ (Рис. 1).

расчёт трансформатора

Его размеры, а точнее, площадь сечения средней части
сердечника выбираются с учетом общей мощности, которую
трансформатор должен передать из сети всем своим потребителям.

расчёт трансформатора

Упрощенный расчет устанавливает такую зависимость:
сечение сердечника S в см², возведенное в квадрат, дает общую
мощность трансформатора в Вт.

расчёт трансформатора

Например, трансформатор с сердечником, имеющим
стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то
есть с площадью сечения сердечника 6 см², может потреблять от сети
и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает
вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна
мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что
сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при
толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм,
или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для
того, чтобы сталь сердечника не попадала в область магнитного
насыщения. А отсюда вывод: сечение всегда можно брать с избытком,
скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см².
Хуже от этого не будет. А вот взять сердечник с сечением меньше
расчетного уже нельзя т. к. сердечник попадет в область насыщения,
а индуктивность его обмоток уменьшится, упадет их индуктивное
сопротивление, увеличатся токи, трансформатор перегреется и выйдет
из строя.

В силовом трансформаторе несколько обмоток.
Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же
первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может
быть несколько вторичных, каждая на свое напряжение. В
трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и
повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает
один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то
его получают от того же выпрямителя с помощью гасящего резистора
или делителя напряжения.

Число витков в обмотках определяется по важной
характеристике трансформатора, которая называется «число витков на
вольт», и зависит от сечения сердечника, его материала, от сорта
стали. Для распространенных типов стали можно найти «число витков
на вольт», разделив 50—70 на сечение сердечника в см:

расчёт трансформатора

Так, если взять сердечник с сечением 6 см², то для него
получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по
формуле:

расчёт трансформатора

Это значит, что первичная обмотка на напряжение 220 В
будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

расчёт трансформатора

Если понадобится вторичная обмотка на 20 В, то в ней будет 240
витков.

Теперь выбираем намоточный провод. Для
трансформаторов используют медный провод с тонкой эмалевой
изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из
соображений малых потерь энергии в самом трансформаторе и хорошего
отвода тепла по формуле:

расчёт трансформатора

Если взять слишком тонкий провод, то он, во-первых,
будет обладать большим сопротивлением и выделять значительную
тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод
нужно взять 0,29 мм.

На чтение 22 мин Просмотров 7.9к. Опубликовано 25.04.2021

Содержание

  1. Принцип работы устройства
  2. Типы магнитопроводов
  3. Исходные данные
  4. Порядок расчета
  5. Выполнение обмоток
  6. Как измерить диаметр провода
  7. Таблица данных обмоточных проводов.
  8. Достоинство и плюсы этого способа
  9. Виды сердечников
  10. Рекомендации по сборке и намотке
  11. Возможные схематические решения
  12. Как рассчитать силовой трансформатор по формулам за 5 этапов
  13. Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
  14. Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток
  15. Этап №3. Как вычислить диаметры медного провода для каждой обмотки
  16. Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
  17. Этап №5. Учет свободного места внутри окна магнитопровода
  18. Расчет трансформатора на стержневом сердечнике в онлайн
  19. Необходимые сведения
  20. Расчет броневого трансформатора

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Типы магнитопроводов

Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо). В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора. Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.

По типу используемого металла сердечники разделяют на:

  • Пластинчатые;
  • Ленточные.

Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.

По типу магнитопровода различают сердечники:

  • Броневые;
  • Стержневые.

Каждый из перечисленных типов может различаться формой пластин или сегментов:

  • Броневый;
  • Ш образный;
  • Кольцевой.

Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.

Типы сердечников

Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.

Исходные данные

Исходными данными, на основе которых производится расчет трансформатора, в обязательном порядке являются:

  • Напряжение сети;
  • Напряжение и количество вторичных обмоток;
  • Токи потребления нагрузок.

Для полного и точного расчета понижающего трансформатора необходимо учитывать температурный режим, допускаемые отклонения напряжения первичной обмотки и еще некоторые факторы, однако практика показывает, что трансформаторы, изготовленные по данным упрощенного расчета, имеют достаточно хорошие параметры. Далее будет рассказано, как рассчитать трансформатор, не прибегая к сложным и громоздким вычислениям.

Порядок расчета

Расчет силового трансформатора начинается с определения габаритной мощности. Для начала определяется суммарная полная мощность всех вторичных обмоток:

Как рассчитать мощность трансформатора, если неизвестны мощности обмоток? Узнать ее поможет известная из курса физики формула:

Габаритная мощность трансформатора находится из полной с учетом КПД, который различается для устройств разной мощности. Опытным путем установлены следующие ориентировочные значения КПД:

  • До 50 Вт – 0.6 (60%);
  • От 50 до 100 Вт – 0.7 (70%);
  • От 100 до 150 Вт – 0.8 (80%).

Более мощный трансформатор будет иметь КПД 0.85.

Таким образом, расчет габаритной мощности выглядит таким образом:

Рг = КПД∙Рс, где Рс – полная мощность.

На основе габаритной мощности трансформатора можно определить площадь поперечного сечения магнитопровода:

Согласно данной формуле, искомая площадь сечения получается в квадратных сантиметрах. По полученным данным подбирают сердечник с близким или несколько большим значением сечения. Используя разборные сердечники из Ш и П образных пластин, можно в некоторых пределах изменять толщину набора, добавляя или убирая по несколько пластин.

Как определить мощность неизвестного трансформатора? Нужно возвести в квадрат площадь сердечника, выраженную в квадратных сантиметрах.

Обратите внимание! Поперечное сечение магнитопровода должно, по возможности, иметь приближенную к квадрату форму.

После выбора магнитопровода, рассчитываем намоточные данные. Имея в наличии магнитопровод и зная площадь его сечения, можно выполнить расчет обмоток трансформатора (количества витков в обмотках). Принято за основу расчета брать количество витков, которые приходятся на 1 В напряжения, поскольку данное число одинаково для всех обмоток и зависит от характеристик магнитопровода и частоты напряжения питающей сети. Полная формула, которая учитывает частоту сети, магнитную индукцию в сердечнике, имеет большую сложность и в расчетах практически никогда не применяется. Вместо этого используют упрощенный вариант, который учитывает лишь материал и конструкцию сердечника:

N=k/S, где k – коэффициент из следующего перечня:

  • Ш и П образные пластины магнитопровода – k = 60;
  • Ленточный сердечник – k = 50;
  • Тороидальный магнитопровод – k = 40.

Как видно, при использовании тороидального сердечника количество витков будет минимальным.

Тороидальный трансформатор

Зная количество витков на вольт, легко определить намоточные данные обмоток на любое напряжение:

Для первичной обмотки это будет:

Обратите внимание! Поскольку для понижающих трансформаторов сечение провода и количество витков сетевой обмотки больше всех остальных, то и омические потери в проводах также будут выше, поэтому для маломощных трансформаторов (до 100 Вт) нужно учесть эти потери, увеличив количество витков первичной обмотки на 5%.

Если рассчитывается трансформатор стержневого типа, то обычно обмотки делят пополам и наматывают их на обоих стержнях равномерно. Части одинаковых обмоток затем соединяют последовательно.

Не менее важным этапом расчета трансформатора является определение сечения проводников обмотки. Здесь за основу берется такое значение тока в проводах, которое вызывает их минимальный нагрев. Чем выше сечение провода, тем меньше плотность тока через единицу сечения и, соответственно, меньше нагрев. Но чрезмерное увеличение сечения обмоточных проводов приводит к увеличению массы трансформатора, завышению стоимости, а также вероятности того, что обмотки просто не поместятся в окнах магнитопровода.

Принято считать оптимальным плотность тока в обмотках 4-7 А на 1 мм2. Меньшее значение плотности используется для расчета сечения проводов первичной обмотки или любой другой, которая находится ближе к сердечнику магнитопровода. У данных обмоток наихудшие условия охлаждения.

Чтобы не оперировать плотностями тока и сложными формулами перевода площади сечения в диаметр, можно посчитать диаметр, используя их упрощенный вариант:

  • d = 0.7∙√I – для проводников первичной обмотки;
  • d = 0.6∙√I – для проводников вторичных обмоток.

Для обмоток используется изолированный обмоточный провод по сечению, наиболее близкому к расчетному, но не меньше его.

Важно! Формула дает расчётное значение для голого провода, без учета изоляции.

Для измерения диаметра неизвестного провода необходим микрометр. Приблизительно определить диаметр можно, намотав на карандаш десять витков и измерив длину намотки.

Чтобы определить, поместятся ли обмотки в окнах магнитопровода, подсчитайте коэффициент заполнения окна:

K=0.008∙(d12 ∙w1+ d22 ∙w2+ d32 ∙w3+…)/Sокна.

Если получившееся значение больше 0.3, то обмотки не поместятся, а перемотка наполовину готового устройства к хорошему результату не приведет. Выходов несколько:

  • Использовать магнитопровод с большим сечением;
  • Увеличить плотность тока в обмотках (не более 5%);
  • Понизить число витков во всех обмотках одновременно (также не более 5%).

Уменьшение количества витков приведет к появлению повышенного тока холостого хода и потерям в трансформаторе, которые буду выражены в повышении его температуры. Поэтому использование последних двух способов можно рекомендовать исключительно как крайнюю меру.

Выполнение обмоток

Обмотки трансформатора выполняют на каркасе из изоляционного материала. Каркас может быть цельным или разборным. Несмотря на кажущуюся сложность, разборный каркас изготовить легче, к тому же его размеры легко пересчитать под любой имеющийся сердечник. Из материалов для каркаса можно взять листовой гетинакс, текстолит или стеклотекстолит. В щечках каркаса нужно предусмотреть отверстия для выводов.

Разборный каркас

Выводы обмоток выполняют гибким многожильным проводом, тщательно заизолировав место пайки. Саму обмотку выполняют, по возможности, виток к витку. Такая намотка позволяет лучше использовать свободное место, сокращает расход провода, а главное – в местах пересечения проводов при некачественно выполненной намотке существует риск повреждения изоляции и междувитковых замыканий. Это правило не касается тонкого провода с диаметром менее 0.2 мм, поскольку рядовую обмотку в домашних условиях на нем выполнить очень тяжело.

Каждую обмотку необходимо изолировать одна от другой, особенно первичную обмотку. Для изоляции можно использовать несколько слоев ФУМ ленты. Она выполнена из фторопласта, который обладает хорошими электроизоляционными свойствами.

Важно! ФУМ лента имеет малую толщину, а фторопласт обладает текучестью, поэтому делать нужно несколько слоев изоляции.

ФУМ лента

Как измерить диаметр провода

Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.

Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.

Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.

Пример.

Я намотал 100 витков провода и получил длину набора –39 мм.

39 / 100 = 0,39 мм

По таблице определяю диметр провода по меди – 0,35мм.

Таблица данных обмоточных проводов.

Диаметр без изоляции, мм Сечение меди, мм² Сопротив-ление 1м при 20ºС, Ом Допустимая нагрузка при плотности тока 2А/мм² Диаметр с изоляцией, мм Вес 100м с изоляцией, гр
0,03 0,0007 24,704 0,0014 0,045 0,8
0,04 0,0013 13,92 0,0026 0,055 1,3
0,05 0,002 9,29 0,004 0,065 1,9
0,06 0,0028 6,44 0,0057 0,075 2,7
0,07 0,0039 4,73 0,0077 0,085 3,6
0,08 0,005 3,63 0,0101 0,095 4,7
0,09 0,0064 2,86 0,0127 0,105 5,9
0,1 0,0079 2,23 0,0157 0,12 7,3
0,11 0,0095 1,85 0,019 0,13 8,8
0,12 0,0113 1,55 0,0226 0,14 10,4
0,13 0,0133 1,32 0,0266 0,15 12,2
0,14 0,0154 1,14 0,0308 0,16 14,1
0,15 0,0177 0,99 0,0354 0,17 16,2
0,16 0,0201 0,873 0,0402 0,18 18,4
0,17 0,0227 0,773 0,0454 0,19 20,8
0,18 0,0255 0,688 0,051 0,2 23,3
0,19 0,0284 0,618 0,0568 0,21 25,9
0,2 0,0314 0,558 0,0628 0,225 28,7
0,21 0,0346 0,507 0,0692 0,235 31,6
0,23 0,0416 0,423 0,0832 0,255 37,8
0,25 0,0491 0,357 0,0982 0,275 44,6
0,27 0,0573 0,306 0,115 0,31 52,2
0,29 0,0661 0,2бб 0,132 0,33 60,1
0,31 0,0755 0,233 0,151 0,35 68,9
0,33 0,0855 0,205 0,171 0,37 78
0,35 0,0962 0,182 0,192 0,39 87,6
0,38 0,1134 0,155 0,226 0,42 103
0,41 0,132 0,133 0,264 0,45 120
0,44 0,1521 0,115 0,304 0,49 138
0,47 0,1735 0,101 0,346 0,52 157
0,49 0,1885 0,0931 0,378 0,54 171
0,51 0,2043 0,0859 0,408 0,56 185
0,53 0,2206 0,0795 0,441 0,58 200
0,55 0,2376 0,0737 0,476 0,6 216
0,57 0,2552 0,0687 0,51 0,62 230
0,59 0,2734 0,0641 0,547 0,64 248
0,62 0,3019 0,058 0,604 0,67 273
0,64 0,3217 0,0545 0,644 0,69 291
0,67 0,3526 0,0497 0,705 0,72 319
0,69 0,3739 0,0469 0,748 0,74 338
0,72 0,4072 0,043 0,814 0,78 367
0,74 0,4301 0,0407 0,86 0,8 390
0,77 0,4657 0,0376 0,93 0,83 421
0,8 0,5027 0,0348 1,005 0,86 455
0,83 0,5411 0,0324 1,082 0,89 489
0.86 0,5809 0,0301 1,16 0,92 525
0,9 0,6362 0,0275 1,27 0,96 574
0,93 0,6793 0,0258 1,36 0,99 613
0,96 0,7238 0,0242 1,45 1,02 653
1 0,7854 0,0224 1,57 1,07 710
1,04 0,8495 0,0206 1,7 1,12 764
1,08 0,9161 0,0191 1,83 1,16 827
1,12 0,9852 0,0178 1,97 1,2 886
1,16 1,057 0,0166 2,114 1,24 953
1,2 1,131 0,0155 2,26 1,28 1020
1,25 1,227 0,0143 2,45 1,33 1110
1,3 1,327 0,0132 2,654 1,38 1190
1,35 1,431 0,0123 2,86 1,43 1290
1,4 1,539 0,0113 3,078 1,48 1390
1,45 1,651 0,0106 3,3 1,53 1490
1,5 1,767 0,0098 3,534 1,58 1590
1,56 1,911 0,0092 3,822 1,64 1720
1,62 2,061 0,0085 4,122 1,71 1850
1,68 2,217 0,0079 4,433 1,77 1990
1,74 2,378 0,0074 4,756 1,83 2140
1,81 2,573 0,0068 5,146 1,9 2310
1,88 2,777 0,0063 5,555 1,97 2490
1,95 2,987 0,0059 5,98 2,04 2680
2,02 3,205 0,0055 6,409 2,12 2890
2,1 3,464 0,0051 6,92 2,2 3110
2,26 4,012 0,0044 8,023 2,36 3620
2,44 4,676 0,0037 9,352 2,54 4220

Советуем изучить Указатель напряжения, разновидности, функции, инструкции по использованию

Достоинство и плюсы этого способа

  • Вам не нужно ничего считать
  • Вы можете самостоятельно мотать трансформатор для своих целей
  • По размеру сердечника можно определить необходимые расчёты
  • Упрощенный расчет трансформатора
  • Всё понятно даже для новичков
  • Есть инструкция
  • Для расчёта нужно нажать всего одну кнопку!

Магнит проводы бывают трёх конструкций: броневая, тороидальная и стержневая. Существует и другие более редкие конструкция, но обычно для их расчёта требуются всегда: входное напряжение, частота, выходное напряжение, выходной ток, габаритные размеры магнитопровода.

Мы получаем рабочий онлайн калькулятор трансформатора, способный решить наши задачи по формулам расчёта. Если вы взяли старый, отработавший свой срок трансформатор, теперь вы сможете всё рассчитать для безопасной работы с ним. Полученные расчёты окажутся оптимальными, скорее даже идеальными, поэтому провода подходящего диаметра может просто не быть. Поэтому подбирайте максимально близкое значение к оптимальному.

Виды сердечников

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.

Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

По конструкции сердечник разделяют на три основных вида:

  • стержневой;
  • броневой;
  • тороидальный.

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:

  • S — площадь сечения сердечника.
  • K — постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Рекомендации по сборке и намотке

При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.

Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.

По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.

Возможные схематические решения

Схем подключения вторичной обмотки трансформаторов, да и вообще всей электроники две:

  • Звезда, которая используется для повышения мощности сети.
  • Треугольник, который поддерживает постоянное напряжение в сети.

Вне зависимости от выбранной схемы, наиболее трудными считается изготовление и подключение небольших трансформаторов. Сюда относится и столь популярный в запросах поисковиков аtx. Это модель, которая устанавливается в системных блоках компьютеров, и изготовить ее самостоятельно крайне трудно.

В число трудностей при изготовлении маленьких трансформаторов стоит отнести сложность обмотки и изоляции, правильного подключения вторичной обмотки вне зависимости от выбранной схемы, а так же сложности с поиском сердечника. Короче говоря, проще и дешевле такой трансформатор купить. А вот как выбрать подходящую модель – это совсем другая история.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

ŋ = S1 / S2

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ватты Коэффициент полезного действия ŋ
15÷50 0,50÷0,80
50÷150 0,80÷0,90
150÷300 0,90÷0,93
300÷1000 0,93÷0,95
>1000 0.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Расчет мощности трансформатора на стержневом магнитопроводе вручную и при помощи онлайн калькулятора
Таким образом, первый этап расчета позволяет: зная необходимую величину первичной или вторичной мощности подобрать магнитопровод по форме и поперечному сечению сердечника;или по габаритам имеющегося магнитопровода оценить электрические мощности, которые сможет пропускать проектируемый трансформатор.

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

n = W1 / W2

Расчет мощности трансформатора на стержневом магнитопроводе вручную и при помощи онлайн калькулятора

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Расчет мощности трансформатора на стержневом магнитопроводе вручную и при помощи онлайн калькулятора

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

При выборе диаметра провода добиваются оптимального соотношения между его нагревом при эксплуатации и габаритами свободного пространства внутри сердечника, позволяющими разместить все обмотки.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

ω’=45/Qc (виток/вольт)

Расчет мощности трансформатора на стержневом магнитопроводе вручную и при помощи онлайн калькулятора

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

Расчет трансформатора на стержневом сердечнике в онлайн

Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого?

Необходимые сведения

Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания. Следует грамотно подойти к процессу расчета, учесть такие показатели, как магнитную индуктивность, КПД и плотность тока. Иначе изделие получится ненадежным и скоро выйдет из строя. К основным характеристикам следует отнести:

  1. Входное напряжение сети. Оно зависит от источника, к которому будет подключен трансформатор. Стандартными являются: 110 В, 220 В, 380 В, 660 В. На практике оно может быть любым, что зависит от характеристик промежуточных цепей.
  2. Выходное напряжение трансформатора — величина, требуемая для обеспечения стабильной работы потребителя. Часто требуется изготовить изделие с несколькими номиналами или с регулируемым напряжением. Тогда необходимо учитывать максимальную его величину.
  3. Ток в нагрузке. При фиксированном значении рассчитываются жесткие характеристики устройства, но часто требуется обеспечить регулируемую величину, тогда потребуется учесть максимальную его величину.
  4. Частота сети. У нас применяется европейский стандарт, то есть 50 Гц.
  5. Мощность нагрузки. Это не основной параметр, потому что ее можно определить по напряжению и току.
  6. Количество выходных обмоток. В некоторых электронных приборах используются блоки питания с несколькими выходными напряжениями. Для изготовления силовой электроники используется в основном один номинал, например, для сварочных трансформаторов.

Также потребуется учесть тип сердечника, потому что от его конструкции напрямую зависит принцип расчета показателей изделия. Существует много разновидностей как конструкций, так и материалов. Если учитывать последние нет смысла из-за незначительных погрешностей, то форма и размеры имеют большое значение. Поэтому необходимы разные алгоритмы расчета, что зависит от этого критерия. Начнем с самого простого и распространенного.

Не всегда требуется расчет вести с требуемых данных. Нередко в наличии есть какое-то железо, тогда потребуется определить мощность трансформатора по сечению магнитопровода. Программы онлайн, имеющиеся в интернете, позволяют определять параметры любым порядком.

Расчет броневого трансформатора

Распространен вид трансформаторов, используемый практически во всех устройствах от зарядных аппаратов для шуруповертов, заканчивая боками питания магнитофонов. В процессе эксплуатации всех этих устройств часто возникают поломки в питателе, связанные со сгоревшим намоточным изделием. Тогда для его восстановления потребуется перемотка, но это проблемы не решает.

Часто требуется увеличить мощность источника, тогда как рассчитать трансформатор, чтобы его железо не перегревалось? Потребуется выбрать железо больших размеров и использовать более толстый провод. Такой ход поможет сохранить работоспособность устройства и даже улучшить характеристики, сделав его стабильнее и устойчивее при скачках напряжений в сети.

К сожалению, не все производители учитывают этот фактор, а ведь наша сеть неустойчива и регулярно в ней наблюдаются помехи в виде высоковольтных игольчатых импульсов. Также возникают ситуации, когда наблюдается просадка сети до 170 В, что характерно в зимний период. Тогда необходимо предусмотреть запас по напряжению как минимум на 40−45%, увеличив мощность и компенсационного стабилизатора. Часто такие ситуации наблюдаются в частном секторе.

Вернемся к расчету Ш-образного трансформатора на ШП-сердечнике. Принцип будет одинаков и с сердечником типа ПЛ при условии размещения обмотки на средней части. Для чего потребуется выполнить следующие шаги:

  1. Определить площадь поперечного сечения средней части сердечника. Она выражается буквой S сеч. и находится из произведения ее сторон. Взяв линейку, измеряем параметры сечения, перемножаем и получаем значение в квадратных сантиметрах.
  2. На следующем этапе решается вопрос, как рассчитать мощность трансформатора. Это расчетная величина, которую можно определить, возведя S сеч. в квадрат. Значение будет измеряться в Вт и обозначаться буквой «P».
  3. При расчете мощности сердечника необходимо учитывать тип использованных пластин. Например, если были применены для набора Ш-20, то общая толщина сердечника должна быть 30 мм при мощности в 36 Вт. Если для трансформатора были использованы пластины Ш-30, то толщина набора будет достаточно в 20 мм, а при использовании Ш-24 — 25 мм. Существуют справочные таблицы, в которых можно найти мощность трансформатора по сечению магнитопровода для конкретной ситуации. Для обеспечения наилучшей стабильности работы источников питания следует использовать железо с избытком мощности как минимум на 25%. То есть, если ранее была расчетная мощность равна 6 Вт, то для надежности работы и исключения насыщения сердечника следует брать в расчет как минимум 8 Вт. Это обязательное условие. Если использовать магнитопровод с меньшей площадью сечения сердечника, то трансформатор быстро выйдет из строя, потому что железо окажется в насыщении, что приведет к увеличению токов в обмотках.
  4. На следующем этапе необходимо определиться с количеством обмоток. Для современных транзисторных устройств достаточно будет всего одной или сдвоенной со средней точкой. Поэтому рассмотрим пример расчета именно такого трансформатора. Для этого потребуется воспользоваться понятием «вольт на виток». Значение определяется следующим образом: W /В=(50÷70) / S сеч. Формула справедлива только для сердечников типа ШП и П. Л. При расчете первичной и вторичной обмоток потребуется взять произведение полученного отношения и входного напряжения: W1 = W / B∙U1, W2 = 1,2 ∙ W /B∙U2.
  5. Выполняется расчет и выбор диаметра провода. Он выбирается исходя из хорошего теплоотвода и изоляции, для чего рекомендуется применять ПЭЛ или ПЭВ, покрытые лаком. Определить его размер можно по формуле: d =0,7∙√ I. Величина выражается в мм. Провод выбирается с небольшим запасом до 4−6%.

Все программы расчета трансформаторов позволяют находить параметры изделий в любом порядке. Они используют стандартные алгоритмы, по которым выводятся значения. При необходимости можно создать собственный калькулятор с помощью таблиц Excel. Подобным образом работает и калькулятор расчета трансформатора на стержневом сердечнике.

Источники

  • https://master-pmg.ru/oborudovanie/raschet-transformatora-onlajn.html
  • https://usbravo.ru/kak-opredelit-moshchnost-transformatora-po-secheniyu-provoda-vtorichnoy-obmotki/
  • http://energo-novgorod.ru/calcs/calc-trans/
  • https://regionvtormet.ru/instrumenty/raschet-moshhnosti-transformatora-na-sterzhnevom-magnitoprovode-vruchnuyu-i-pri-pomoshhi-onlajn-kalkulyatora.html
  • https://usbravo.ru/kak-uznat-moshchnost-transformatora-po-secheniyu-serdechnika-kal-kulyator/

Сложные многофункциональные устройства, способные преобразовывать электроэнергию из одной величины в другую, на языке электротехники, называют трансформаторами.  Для создания такого оборудования, в зависимости от конкретных величин преобразования, применяется специальный расчет. Как правильно проводить расчет трансформаторов, знать в нем основные параметры и формулы, правильно их использовать, уметь пользоваться упрощенной системой проектирования трансформаторов распространенных энерговеличин и становится целью содержания этой статьи.

Содержание

  1. Принцип работы
  2. Конструкция
  3. Особенности
  4. Формулы расчета силового трансформатора
  5. Мощность вторичной обмотки
  6. Общая мощность
  7. Сечение сердечника
  8. Количество витков
  9. Выбор пластин для сердечника
  10. Определение толщины набора сердечника
  11. Как рассчитать габаритную мощность
  12. Правильный расчет по сечению сердечника
  13. Как определить число витков обмотки
  14. Упрощенный расчет 220/36 Вольт
  15. 1 этап
  16. 2 этап
  17. 3 этап
  18. 4 этап
  19. 5 этап
  20. 6 этап
  21. Как рассчитать Ш-образный трансформатор
  22. Определение параметров ТТ
  23. Особенности расчета сетевого трансформатора
  24. Выбор магнитопровода
  25. Технология изготовления
  26. Формы серденичков
  27. Варианты размещения катушек
  28. Краткая справка о материалах магнитопровода
  29. Исходные данные
  30. Как посчитать магнитопровод
  31. 1 шаг
  32. 2 шаг
  33. 3 шаг
  34. Определение параметров обмоток
  35. Мощность потерь
  36. Особенности расчета автотрансформатора
  37. Как посчитать пленочный трансформатор
  38. Обзор онлайн сервисов
  39. Примеры расчета
  40. Расчет силового трансформатора, который должен запитывать N-оборудование
  41. Условия и исходные данные для расчета
  42. Расчет силового трансформатора пошагово

Принцип работы

Любая энергосистема, установка, особенно в сети трехфазного (3ф) тока и напряжения просто не могла и не может обойтись без такого функционального устройства, как трансформатор. В высоковольтных сетях он производит повышение напряжения, получая его непосредственного из недр генератора и направляя в высоковольтные линии электропередач. На том конце линий тоже стоят трансформаторы высокого напряжения, которые уже производят процесс понижения его величины для подачи на объекты, которыми являются обычные потребители.

Трансформатор

Трансформаторы тока в тех же мощных электроустановках производят преобразования первоначальной токовой величины в номинальные его значения, допустимые для питания контрольных и измерительных приборов, защит, учетных систем и прочих энергетических элементов.

В бытовых нуждах, однофазного тока и напряжения широко используют различные трансформаторы, которые преобразуя электрические величины обеспечивают питанием многие бытовые приборы, являются источником различного освещения, питают системы электроники и мультимедиа. В целом, без таких преобразователей в электричестве никуда.

Трансформатор тока

Конструкция

На примере простейшего однофазного трансформатора возможно подробно рассмотреть его основные конструктивные элементы и узнать основы принципа его работы. Конструктивно такой трансформатор состоит из трех главных элементов:

  1. Первичная обмотка – катушка с изолированными проводниками, намотанная в определенном порядке, выводы которой являются принимающим определенную величину электроэнергии. Проводники первичной обмотки передают электроэнергию дальше, для проведения ее трансформации;
  2. Магнитопровод или сердечник – выполненный из специальной шихтованной (слоенной) электротехнической стали, различной конструкции и формы. На его части с одной и другой стороны наматываются проводники обмоток и именно в нем происходит бесконтактное явление трансформации величины электроэнергии;
  3. Вторичная обмотка – изолированные проводники, с намоткой на вторую часть сердечника в определенном количестве, с конкретной толщиной. Выводы вторичных проводников передают выходную величину энергии к потребителю или другому энерго устройству, в цепь которого был установлен преобразователь.

первичная и вторичная обмотка трансформатора

Особенности

Принцип работы любого трансформатора основан на явлении электромагнитной индукции, в замкнутом контуре магнитопровода, сквозь намотанные на него проводники первичной и вторичной обмотки. Подключенная к сети переменного тока первичная обмотка создает в замкнутом контуре магнитное поле с движущимся по кольцу магнитопровода магнитным потоком. Его движение проходит, через обе намотки обмоток и согласно закону индукции, создает в них электродвижущую силу (ЭДС).

Величина ЭДС напрямую зависит от количества витков в обмотках, сечения проводников и отличительными особенностями между первичной и вторичной обмотками. ЭДС, в системе трансформатора, это и есть выходное напряжение на выводах преобразователя. Чтобы ее величина стала меньше входного сигнала – количество витков вторичной обмотки должно быть меньше первичной катушки трансформатора.

Проектирование функций устройств преобразования, точное определение способности преобразования электровеличины – мощности трансформатора, количества витков обмоток, формы их намотки, выбор материала магнитопровода, его форма и размеры как раз и определяется в процессе расчета трансформатора.

расчет трансформатора в программе

Формулы расчета силового трансформатора

В силовой энерго установки при проектировании модели и типа трансформатора применяются основные формулы расчета его главных параметров и конструктивных величин. Как выполнить в некоторых подробностях стоит разобрать ниже.

Мощность вторичной обмотки

В зависимости от того, в какой сети (однофазной или трехфазной) участвует трансформатор, какой по типу трансформации – повышающей или понижающей, будет являться его вторичная обмотка, а так же при наличии конкретных данных указанных величин возможно произвести расчет мощности вторичной обмотки, согласно известной формулы электротехники.

Формула 1. Мощность вторичной обмотки трансформатора:

P2 = U2 X I2, где

P2 – величина электрической мощности вторичной обмотки, единицы измерения – Вт;

U2 – напряжение сети вторичной обмотки, на выходе трансформатора, единицы измерения – В;

I2 – ток вторичной обмотки, возникшей на выходе трансформатора, и предназначенный для питания подключенного к нему потребителя и другого энергоустройства.

Общая мощность

Для силовых трансформаторов, особенно повышающего типа, всегда стоит учитывать потери, возникающие в проводниках обмоток, стали магнитопровода, которые влияют на коэффициент полезного действия устройства. Поданная мощность на первичную обмотку трансформатора, за счет электрических потерь в устройстве преобразователя всегда будет больше ее вторичного выходного сигнала. Отсюда КПД силового трансформатора будет равен 0,8-0,85 от ее величины.

При расчете общей мощности трансформатора потери и оставшееся полезное действие на выходе электроагрегата стоит учитывать в виде произведения полученной мощности вторичной обмотки P2 и КПД устройства.

Формула 2. Полная мощность с учетом КПД:

Pрасч2 = P2 х КПД

Силовой трансформатор

Это будет более реальная величина мощности выходной обмотки трансформатора. Остальные параметры в расчетных формулах будут зависеть от количества витков первичной и вторичной обмоток, их сечения, материала проводников. Строение, материал и форма сердечников в свою очередь тоже имеет немаловажное значение в проведении точных и верных расчетов силовых трансформаторов.

Понятие полной мощности трансформатора так же включает в себя более широкое понятие мощностных характеристик в зависимости от типа устройства. Если трансформатор имеет несколько вторичных обмоток, то его полная мощность (Sполн.) будет равна сумме активных мощностей этих обмоток (P2.1+P2.2+….+P2.N), умноженных на коэффициент мощности (Км).

Формула 3. Полная мощность с коэффициентом мощности:

Sполн. = (P2.1+P2.2+…. +P2.N) * Км

В любом случае в ее расчет всегда закладывают величины активной мощности – энергии, которая продуктивно потратится на питание электро потребителей или других электро систем в составе установки, а так же реактивную составляющую мощности, выраженную в простейших расчетах в виде КПД трансформатора, а боле детальных формулах представляющих собой коэффициент мощности. Так в общей мощности участвуют активная и реактивные составляющие трансформатора, единицы измерения ее представлены в вольтамперном произведении – ВА.

Это значение реактивной составляющей является справочным табличным значением в зависимости от трансформатора, строения, сечения и материала его сердечника.

Трансформатор силовой

Сечение сердечника

Строение сердечника в любом трансформаторе в зависимости от его назначения имеет несколько основных видовых особенностей. Магнитопроводы преобразователей электро энергетических величин всегда выполняются из прессованных (шихтованных) железных или стальных пластин. Отказ в применении монолитного сердечника в трансформаторе, выбор в пользу пластинчато-прессованного его строения связан, с уменьшением потерь выходных величин трансформатора, уменьшением вихревых токов в магнитопроводе, а значит повышением его КПД.

От того, где преимущественно будет использован трансформатор, применяют три основных конструктивных формы строения его сердечника:

  • броневые – на Рис. 1 модели «1» и «4»;
  • стержневые – на Рис. 1 модели «2» и «5»;
  • кольцевые. – на Рис. 1 модели «3» и «6»;

Методы изготовления каждого из них в зависимости от детальных форм и различий выполняют производственными процессами типа штамповки или навивания стальной проволоки.

Типы сердечников и параметры расчета сечения магнитопровода

Рисунок 1. Типы сердечников и параметры расчета сечения магнитопровода

На Рис. 1 подробно представлены формы каждого из строений сердечника, обозначены два параметра (A и B), измеряемые в сантиметрах, посредством которых производят расчет сечение конкретного магнитопровода.

Формула 4. Площадь сечения сердечника трансформатора:

S = A x B

Единицы измерения – сантиметры в квадрате см2  

Произведением этих двух величин можно получить значение сечения магнитопровода, которое будет крайне необходимо для проведения остальных расчетов трансформатора.

Количество витков

Первоначальный этап расчета трансформатора электроэнергии. От значения зависят величины трансформации энергии оборудования, а также изменения выходных номиналов на клеммах вторичных обмоток.

Вычисления количества витков в намотке первичной и вторичной обмотки тесно связаны с предыдущем понятием – сечения магнитопровода. Производится по двум формулам: начальной и конечной. В состав расчета начальной формулы входит выяснения расчетного значения витков обмоток трансформаторов на единицу напряжения, равную 1В. Формула в составе имеет справочный коэффициент сердечника.

Формула 5. Количество витков в обмотке на 1В:

N1v = K / S, где

N1v – количество витков обмотки на единицу напряжения равную 1 В;

K – технический коэффициент формы магнитопровода: для Ш-образного сердечника значение принято – 60; П-образного из пластин – 50; кольцевого – 40.

S – сечение сердечника, полученного из расчета, выполненного ранее и описанного выше.

Конечная формула расчета сводится к применению следующей формулы, из которой можно получить значение количества витков в полном объеме.

Формула 6. Количество витков обмоток трансформаторов:

Wv = N х U, где

Wv -значение количества витков в обмотке;

N – количество витков на 1В полученное в начальной формуле;

U – величина напряжения обмотки без нагрузки (на холостом ходу).

После применения подобного расчета количества витков в обмотках, особенно в проектировании трансформаторов минимальной мощности, применяют 5% компенсационный коэффициент падений напряжения на обмотках. Тем самым расчетные значения увеличивают на 5% от их расчетной величины.

Расчет трансформатора по сердечнику формула

Выбор пластин для сердечника

Зависимость применения различных материалов самих магнитопроводов, их форм, конструкции и производству пластин сердечника трансформаторов, строится на уменьшении потерь различного рода в результате преобразовательных процессов работы устройства, уменьшении значения вихревых токов на сердечнике, по средствам увеличения электрического сопротивления сердечника.

Для производства, создания сердечников силовых трансформаторов применяются разнообразные типы электротехнической стали. Из нее производят пластины, которые после изолировании между собой производят сборку определенных форм магнитопровода. Самые распространенные виды сердечников выполняются из:

  1. Ш-образных стальных пластин – тип сердечника трансформатора, выполненного по технологии штамповки пластин между собой, предварительно качественно изолировав их друг от друга. Имеют два отличия соединения стержней с ярмом сердечника. Могут собираться встык или вперемешку. По форме пластины такого рода напоминают букву «Ш», от которой и получили свое название.
  2. П – образных пластин – так же штампованный тип сердечника, по форме напоминающий букву «П». Несколько мене распространен в производстве магнитопровода, так как имеет хуже магнитные характеристики.
  3. «Торро» или кольцевая форма – сердечник выполнен не штамповкой, а навиванием стальной проволоки. По магнитным характеристикам имеют самые лучшие показатели, но на практике не смогли получить широкого распространения в связи с сложным процессом их производства и включения в состав трансформатора, как готового устройства.

Оценивая при расчете параметры напряжения, тока, мощности в значениях активной и реактивной энергии, выяснив количество витков обмотки и сечение магнитопровода стоит обратится к детальному выбору пластин сердечника и его оптимальной формы в конкретике расчетного проекта конкретного преобразователя.

Сердечник трансформатора

Определение толщины набора сердечника

Один из окончательных расчетов геометрии сердечника, который выполняется в большинстве случаев, обращаясь к справочной технической литературе, где указаны табличные значения геометрии шаблонных форматов сердечников разного вида пластин и их материала.

Формулы расчета этого параметра существуют, исходят из показателей диаметра стержня магнитопровода, толщины листа пластин при их сборке, специальных коэффициентов заполнения в зависимости от толщины листа и прочих технически сложных параметров.

ш образный сердечник трансформатора

Формула 7. Площадь сечения Ш-образного сердечника:

S ш = 1,2 , где

S ш – значение площади сечение Ш-образного магнитопровода;

Полная мощность трансформатора, если имеет место двух катушечный тип устройства рассчитывается по Формуле 2, если вторичных обмоток много – рассчитывается по Формуле 3.

А уже после возможно определить значение толщины пластин сердечника по формуле.

Формула 8. Толщина пластин Ш-образного сердечника:

Tш = 100 х S ш / А, где

Tш – толщина пластин сердечника, мм;

S ш – площадь сечения Ш-образного сердечника, см2;

A – ширина среднего лепестка Ш-образного сердечника, мм.

Для сборки в заводских условиях подобные расчеты имеют автоматизированный характер, если значения необходимы радиолюбителям или начинающим электронщикам – проще обратится к стандартным базовым шаблонам того или иного сердечника. Получить такие параметры из справочника возможно, зная значение диаметр стержня сердечника.

ш образный сердечник трансформатора

Как рассчитать габаритную мощность

Окончательный геометрический параметр трансформатора зависит от комплекса всех ранее рассчитанных величин магнитопровода, добавляя к ним электромагнитные справочные значения, а также значения проводников первичной и вторичной обмоток, их сечения, материал и остальное.

Существует вариант определения мощности, на которую максимально рассчитан трансформаторный материал сердечника, его сталь, по величине сечения магнитопровода. Такой вариант расчета мощности магнитопровода является крайне наглядным. Ошибки в нем могут составлять до 50%. Поэтому лучше, воспользовавшись несколькими основными геометрическими величинами и справочными данными произвести расчет геометрической мощности по формуле.

Формула 9. Габаритная мощность трансформатора:

Pгеом. = B x S2 / 1.69, где

Pгеом. – величина геометрической мощности для понижающего или повышающего типа трансформатора;

B – справочное значение и параметр индукции, наводящейся в конкретном магнитопроводе, измеряется в Тесла;

S – сечение магнитопровода, расчет которой по Формуле 4;

1,69 – постоянный поправочный коэффициент из технических справочников.

Зная параметры геометрии проектируемого трансформатора, используя приведенную формулу достаточно легко рассчитать геометрическую мощность трансформаторного изделия, с целью понимания его максимальных значений и возможностей в размерном эквиваленте.

Главный фактор в расчете параметра мощности геометрии трансформатора – превышение ее расчетной величины над значением электрической мощности.

Этот электромеханический параметр очень важный при дальнейшем определении параметров проводников в обмотках. Зная геометрическую мощность проекта преобразователя, уже точно нельзя будет ошибиться с диаметром проводника в расчетах обмоточных данных устройства.

Правильный расчет по сечению сердечника

Из электротехнических научных опытов, практики работы с трансформаторами известно, что стержневые сердечники в преобразователях энергии целиком носят обе обмотки на стержнях конструкций магнитопроводов, броневые конструкции лишь частично охватываются намоткой первичных и вторичных проводников катушек, и наиболее равномерное распределение, а значит и самые лучшие магнитные свойства устройства имеют кольцевые сердечники энергоагрегатов преобразования энергии, но они в связи со многими  сложными пунктами своего строения, а главное тяжести сборки все меньше и меньше участвуют в реальной работе.

Электротехническая сталь тонкими пластинами, изолированными между друг другом различными диэлектриками образуют строение наиболее популярных сердечников стержневого и броневого типа. Площадь поперечного сечения для таких сердечников оказывает громадное влияние на электрическую мощность трансформатора.

Рассматривая стандартный Ш-образный магнитопровод, зная, что сечение его сердечника рассчитывается по Формула 4, и не имея других электрических параметров, таких как допустимый ток первичной или вторичной обмотки, напряжение на обоих выводах, вполне точно и правильно возможно вычислить электрическую мощность устройства.

Формула 10. Расчет электрической мощности по сечению сердечника:

Pтр-р = (S)2, где

Pтр-р – электрическая мощность расчетного сердечника, Вт;

S – площадь сечения магнитопровода оборудования, см2.

Зависимость двух мощностей в расчетном проекте преобразователя энергии видно из формулы достаточно наглядно.

Сердечники трансформатора

Учет площади сечения сердечника к тому же еще необходим для недопущения попадания стали магнитопровода в большую зону магнитного насыщения. Неправильный расчет площади может привезти именно к этому. Создать режим трансформатора от микроволновки, но обеспечения кратковременного режима работы. А это значит получение режима перегрузки в работе, износ, потери на выходе вторичной обмотки.

Окончательный показатель, оценивающий важность верного расчета площади сечения сердечника, называется коэффициентом заполняемости окна сердечника проводниковой медью первичной и вторичных обмоток. Если сравнивать по этому параметру кольцевой трансформатор с броневым или стержневым – значения конечно же сильно будут разница в пользу тороидального трансформатора, но для двух последних этот коэффициент как раз можно улучшить вышеприведенным расчетом.

Сердечник

Как определить число витков обмотки

В Формула 5 и Формула 6 приведены расчетные способы  в начальной и конечной технологии, для математического определения необходимого количества витков на вторичной обмотке трансформатора.

Первичная намотка проводников оборудования тоже имеет определенное количество витков в своем номинале. Чем больше витков на этой обмотке – тем больше электрическое сопротивление ввода, а значит меньше нагрев. Определить количество витков обоих обмоток в процессе проекта расчета трансформатора возможно по отношению следующих равенств.

Формула 11. Расчет количества витков первичной обмотки:

N1 / U1 = N2 / U2, где

N1, N2 – количество витков намотки первичной и вторичной катушек трансформатора;

U1, U2 – номинальные напряжение обмоток трансформатора.

Из такого равенства отношений, особенно, когда уже успешно посчитано количество витков вторичной обмотки, используя математику, можно вывести формулу расчета витков обмотки на вводе трансформатора.

Формула 12. Количество витков в намотке первичной обмотки:

N1 = U1 x N2 / U2

Если проект имеет не только теоретическое обоснование, но и практическую составляющую в виде реального трансформатора, то с помощью медного проводника в изоляции (если позволяет конструкция устройства) и мультиметра возможно измерениями получить это же значение витков трансформатора на вводной обмотке, отталкиваясь от количества витков на 1В, и разматывая старую или наматывая новую первичную обмотку.

Упрощенный расчет 220/36 Вольт

Всю теорию легко показывать и пояснять на практическом примере ведения расчета трансформаторного устройства.

Итак, в качестве примера поставлена следующая задача: необходимо рассчитать самый простой понижающий трансформатор двухкатушечного типа с номинальным значением напряжений 220/36В.

Трансформатор будет использоваться в качестве источника слаботочного освещения мощностью 75Вт, напряжения 36В:

1 этап

По Формуле 1 известно, что электрическая мощность вторичной цепи: P2 = 75Вт;

Отсюда, воспользовавшись справочником по трансформаторам возьмем значение КПД, исходя из значения до 100 Вт, которое равно 0,8;

Следовательно, можем определить электрическую мощность P1 вводной обмотки трансформатора по формуле.

Формула 13. Расчет мощности первичной обмотки:

P1 = P2 / КПД

P1 = 75Вт / 0,8 = 94 Вт

Упрощенный расчет 220/36 Вольт

2 этап

Теперь рассмотрим электромеханические характеристики, исходя из того, что сердечник расчетного трансформатора имеет Ш-образную форму. На его поверхности с двух сторон будут располагаться первичная и вторичные обмотки оборудования.

Поэтому расчет площади сечения магнитопровода Sсерд. необходимы в обязательном порядке. Ее значение имеет квадратичную зависимость от мощности первичной обмотки , исходя из принципа работы трансформатора, как электротехнического устройства.

Формула 14. Расчет площади сечения исходя из мощности первичной обмотки:

Sсерд. = 1,2 х

Sсерд. = 1,2 х  = 1,2 х 9,7 = 11.63 см2

3 этап

Следующий шаг так же направлен на просчет параметров первичной обмотки – количество витков в ней на единицу напряжения 1В по Формуле 5:

N1v = 60 / 11,63 = 5,16 витка

На единицу напряжения количество витков получено. Используя его значение по Формула 6 найдем значение витков на вводной обмотке оборудования преобразования всего:

Wv1 = 5.16 x 220 = 1135 витков – первичная обмотка посчитана по количеству витков, аналогичные действия проведем для вторички, используя тоже количество витков на 1В и Формуле 6:

Wv2 = 5.16 x 36 = 186 витков – намотка вторичной обмотки по виткам тоже стала известна.

Расчет площади сечения исходя из мощности первичной обмотки

4 этап

Номинальные токи нагрузки трансформатора тоже необходимо узнать, чтобы провести проверку трансформатора согласно методике испытаний. Исходя из Форм. 1 можно вывести формулу токового значения.

Формула 15. Расчет номинального тока обмоток трансформатора:

I1 = P1 / U1

I2 = P2 / U2, где

I1, I2 – номинальные токи трансформаторных обмоток;

P1, P2 – электрические мощности ввода и вывода устройства;

U1, U2 – номинальные напряжения первичной и вторичной стороны трансформатора.

I1 = 94 / 220 = 0,43А;

I2 = 75 / 36 = 2,08А.

5 этап

Новые параметр, которые не рассматривался ранее – это диаметр проводника обмоток трансформатора (зависит от номинального тока на каждой обмотке).

Формула 16. Расчет диаметра проводника обмоток трансформатора:

D1 = 0,8

D2 = 0,8 , где

D1, D2 – диаметр проводника первичной и вторичной обмоток;

I1, I2 – номинальные токи обмоток первичной и вторичной намотки;

0,8 – постоянный поправочный коэффициент расчетов диаметров.

D1 = 0,8  = 0,8*0,66 = 0,5 мм.

Для проводников первичной и для проводника вторичной обмоток:

D2 = 0,8  = 0,8*1,44 = 1,15 мм.

6 этап

В электротехнике кабельно-проводниковая продукция всегда представлена в значения площади поперечного сечения жилы, а значит, чтобы не возникало проблем с реальным подбором проводника требуется перевести полученные диаметры в площадь поперечного сечения с помощью электронных конвекторов по Формуле 17. Перевод из диаметра в сечение провода:

SКПП= D2 * 0.8

Отсюда для каждого из диаметров получаем:

  • SКПП1= (0,5)2 * 0.8 = 0,2 мм2 – провод для первичной обмотки;
  • SКПП2= (1,15)2 * 0.8 = 1,0 мм2 – провод для вторичной обмотки.

Далее получив все расчетные значения по трансформатору из примера, приступают к практической части намотки витков с обеих сторон одновременно, коммутации их выводов и другим работам.

Расчет диаметра проводника обмоток трансформатора

Как рассчитать Ш-образный трансформатор

Универсальность конструкции Ш-образного магнитопровода позволяет одинаково эффективно использовать, закладывать форму сердечника в проекты расчета, как импульсных– современных трансформаторов, участвующих в процессах обеспечения питания электронной бытовой и мультимедийной техники, так и проводить серьезные проектные расчеты силовых трансформаторов напряжения, находящийся в составе высоковольтных подстанций, основного и аварийного питания значительного количества потребителей (в случае двух трансформаторной структуры энергоснабжения).

Расчеты Ш-образного трансформатора по своим характеристикам ничем особенным не может отличаться от основных пунктов упрощенного или детального расчета преобразователей энергии. Для него могут использоваться формулы нахождения параметрических величин или применяться расчеты онлайн автоматизации проектов. Второй метод несколько универсален и быстротечен, в том плане, что для его использования достаточно знать исходную геометрию и номинальные значения выходных величин, что авто программа расчетов смогла предоставить необходимые значения для оборудования.

Единственным нюансом для Ш-образного магнитопровода может быть расчет номинальной мощности вторичных обмоток, если у него она не одна, тогда расчет мощности можно выполнить по Формуле 3. И расчет толщины набора сердечника будет зависеть от расчетов и данных Ш-образного магнитопровода по Формула 8

В остальном в зависимости от параметров можно применять все вышеуказанные формулы, исходя из конкретных электрических величин Ш-образного сердечника.

Ш-образный трансформатор

Определение параметров ТТ

Измерительный преобразователь тока, в основном принципе своей работы имеет некоторые важные отличительные особенности по сравнению с силовыми трансформаторами питания электропотребителей или трансформаторов напряжения.

Отличия заключаются в токовой величине его вторичной обмотки. Ток «вторички» ТТ независим от нагрузки цепей в ней, и имеет сопротивление, которое всегда соответствует количеству витков первичной обмотки с минимальным значением по величине в сравнении с сопротивлением силовых цепей первичного подключения.

Принципиальная схема трансформатора тока

Рисунок 2. Принципиальная схема трансформатора тока.

К тому же протекающий ток I2 через цепь вторичной обмотки имеет постоянное направление, при помощи которого производится размагничивание сердечника данного устройства. I1 обозначено направление тока первичной обмотки ТТ.

В связи с условием что верхний конец первичной обмотки находится там же, где и  верхний конец первичной обмотки, учитывая из физики равенства магнитных потоков его обмоток можно составить определенный алгоритм расчета такого оборудования преобразования тока с учетом нюансов изделия:

  1. Определяется номинальное напряжение первичного обмотки ТТ – величина выбор которой производится из стандартных паспортных значений таблиц и измеряется в киловольтах: 0,66/ 3/6/10/15/20/24/ 27/ 35/ 110/ 150/ 220/ 330/ 750.
  2. Второй важный параметр токового устройство – определение номинального тока первичной обмотки – учитывая перегрузочные способности, данная величина рассчитывается большей или равной (> =) номинального тока первичной цепи электроустановки. Его токовый ряд первичной обмотки выбирается из ГОСТ значений: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. Измеряется в амперах и кило амперах. В случае выбора ТТ на пусковое, генераторное оборудование к его номинальному току прибавляется 10% значение и от полученной суммы выбирается первичный ток ТТ.
  3. Ведут проверки преобразователя по термической и электродинамической стойкости согласно формулам из паспортных формуляров проверок.
  4. Выбирается и проверяется ТТ по мощности вторичных нагрузок – учитывая формулу 18:

Sном2 > Sнагр2, где

Sном2 – номинальная мощность вторичной обмотки;

Sнагр2 – мощность вторичной нагрузки, где будет установлен ТТ.

Кроме основных параметров выбора ТТ – это измерительное оборудование, учитывая значение номинала класса точности выбирается для питания и защиты цепей РЗиА, а так же преобразователи с завышенным коэффициентом трансформации и повышенным классом точности подбирают для питания токовых обмоток энергоучета.

Трансформаторы тока подключаются по каждому изделию на каждую фазу для включения в состав защитных, измерительных или учетных цепей.

Важное для расчета ТТ должно выполняться равенство по форм. 19:

(I1*N1) – (I2*N2) = 0, где

I1, I2 – значения токов первичной и вторичной обмотки;

N1, N2 – количество витков в обмотках ТТ.

Отсюда для вычисления количество витков в обмотке вторичного подключения определяется его токовое значение, совместно с основными понятиями магнитных характеристик:

  • Lind – значения индуктивности ТТ;
  • XLreac – сопротивления реактивной мощности ТТ;
  • Rc – сопротивления нагрузки вторичной цепи.

Значение равенства произведений токов для ТТ

Вычисления значений по формулам достаточно трудоемкий факт работы, поэтому в большинстве случаев, чтобы получить понимание выбора определенного трансформатора тока пользуются или целиком справочно-паспортными значениями их выбора или калькуляторами расчета параметров устройств.

Сердечники трансформаторов могут изготавливаться из ферромагнитных материалов или пластин Ш-образной формы электротехнической стали. Возможны кольцевые магнитопроводы из ленточно-проволочных материалов производства.

Особенности расчета сетевого трансформатора

Трансформаторы типа сетевой являют собой преобразователи напряжения, участвующие в цепях питания различных маломощных, относительно электроустановок силовых трансформаторов, энергопотребителей, приборов и устройств автоматики, контроля, телемеханики. Они очень популярны и широко распространены в мире подобного оборудования.

В связи с этим их выбор должен обладать определенными критериями по мимо основных номинальных электрических величин:

  • номинальные токи первичной и вторичной обмотки;
  • номинальные напряжения первичной и вторичной обмотки;
  • мощности первичной и вторичной обмотки;
  • полной мощности трансформатора;

Их выбор может варьироваться от отличий параметров конструкции и их различных типов. Главные из которых выделено рассматриваются ниже.

Выбор магнитопровода

Этот центральный элемент устройства обладает сразу несколькими характеристиками выбора.

Прежде всего, в зависимости от места установки и сферы применения сердечник трансформатора должен отвечать параметрам прочности, износостойкости, электрической прочности, экономичности.

Технология изготовления

Следующий параметр выбора зависит от его электромагнитных свойств. Технология изготовления делит магнитопроводы на два типа:

  1. Пластинчатые – выполненные из пластин электротехнической стали, изолированных и спрессованных между собой в определенные формы, габаритные размеры.
  2. Ленточные – выполнение из навивки стальной проволоки (менее распространены).

Пластинчатые магнитопроводы

Формы серденичков

Каждый из двух видов в свою очередь подразделяется на формы и конструктивные различия стержней, окон для намотки проводников обмоток, диаметры которых зависят от электрических параметров оборудования. Формы сердечников бывают:

  1. Стержневые – в пластинчатом исполнении производятся из пластин П-образной формы одинаковой ширины. Имеют одно окно с определенным размером прохода намотки обмоток. Замыкаются прямоугольными пластинами.
  2. Броневые – Ш-образные пластины собираются в двух оконный магнитопровод, который замыкается прямоугольными пластинами из стали. Набираются переплетом для уменьшения магнитного сопротивления в местах стыка. С целью уменьшения вихревых токов производятся методом прессования.

Что касается таких же форм ленточных сердечников – набираются прямоугольной формы с разрезами вдоль и поперек. Для уменьшения магнитного сопротивления их сердечники подвергаются шлифовки.

Существуют еще кольцевые формы сердечников, которые обладают отличными магнитными свойствами в работе, но трудоемки в своем изготовлении. Некоторое время их производили в виде трансформаторов для питания освещения, но в настоящее время используют редко.

Самыми популярными в зависимости от токовых и мощностных характеристик выступают Ш-образные и П-образные сердечники при изготовлении сетевых трансформаторов. Для вторичных цепей много катушечного характера используют стержневой тип сердечников. Броневое исполнение содержит на каждой стороне только по одной катушке, что является его ограничительным фактором применения.

Стержневые магнитопровода

Варианты размещения катушек

С учетом конструктивных исполнений магнитопровода, электромагнитных характеристик устройства, его механики, следует различать несколько основных типов размещения обмоток:

  • прямоугольный провод класс «Цилиндр – 1-2слоя» – преимущества – имеет хорошее охлаждение при эксплуатации, простота изготовления. К недостаткам относится малая прочность;
  • прямоугольный провод класс «Цилиндр – многослой» – достоинства имеет в отличных магнитных свойствах системы, простоте изготовления. Минусы вида обмотки в плохом охлаждении в момент работы;
  • круглый провод класс «Цилиндр – многослой» – плюсы варианта в простоте изготовления, минусы в плохой теплоотдаче, возможности перегрева;
  • прямоугольный провод класс «Винтовая на 1-2 или многоход» – достоинства состоят в высокой прочности отличной изоляции, хорошем охлаждении. Минус в дороговизне при производстве;
  • прямоугольный провод класс «Непрерывный» – механическая и электрическая прочность, хорошее охлаждение придают этому варианту положительных характеристик, но неудобство при обслуживании относят к недостаткам;
  • алюминиевая фольга класс «Катушечный многослой или цилиндр» – достоинства в механической прочности, магнитных свойствах. Минус в сложности изготовления.

Так же есть катушки в виде дискового формата. Соединяемые между собой. В целом тип катушки и форма обмотки выбирается от электрических параметров необходимых в конкретном применении с учетом экономичной стороны и технологий.

Краткая справка о материалах магнитопровода

Для изготовления сердечников трансформаторов в обязательном порядке отбирают материалы, имеющие высокую магнитную проницаемость, малую площадь петли гистерезиса, минимальные энергетические потери при возникновении в них вихревых токов.

Сталь низкоуглеродистого состава – основа для производства сердечников. Мощные трансформаторы, которые имеют сложные структуры магнитопроводов, в генераторных системах и подобных им имеют сердечники, изготовленные из малоуглеродистых стальных материалов.

Для эксплуатации в высокочастотных режимах работы преобразователей энергии, их сердечник выполняют из ферритов или подобных им композитов (прессованные порошки с свойствами магнитной мягкости по типу магнетитов или карбонильного железа). Такие системы связывают с диэлектрической структурой в виде эпоксидных смол. В итоге получается собрание мелкозернистого порошка ферромагнитного (вещества в твердом состоянии, кристаллах, обладающих свойством намагниченности) состава, изолированного друг друга токопроводящей смолой.

Распространенная технология сердечников связана с набором отдельных пластин в пакетную стальную структуру с малым содержанием углерода

Магнитопровод

Исходные данные

Для выполнения проектных расчетов силовых агрегатов преобразования энергии, сетевых трансформаторов напряжения, импульсных энергетических преобразователей необходимо иметь часть справочно-табличных данных, исходя из составов материалов проводов обмоток, изоляции, стали сердечников, таких как:

  1. Величина максимальной индуктивности – для точного расчета габаритной мощности.
  2. Значение плотности тока – аналогичное участие справочного значения в расчете размерной мощности изделия.
  3. Коэффициенты мощности конкретного устройства – для расчета мощностного параметра.
  4. Сопротивления материалов сердечников и значение в проводниках обмоток для возможности расчета полной мощности.

Необходимы номинально-заданные параметры оборудования исходя из конкретного применения, нагрузки, которая будет использоваться в расчетном преобразователи:

  • габаритные размеры сердечника и материалы из чего он изготовлен, тип и форма – размеры окна магнитопровода по длине и ширине особенно важны, т.к. связаны с площадью сечения магнитопровода, от которой идут дальнейшие расчеты;
  • номинальные токи обмоток первичной и вторичной стороны устройства;
  • номинальные напряжения в сети со стороны первичной и вторичной обмотки;
  • значение и функционал трансформатора, на который направлен расчет;
  • мощность по активной составляющей (первичной или вторичной обмотки)
  • количество обмоток со стороны нагрузок;
  • прочие детали или возможные подробности по изделию и функционалу его применения.

На основании исходных данных номинального и справочного характера вполне реально произвести ручной расчет трансформатора согласно формулам или воспользоваться автоматизированным сервисам в сети Интернет.

Как посчитать магнитопровод

В совокупности справочных и расчетных материалов, параметрических значений расчета трансформатора достаточно несложно произвести расчет его магнитопровода.

1 шаг

Расчету подвергается произведение площади сечения стержня Sст на площадь сердечника Sсер согласно равенству форм. 20:

Sст x Sсер   = Pгаб x 102 / (2,22F х B х j x КПД x Nster x Kc x Km), где:

  • Pгаб – габаритная мощность рассчитываемого трансформатора;
  • F – частота переменного тока 50Гц
  • B – максимальная индукция трансформатора, Тл;
  • J – значение плотности тока А/м2;
  • КПД – базовый коэффициент полезного действия устройства;
  • NsterЧисло стержней сердечника;
  • Kc – коэффициент заполнения сечения сердечника магнитной сталью;
  • Km – коэффициент заполнения окна стержня магнитной сталью;

Частично данные берутся из исходных номинальных значений оборудования, но большая часть вытекает из технической справочной литературы и табличных параметров и величин согласно указанному сердечнику изделия. В них входят: индукция, КПД оборудования, плотность тока, А/м2, коэффициенты заполнения сердечника и его окна.

Как посчитать магнитопровод

2 шаг

Следующий шаг в расчете предполагает получение значения толщины сечения сердечника по Формуле 8, опубликованной в обзоре выше.

3 шаг

Последним шагом для расчета магнитопровода необходимо посчитать еще одно равенство значений узнав ширину ленты сердечника по форм. 21:

Bline= Sст x Sсер   / (A x С x H), где

  • Bline – ширина ленты сердечника для расчета, мм;
  • Sст x Sсер -площади сечения стержня и самого сердечника, см2;
  • A x С x H – размеры сторон сердечника, мм.

После чего, имея на руках три основных параметра магнитопровода с помощью литературы подбора, методом сравнительного анализа полученного значения с ближайшим стандартом производится выбор марки, размеров и всех данных магнитопровода трансформатора.

Простейший расчет трансформатора

Определение параметров обмоток

Параметрические составляющие в обмотках в расчете ручных формул начинаются с определения ЭДС одного витка обмотки Е по формуле 22:

Е = 4,44 x F x В х Sст x Kc x 10-4, где

  • F -частота переменного тока, ГЦ;
  • В – максимум индукции, ТЛ;
  • Sст –площадь сечения стержня;
  • Kc– коэффициент заполнения стержня.

Следующим расчетным показателем требуется получить падения напряжения на каждой обмотке трансформатора по формуле 23:

^U1 = 1,5*U1 *J*A*10-3

^U2 = 1,5*U2 *J*A*10-3

А от падения напряжения рассчитываются количество витков первичной и вторичной обмотки по новым формулам.

Формула 24. Расчет количества витков на основе падения напряжения:

N1= (U1- ^U1) / E

N2= (U2- ^U2) / E

Получив количество витков возможно узнать диаметры проводников (форм. 25):

D1 = 1.13

D2 = 1.13

Обычно при этом расчет обмоток завершается по проектному трансформатору, однако в его содержании возможно еще высчитывать средние длины витка обмоток, длины витков каждой обмотки и их массы. Допустимо вывести расчет и массы магнитопровода, для более детальных и точных вычислений.

Диаметр проводника по падениям напряжения

Мощность потерь

Их зависимость просматривается от воздействия силы магнитного поля на сердечник. Деление по виду потерь сердечника происходит в двух формациях:

  • Статические потери Pstat – перемагничивание магнитопровода. Они прямо пропорциональны длине петли магнитного потока Sпетли, частоте переменного тока F и весу магнитопровода G:

Pstat = Sпетли х F х G (форм. 26)

Еще их называют потерями на гистерезисе. При уменьшении толщины ленты начинает рост таких потерь, аналогично при росте петли, частоты сети или весу сердечника.

Второй тип потерь:

  • Динамические потери – потери, которые происходят при возникновении в сердечники вихревых токов.

Постоянный ток имеет нулевую частоту петли гистерезиса, как только частота начинает расти – идет возникновение динамических потерь в сердечнике.

Статические потери магнитопровода

Особенности расчета автотрансформатора

Автотрансформатор – преобразователь напряжений, имеющий в отличии от обычного трансформатора, единую и единственную обмотку с одним или несколькими промежуточными выводами.

Внешний вид автотрансформатора

Рисунок 3. Внешний вид автотрансформатора.

Если коэффициент трансформации нагруженного электротехнического устройства малого значения – автотрансформатор становится более экономически выгодным обычного преобразователя напряжения, т.к. расход медного провода его катушки  заметно меньше, чем у двух обмоточного обычного трансформатора.

Принципиальная схема автотрансформатор

Рисунок 4. Принципиальная схема автотрансформатора.

В общей точке обмотки судя по схеме на Рисунок 4 обмотки устройства протекает ток с определенным значением дельты:

дельта трансформатора

Важно! Вход и Выход изделия напрямую связаны. Это означает опасность и запрет в проведении защитного заземления схемы, в которую включен нагруженный автотрансформатор.

Устройство автотрансформатора в нагруженном состоянии или в режиме холостого хода имеет дополнительную обмотку, без какой-либо связи с основной. И как только значение мощности дополнительной катушки больше мощности основной обмотки – экономическая и выгода автотрансформатора падает с критической скоростью.

Для расчета мощности во вторичной обмотке устройства представляет собой сумму двух значений:

Preborn = Uii x I               +           Pprox= Uii x I1, где

  • Ppreborn – преобразовательная мощность, величина проходящая в зону вторичной обмотки по средствам магнитной связи;
  • Pproxпроходящая мощность во вторичную обмотку посредством электрической связи
  • Uii, I – напряжение, ток автотрансформатора.

Расчет автотрансформатора похож систему расчета силового преобразователя напряжения с одной поправкой – магнитопровод автотрансформатора рассчитывается на единицу значения преобразовательной мощности:

Ppreborn = 1,1*Pa * , где

Pa – мощность автотрансформатора, общая, Вт;

коэффициент трансформации оборудования.

автотрансформатор

Автотрансформаторы, как бы парадоксальны их свойства и устройства не были, в однофазных и трехфазных сетях низковольтного и высоковольтного напряжения достаточно популярны за счет своих характеристик и возможности изменять выходную электрическую величину, низкой стоимости и коэффициентом полезного действия около 99%.

Мощные автотрансформаторы, начиная с напряжения 110 кВ используются в регулировочных ступенчатых узлах распределительных установок.

Слабые устройства, небольшой мощности, внешнего вида, как на Рисунок 3 стали очень популярны в научно-исследовательских организациях, как стендовое оборудование, позволяющее проводить многие тесты. Это касается и учебных заведениях. В них используются лабораторные автотрансформаторы (ЛАТР) для проведения работ и испытаний с целью обучения молодых специалистов.

Как посчитать пленочный трансформатор

Инновация в разработках сверхпроводников, в области криоэлектроники представлена в виде криогенного устройства на сверхпроводниках. Схематически его основные элементы представлены ниже на Рисунке 5  Это и есть – пленочный трансформатор магнитного потока.

пленочный трансформатор магнитного потока.

Рисунок 5. Схематика пленочного трансформатора.

Квадратообразный обруч с активной полоской, изолирующей пленку, помещается между активной полосой трансформатора магнитного потока и магниточувствительным элементом.

С помощью преобразовательного устройства на сверхпроводниках происходит повышение умножение трансформатора магнитного потока.

Сверхпроводниковый трансформатор магнитного потока – пленочный трансформатор – устройство разработанная в научно-исследовательских институтах, имеет определенные свойства и преимущества:

  • увеличение чувствительности датчиков;
  • расширение динамического диапазона;
  • увеличение помехозащищенности.

Пленочные трансформаторы сверхпроводимости нашли широкое применение в медицине в магнита-резонансных установках, позволяющих снять информацию сразу по всему организму и телу человека.

Схематика пленочного трансформатора с движением потока

Рисунок 6. Схематика пленочного трансформатора с движением потока.

Однородность магнитного поля в активной полосе трансформатора увеличивается как показано на Рис. 7.

Рисунок 7

Рисунок 7. Схемы активных пластин.

Концентрация магнитного поля имеет определенный темп увеличения эффективности, рассчитываемый по формуле:

формула для трансформатора

Наконец-то на последней схематике приведен эскиз активной полосы и приведены ее основные параметры для расчета:

Параметры

В настоящее время на сверхпроводниках реализованы лишь пленочные трансформаторы способные увеличивая магнитный поток воздействовать на магниточувствительным элемент для проведения определенной работы. Если сверхпроводимость войдет в нашу жизнь для любого материала изменится не только конкретный преобразователь энергии, но и весь человеческий мир.

Обзор онлайн сервисов

Произвести расчеты трансформаторов любого типа, их составных частей или комплектующих помимо технических справок и таблиц, научной литературы в настоящее время довольно много качественных онлайн сервисов расчет электротехнических параметров или оборудования по конкретному запросу.

Если брать расчет трансформаторов – онлайн площадки в богатом остатке предлагают различные онлайн калькуляторы, расчетам которых вполне можно доверять.

Они не требуют никаких сложных значений или данных – достаточно иметь несколько основных исходных параметров электрических величин и знания геометрии оборудования.

Несколько вариантов онлайн площадок расчета трансформаторов предлагается в обзоре статьи на справедливую оценку и тестирование любым радиолюбителем или бывалым специалистом электронщиком:

  1. Интересная программа онлайн доступа и расчета с возможностью провести расчет как по стержневому виду, так и броневому виду сердечника, что увеличивает функционал и улучшает поддержку: Калькулятор расчета трансформатора №1.
  2. Помощь в расчете «Пуш-Пулл» трансформатора – простота и умение наращивать мощность являются основными преимуществами трансформаторов «Push-Pull», что в переводе с английского языка означает – двухтактный – трансформатор напряжения использующий импульсный трансформатор и становится трансформатор с двунаправленным возбуждением. Расчет такого устройства по формулам в ручном режиме может занять весомую часть времени. Помочь в этом может автоматизация расчета программой «ExcellentIT».
  3. Любые расчеты преобразователей электрической энергии, блоков питания, сложных устройств, которые так хочется собрать многими радиолюбителями и электронщиками-самоучками, но не хватает технической базы и формул, теперь возможно производить с помощью «Сборника Расчетных программ».

расчет трансформатора программа

Но не стоит автоматизированные, онлайн сервисы делать панацеей в расчетах и проектировании преобразующих, питающих энергоустройств и систем электроники. Нужно помнить, что любая автоматика или компьютеризация без человека – оператора не стоит и не может ничего.

Примеры расчета

Для получения практических навыков расчета преобразователей напряжения упрощенными формулами в ручном режиме произведем:

Расчет силового трансформатора, который должен запитывать N-оборудование

Условия и исходные данные для расчета

  • Тип оборудования: трансформатор напряжения силовой;
  • Напряжение обмотки ВН: 660В;
  • Ток обмотки ВН: 60mA;
  • Напряжение обмотки НН: 12В;
  • Ток обмотки НН: 6А;
  • Тип сердечника: П-образный / коэффициентом количества витков на 1В = 50;
  • Размеры окна сердечника: А = 10 см, И = 3 см.

трансформатор напряжения силовой

Расчет силового трансформатора пошагово

  • Т.к. обмотки ВН и НН в единственном экземпляре определить общую мощность трансформатора можно по формуле:

Pобщ = (Uвн * Iвн) + (Uнн * Iнн);

Pобщ = (660 * 0,06) + (12 * 6) = 39,6 + 72 = 111,6 Вт;

  • Следующий шаг определение мощности первичной цепи обмотки по формуле:

P1 = 1,25 * Pобщ;
P1 = 1,25 * 111,6 = 139,5 Вт;

  • Третий шаг определить площадь сечения сердечника из формулы:

площадь сечения сердечника

  • Определение количества витков на 1В и номинальный ток первичной обмотки можно:

N1v = K / Sсеч = 50 / 11,8 = 4,2;

I1 = P1 / Uнн = 139,5 / 220 = 0,63А;

  • Остается найти число витков и диаметр проводников для первичной и вторичной обмотки:
  1. N1 = N1v * Uнн = 4,2 * 220 = 924 витков;
  2. D1 = 0,8 * = 0,8 * = 0,8 * 0,79 = 0,63 mm;
  3. N2 = N1v * Uвн = 4,2 * 660 = 2772 витка;
  4. D2 = 0,8 * = 0,8 * = 0,8 * 0,24 = 0,2 mm;
  • С учетом того, что в исходных данных у нас есть размеры окна сердечника найдем ее площадь поперечного сечения, через который проверим войдут ли проводники в заданную площадь:

Sser = A * В = 10 * 3 = 30 см2 = 3000 мм2

Зная параметры диаметра проводников на каждой обмотке, можно вычислить опытную площадь проводников, которая должна быть меньше расчетной окна сердечника.

Этот расчет является защитным и проверочным предохранителем от ненужной траты сил и материалов по заранее ошибочным расчетным данным:

  • S1 Первичная: 0,8 * D1 * N1 = 0,8 * 0,63 * 924 = 465 мм2;
  • S2 Вторичная: 0,8 * D2 * N2 = 0,8 * 0,2 * 2772 = 444 мм2;
  • Sser> (S1 + S2) – Необходимое условие

«Что и требовалось доказать»

3000> (444 + 465) – условие правильности расчета выполняется.

Остальные расчеты трансформаторов напряжения проводятся примерно в таком же формате, что и пример выше. Если позволяется – используют калькуляторы расчета в сети интернет.

Оборудование преобразования других величин электрической энергии проверяется расчетными методами по своим правилам и формулам или в тех же сервисах компьютерных программ.

Всем доброго времени суток! В прошлой статье я рассказал о выборе сердечника трансформатора и определении его основных размеров. Сегодня я приведу примеры расчётов сердечников нескольких типов трансформаторов.

Следует отметить, что все расчёты основаны на оптимально-компромиссной геометрии сердечника, а у промышленных образцов геометрия другая. Поэтому под рассчитанные параметры сердечника (a, b, c, h) необходимо подобрать унифицированный магнитопровод, применяя следующее правило: произведение линейных размеров рассчитанного сердечника и такое же произведение размеров унифицированного сердечника не должны значительно различаться, причем отличие каждого из размеров не должно превышать ± 15 %. В противном случае будут закладываться изначально плохие удельно-экономические показатели.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

При этих условиях электромагнитные режимы и необходимая мощность трансформатора обеспечивается, даже если фактические и расчётные размеры существенно отличаются.

При расчёте магнитной индукции для трансформаторов ТЕР необходимо придерживаться следующего правила, что расчётная индукция ВP не должна быть меньше, чем 0,8BS для данного вида материала сердечника. В случае меньшего значения можно вернуться к выбору материала магнитопровода, либо изменить значения режимов работы трансформатора, наиболее эффективно: перегрев τМ, площадь охлаждения сердечника ПС.

Расчёт сердечника трансформатора ТВР

Необходимо найти основные размеры сердечника наименьшей стоимости со входным напряжением U1 = 220 B при частоте f = 50 Гц, допустимым перегревом τM = 50 ºС, выходные обмотки со следующими параметрами: одна вторичная обмотка нагружена на мостовой выпрямитель, U21 = 50 B, I21 = 0,7 А, вторая обмотка – на двухполупериодный выпрямитель со средней точкой, U22 = 5 B, I22 = 2,5 А. Обмотки выполнить из меди, остальные условия типовые.

1. Определяем габаритную мощность трансформатора.

— мощности

— коэффициент коррекции типа выпрямителя kB1 = 1, kB2 = 0,71;

— требуемая габаритная мощность

-коэффициент увеличения электромагнитной мощности сP

Зависимость коэффициента увеличения габаритной мощности с<sub>P</sub> от габаритной мощности Р<sub>Г</sub>
Зависимость коэффициента увеличения габаритной мощности сP от габаритной мощности РГ.

Определим сP = 1,075.

2. Выбираем тип сердечника – броневой шихтованный сердечник из пластин толщиной – 0,35 мм, коэффициент заполнения сердечника kC = 0,93, коэффициент заполнения окна для начала выберем типовой kOK = 0,3. Данный трансформатор отнесём к трансформаторам с вынужденным режимом работы ТВР, поэтому рабочую индукцию ограничим предельной B = BS. При условии наименьшей стоимости выберем горячекатаную сталь 1512 (Э42), электромагнитные параметры которой представлены ниже

Кривая намагничивания стали 1512
Кривая намагничивания стали 1512.

Удельные потери в стали 1512.
Удельные потери в стали 1512.

Для данной стали определяем BS = 1,15 Тл, удельные потери в магнитном материале р/ = 1,55 Вт/кг. В готовом сердечнике удельные потери будут выше из-за влияния технологии изготовления, вида сердечника, частоты которые корректируются коэффициентом kP = 1,5, тогда удельные потери р1 готового сердечника составят

Параметры оптимальной геометрии для трансформатора наименьшей стоимости с заданным перегревом (τ = const) будут равны

3. Определяем дополнительные параметры:

— соотношение плотностей тока в обмотках ε, для БТ хk = x

— относительный ток первичной обмотки i1 = 1,1;

— функции геометрии φi

— соотношение поверхностей охлаждения β

— оптимальное соотношение потерь в данном типе трансформатора ν0

— определим соотношение потерь в трансформаторе ν, для ТВР ν < ν0

Так как ν = 0,314 < ν0, то трансформатор правильно отнесён к ТВР.

4. Определяем электромагнитные нагрузки трансформатора.

Определим дополнительные параметры:

— расчётный параметр Б

— определим плотность тока вторичных обмоток j2

5.Определим основные размеры трансформатора:

— базовый размер а

— расчётные размеры трансформатора

6. Выбираем унифицированный сердечник:

— произведение сечений окна и стержня рассчитываемого трансформатора

— выбор унифицированного сердечника. В данном случае можно взять сердечник типа Ш20х40 со следующими размерами

Данный сердечник больше расчётного, что немного утяжелит трансформатор, однако за счёт неполного заполнения окна сердечника будет улучшено его охлаждение и снижен перегрев.

Расчёт сердечника трансформатора ТЕР

Необходимо рассчитать трансформатор наименьшей массы со входным напряжением U1 = 310 В, частотой f = 60 кГц, форма напряжения прямоугольная со скважностью Q = 0,7. Трансформатор рассчитывается на максимальный перегрев τM = 30 ºС и имеет две выходные обмотки: первая с напряжением U21 = 12 В, выходным током I21 = 2 А, нагружена на двухполупериодный выпрямитель со средней точкой, вторая обмотка с напряжением U22 = 5 В, с действующим током обмотки I22 = 0,5 А, нагруженная на мостовой выпрямитель. Остальные условия типовые.

1. Определяем габаритную мощность трансформатора

— выходная мощность трансформатора

— коэффициент коррекции типа выпрямителя

— требуемая габаритная мощность

2. Выбираем тип сердечника. Для данного трансформатора выбираем Ш-образный сердечник из феррита N27, коэффициент заполнения сердечника kC = 1, коэффициент заполнения окна для начала выберем типовой kOK = 0,15. Трансформатор отнесём к ТЕР типу. Электромагнитные параметры данного феррита приведены ниже

кривая намагничивания N27
Динамическая кривая намагничивания для N27.

удельные потери для N27
Относительные потери в сердечнике в зависимости от частоты для N27.

Предельная рабочая индукция для N27 BS = 0,5 Тл, потери в сердечнике при данной индукции

-коэффициент увеличения электромагнитной мощности сP

Зависимость коэффициента увеличения габаритной мощности сP от габаритной мощности РГ
Зависимость коэффициента увеличения габаритной мощности сP от габаритной мощности РГ

Определим для ТЕР сP* = 1,035, тогда

Для трансформатора наименьшей массы с ограничением по перегреву параметры оптимальной геометрии составят

3. Определяем дополнительные параметры

— соотношение плотностей тока в обмотках ε, для БТ хk = x

— относительный ток первичной обмотки i1 = 1,1;

— функции геометрии φi

— соотношение поверхностей охлаждения β

— оптимальное соотношение потерь в данном типе трансформатора ν0

— определим соотношение потерь в трансформаторе ν, для ТЕР ν = ν0 = 2,19.

4. Определяем электромагнитные нагрузки трансформатора.

Определим дополнительные параметры:

— расчётный параметр Б

— плотность тока вторичных обмоток j2

— магнитная индукция в сердечнике

Магнитная индукция в данном сердечнике меньше индукции насыщения B = 0,28 < BS, поэтому трансформатор правильно отнесён к ТЕР типу. В противном случае его надо было бы пересчитать как ТВР с ограничением индукции. Так при перегреве уже в 50 ºС магнитная индукция составила бы В = 0,44 Тл, что находится на пределе для данного типа сердечника.

5.Определим основные размеры трансформатора:

— коэффициент формы напряжения

— базовый размер а

— расчётные размеры трансформатора

6. Выбираем унифицированный сердечник:

— произведение сечений окна и стержня рассчитываемого трансформатора

— выбор унифицированного сердечника. В данном случае можно взять сердечник типа EE19 со следующими размерами

Данный сердечник больше расчётного, что немного утяжелит трансформатор, однако за счёт неполного заполнения окна сердечника будет улучшено его охлаждение и снижен перегрев.

В следующей статье я рассмотрю, как выполнить электрический расчёт трансформатора.

Понравилась статья? Поделить с друзьями:
  • Объем потребительских расходов как найти
  • Как составить план занятий с ребенком на неделю
  • Как найти напряжение конденсатора через эдс
  • Как найти исполнителя на воркзилла
  • Как найти координаты середины вектора зная координаты