1. Формула средней линии равнобедренной трапеции через основания
a — нижнее основание
b — верхнее основание
m — средняя линия
Формула средней линии, (m ):
2. Формулы средней линии через основание, высоту и углы при нижнем основании
a — нижнее основание
b — верхнее основание
c — боковая сторона
α — угол при нижнем осровании
h — высота трапеции
m — средняя линия
Формулы средней линии трапеции, (m ):
3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями
d — диагонали трапеции
α , β — углы между диагоналями
h — высота трапеции
m — средняя линия
Формула средней линии трапеции, (m ):
4. Формула средней линии трапеции через площадь и высоту
S — площадь трапеции
h — высота трапеции
α — угол при нижнем осровании
m — средняя линия
Формула средней линии трапеции, (m ):
Формулы площади произвольной трапеции
Формулы площади равнобедренной трапеции
Формула периметра трапеции
Все формулы по геометрии
- Подробности
-
Опубликовано: 12 октября 2013
-
Обновлено: 13 августа 2021
Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции
Определение.
Равнобедренная трапеция — это трапеция у котрой боковые стороны равны.
На этой странице представленны формулы характерные равнобедренной трапеции. Не забывайте, что для равнобедренной трапеции выполняются все формулы и свойства трапеции.
Рис.1 |
Признаки равнобедренной трапеции
Трапеция будет равнобедренной если выполняется одно из этих условий:
1. Углы при основе равны:
∠ABC = ∠BCD и ∠BAD = ∠ADC
2. Диагонали равны:
AC = BD
3. Одинаковые углы между диагоналями и основаниями:
∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC
4. Сумма противоположных углов равна 180°:
∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°
5. Вокруг трапеции можно описати окружность
Основные свойства равнобедренной трапеции
1. Сумма углов прилегающих к боковой стороне равнобедренной трапеции равна 180°:
∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°
2. Если в равнобедренную трапецию можно вписать окружность, то боковая сторона равна средней лини трапеции:
AB = CD = m
3. Вокруг равнобедренной трапеции можно описать окружность
4. Если диагонали взаимно перпендикулярны, то высота равна полусумме оснований (средней лини):
h = m
5. Если диагонали взаимно перпендикулярны, то площадь трапеции равна квадрату высоты:
SABCD = h2
6. Если в равнобедренную трапецию можно вписать окружность, то квадрат высоты равен произведению основ трапеции:
h2 = BC · AD
7. Сумма квадратов диагоналей равна сумме квадратов боковых сторон плюс удвоенному произведению основ трапеции:
AC2 + BD2 = AB2 + CD2 + 2BC · AD
8. Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции:
HF ┴ BC, HF ┴ AD
9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) — равен полуразности оснований:
Стороны равнобедренной трапеции
Формулы длин сторон равнобедренной трапеции:
1. Формулы длины сторон через другие стороны, высоту и угол:
a = b + 2h ctg α = b + 2c cos α
b = a — 2h ctg α = a — 2c cos α
c = | h | = | a — b |
sin α | 2 cos α |
2. Формула длины сторон трапеции через диагонали и другие стороны:
a = | d12 — c2 | b = | d12 — c2 | c = √d12 — ab |
b | a |
3. Формулы длины основ через площадь, высоту и другую основу:
a = | 2S | — b b = | 2S | — a |
h | h |
4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:
5. Формулы длины боковой стороны через площадь, основания и угол при основе:
Средняя линия равнобедренной трапеции
Формулы длины средней линии равнобедренной трапеции:
1. Формула определения длины средней линии через основания, высоту и угол при основании:
m = a — h ctg α = b + h ctg α = a — √c2 — h2 = b + √c2 — h2
2. Формула средней линии трапеции через площадь и сторону:
Высота равнобедренной трапеции
Формулы определения длины высоты равнобедренной трапеции:
1. Формула высоты через стороны:
2. Формула высоты через стороны и угол прилегающий к основе:
h = | a — b | tg β | = c sin β |
2 |
Диагонали равнобедренной трапеции
Диагонали равнобедренной трапеции равны:
d1 = d2
Формулы длины диагоналей равнобедренной трапеции:
1. Формула длины диагонали через стороны:
d1 = √с2 + ab
2. Формулы длины диагонали по теореме косинусов:
d1 = √a2 + c2 — 2ac cos α
d1 = √b2 + c2 — 2bc cos β
3. Формула длины диагонали через высоту и среднюю линию:
d1 = √h2 + m2
4. Формула длины диагонали через высоту и основания:
Площадь равнобедренной трапеции
Формулы площади равнобедренной трапеции:
1. Формула площади через стороны:
S = | a + b | √4c2 — (a — b)2 |
4 |
2. Формула площади через стороны и угол:
S = (b + c cos α) c sin α = (a — c cos α) c sin α
3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:
S = | 4 r 2 | = | 4 r 2 |
sin α | sin β |
4. Формула площади через основания и угол между основой и боковой стороной:
5. Формула площади ранобедренной трапеции в которую можно вписать окружность:
S = (a + b) · r = √ab·c = √ab·m
6. Формула площади через диагонали и угол между ними:
S = | d12 | · sin γ | = | d12 | · sin δ |
2 | 2 |
7. Формула площади через среднюю линию, боковую сторону и угол при основании:
S = mc sin α = mc sin β
8. Формула площади через основания и высоту:
Окружность описанная вокруг трапеции
Окружность можно описать только вокруг равнобедренной трапеции!!!
Формула определения радиуса описанной вокруг трапеции окружности:
1. Формула радиуса через стороны и диагональ:
R = | a·c·d1 |
4√p(p — a)(p — c)(p — d1) |
где
a — большее основание
Средняя линия трапеции
Это отрезок, который соединяет середины 2 боковых сторон трапеции. Существует несколько способов (формул), позволяющих узнать, чему равна средняя линия.
Рассмотрим некоторые из них.
Как найти среднюю линию трапеции через основания
Если известно, чему равны основания трапеции, то среднюю линию найти совсем не сложно.
Она будет равна полусумме оснований.
EF = (AB + CD) / 2.
Например, если основание AB = 10 см, а основание CD = 6 см, то средняя линия равна (10 + 6) / 2 = 8 см.
Как найти среднюю линию трапеции через площадь и высоту
По классической формуле, площадь трапеции равна полусумме оснований умноженной на высоту. А полусумма оснований и есть средняя линия.
Поэтому, если площадь S = EF * DH, то средняя линия EF = S / DH.
Например, если площадь трапеции равна 30 кв. см, а высота — 6 см, то средняя линия = 30 / 6 = 5 см.
Как найти среднюю линию трапеции через высоту, диагонали и угол между ними
Если неизвестна площадь трапеции, но известны диагонали и угол между ними, то можно воспользоваться одной из формул нахождения площади.
А после этого подставить полученное значение в формулу, позволяющую найти среднюю линию через площадь и высоту.
Если даны диагонали d1 и d2, а также угол между ними (например, γ), то S = 0,5 * d1 *d2 * sinγ.
Подставим это в формулу нахождения средней линии: EF = S / DH = (0,5 * AC * BD * sinγ) / DH = AC * BD * sinγ / 2DH.
Например, высота = 6 см, диагонали — 8 и 10 см, угол между ними — 30 градусов.
EF = (8 * 10 * 0,5) / (2 * 6) = 40 / 12 = 3,33 см.
Как найти среднюю линию равнобедренной трапеции
Трапецией считают четырехугольник, имеющий лишь две параллельные стороны — они называются основаниями этой фигуры. Если при этом длины двух других — боковых — сторон одинаковы, трапеция называется равнобедренной или равнобокой. Линия, которая соединяет середины боковых сторон, называется средней линией трапеции и может быть рассчитана несколькими способами.
Инструкция
Если известны длины обоих оснований (А и В), для вычисления длины средней линии (L) используйте основное свойство этого элемента равнобедренной трапеции — она равна полусумме длин оснований: L = ½*(А+В). Например, в трапеции с основаниями, имеющими длины 10см и 20см, средняя линия должна быть равна ½*(10+20) = 15см.
Средняя линия (L) вместе с высотой (h) равнобокой трапеции является сомножителем в формуле вычисления площади (S) этой фигуры. Если эти два параметра даны в исходных условиях задачи, для вычисления длины средней линии делите площадь на высоту: L = S/h. Например, при площади в 75 см² равнобедренная трапеция высотой в 15см должна иметь среднюю линию длиной в 75/15 = 5см.
При известных периметре (Р) и длине боковой стороны (С) равнобедренной трапеции рассчитать среднюю линию (L) фигуры тоже несложно. Отнимите от периметра две длины боковых сторон, а оставшаяся величина будет суммой длин оснований — поделите ее пополам, и задача будет решена: L = (P-2*С)/2. Например, при периметре, равном 150см, и боковой стороне длиной в 25см длина средней линии должна составить (150-2*25)/2 = 50см.
Зная длины периметра (P) и высоты (h), а также величину одного из острых углов (α) равнобедренной трапеции, тоже можно вычислить длину ее средней линии (L). В треугольнике, составленном высотой, боковой стороной и частью основания, один из углов является прямым, а величина другого известна. Это позволит вычислить длину боковой стороны по теореме синусов — разделите высоту на синус известного угла: h/sin(α). Затем подставьте это выражение в формулу из предыдущего шага и вы получите такое равенство: L = (P-2*h/sin(α))/2 = P/2-h/sin(α). Например, если известный угол имеет величину в 30°, высота равна 10см, а периметр составляет 150см, длина средней линии должна быть рассчитана так: 150/2-10/sin(30°) = 75-20 = 55см.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Термин «трапеция» произошёл от греческого слова «столик». В русском языке от того же слова произошло
понятие «трапеза» — еда.
Средняя линия — отрезок, который прокладывается через противолежащие стороны, и который дробит их
точно на половинки.
Средняя линия трапеции имеет три отличительных черты:
- Она параллельна базовым сторонам четырёхугольника;
- Эквивалентна половинке суммирования оснований;
- Разбивает первоначальный четырёхугольник на две поменьше. Вместе с тем их площади имеют
конкретное соотношение друг к другу.
- Средняя линия трапеции через длины оснований
- Средняя линия трапеции через площадь и высоту
- Средняя линия трапеции через нижнее основание, высоту и
углы при нижнем основании - Средняя линия трапеции через верхнее основание, высоту и
углы при нижнем основании - Средняя линия трапеции через диагонали, высоту и угол между
диагоналями - Средняя линия трапеции через боковые стороны, верхнее
основание и углы при нижнем основании - Средняя линия трапеции через боковые стороны, нижнее
основание и углы при нижнем основании - Средняя линия равнобедренной трапеции через боковую
сторону, нижнее основание и угол между ними - Средняя линия равнобедренной трапеции через боковую
сторону, верхнее основание и угол при нижнем основании - Средняя линия прямоугольной трапеции через нижнее
основание, высоту и острый угол при нижнем основании - Средняя линия прямоугольной трапеции через верхнее
основание, высоту и острый угол при нижнем основании
Через длины оснований
Имеется одно основная формулировка, которая позволяет рассчитывать величину средней линии. Величина
средней линии будет равна сумме базовых сторон фигуры, поделённой напополам. Формула следующая:
M = a + b / 2
где a и b — наибольшая и наименьшая стороны.
Цифр после
запятой:
Результат в:
Пример. Если наибольшая базовая сторона равна 8, а наименьшая — 10, то (8 + 10) / 2 = 9. Или, если
наибольшая базовая сторона равна 15, а наименьшая — 3. Тогда:
(3 + 15) / 2 = 9.
Через площадь и высоту
Формулировка поиска величины срединного отрезка через площадь и перпендикуляр:
M = S / h
где S — площадь, h — перпендикуляр.
Цифр после
запятой:
Результат в:
Пример. Если площадь равняется 20, а высота — 5, тогда: M = 20 / 5 = 4. Если площадь равна 50, а
высота равна 5, тогда срединный отрезок:
M = 50 / 5 = 10.
Через верхнее основание, высоту и углы при нижнем основании
Равенство расчёта величины срединного отрезка через наибольшую базовую сторону, высоту и углы при
наименьшей базовой стороне выглядит:
M = b + h * (ctg α + ctg β)/2
где b — наибольшая базовая сторона, α и β — углы при наименьшей базовой стороне, h — высота.
Цифр после
запятой:
Результат в:
Пример. Наибольшая сторона равняется 15, высота — 6, а углы — 45 и 30. В таком случае:
m = 15 + 6 · (ctg 45 + ctg 30)/2 = 15 + 6 · (1 + √3)/2 ≈ 23,196.
Через диагонали, высоту и угол между диагоналями
Формулировка исчисления величины срединного отрезка через диагонали, высоту и уголок между
диагоналями описывается:
M = (d1 * d2)/2h * sin α
где d1, d2 — диагонали, α — уголок между диагоналями, h — высота.
Цифр после
запятой:
Результат в:
Пример. Пусть диагонали четырёхугольника равняются 15 и 4, высота — 5, а уголок между диагоналями
фигуры — 30 градусов. Значит:
m = (15 * 4)/(2 * 5) * sin 30 = 6 * 1/2 = 3.
Если в качестве диагоналей взять 20 и 5, высоты — 6, а угла — 30, тогда: m = (20 * 5)/(2 * 6) * sin
30 ≈ 8,33 * 1/2 ≈ 4,167.
Через нижнее основание, высоту и углы при нижнем основании
Формулировка нахождения величины срединного отрезка через наименьшую базовую сторону, высоту и углы
при наименьшей базовой стороне приведена далее:
M = a — h * (ctg α + ctg β)/ 2
где a — наименьшая базовая сторона, α и β — углы при наименьшей базовой стороне, h — высота
четырёхугольника.
Цифр после
запятой:
Результат в:
Пример. Если наименьшая базовая сторона четырёхугольника равносильна 5, углы — 45 и 45, а высота — 2,
тогда: 5 – 2 · (ctg 45 + ctg 45)/ 2 = 3.
Через боковые стороны, верхнее основание и углы при нижнем основании
Тождество поиска величины срединного отрезка через вспомогательные стороны, наибольшую сторону и углы
при наименьшей стороне:
m = (2b + c * cos α + d * cos β) / 2
где b — наибольшая сторона, c и d — вспомогательные стороны, α и β — углы при наименьшей стороне.
Цифр после
запятой:
Результат в:
Пример. Если в качестве наибольшей стороны взять 15, наклонных сторон — 7 и 9, а углов при наименьшей
стороне — 60 и 60 градусов. Следовательно: m = (2 * 15 + 7 * cos 60 + 9 * cos 60) / 2 = (30 +
3,5 + 4,5) / 2 = 19.
Через боковые стороны, нижнее основание и углы при нижнем основании
Выражение исчисления величины срединного отрезка через вспомогательные стороны, меньшую сторону и углы при меньшей стороне:
m = (2a — c * cos α — d * cos β) / 2
где a — меньшая сторона, c и d — наклонные стороны, α и β — углы.
Угол (α):
Угол (β):
Цифр после запятой:
Результат в:
К примеру, если нижняя сторона равна 8, боковая сторона 5, а угол при нижней стороне фигуры — 60, тогда:
m = (2 · 8 – 2 · 5 · cos 60) / 2 = 3.
Если же нижняя сторона равняется 12, боковая сторона 6, а угол при нижней стороне — 60, в таком случае:
m = (2 · 12 – 2 · 6 · cos 60) / 2 = 9.
Средняя линия равнобедренной трапеции через боковую сторону, верхнее основание и угол при нижнем
основании
Формула расчёта длины срединного отрезка через боковые стороны, верхнюю сторону и углы при нижней
стороне:
m = (2b + 2c · cos β) / 2
где b — верхняя сторона, c — боковая сторона четырёхугольника, β — угол.
Цифр после
запятой:
Результат в:
Например, если верхняя сторона четырёхугольника равняется 5, боковая сторона 8, а угол при нижней
стороне фигуры — 60, тогда срединный отрезок рассчитывается следующим образом: m = (2 · 5 – 2 ·
8 · cos 60) / 2 = 1.
Если представить верхнюю сторону длиной 6, боковую сторону длиной 5, а угол при нижней стороне
четырёхугольника — 60, в таком случае: m = (2 · 6 – 2 · 5 · cos 60) / 2 = 3,5.
Через боковые стороны, нижнее основание и углы при нижнем основании
Выражение исчисления величины срединного отрезка через вспомогательные стороны, меньшую сторону и
углы при меньшей стороне:
m = (2a — c * cos α — d * cos β) / 2
где a — меньшая сторона, c и d — наклонные стороны, α и β — углы.
Цифр после
запятой:
Результат в:
К примеру, если нижняя сторона равна 8, боковая сторона 5, а угол при нижней стороне фигуры — 60,
тогда: m = (2 · 8 – 2 · 5 · cos 60) / 2 = 3.
Если же нижняя сторона равняется 12, боковая сторона 6, а угол при нижней стороне — 60, в таком
случае: m = (2 · 12 – 2 · 6 · cos 60) / 2 = 9.
Средняя линия прямоугольной трапеции через нижнее основание, высоту и острый угол при нижнем
основании
Формула определения длины срединного отрезка через боковые стороны, верхнюю сторону и углы при нижней
стороне:
m = a – h · ctg β / 2
где a — нижняя сторона, h — высота, β — острый уголок при нижней стороне.
Цифр после
запятой:
Результат в:
Пример. Пусть нижняя сторона четырёхугольника равняется 8, высота — 3, а острый уголок — 45, в таком
случае: m = 8 – 3 · ctg 45 / 2 = 6,5.
Средняя линия прямоугольной трапеции через верхнее основание, высоту и острый угол при нижнем
основании
Формула определения длины срединного отрезка через боковые стороны, верхнюю сторону и углы при нижней
стороне:
m = b + h · ctg β / 2
где b — верхняя сторона, h — высота, β — острый угол при нижней стороне.
Цифр после
запятой:
Результат в:
Пример. В качестве верхнего возьмём 4, высоты — 2, острого угла — 45. В таком случае формула
такая: m = 4 + 2 · ctg 45 / 2 = 5.
Общее понятие трапеции
Трапеция — геометрическая фигура, четырёхугольник, две противолежащие стороны которого размещены на
параллельных прямых. В свою очередь, две иные стороны должны быть не параллельными. Нередко в
описании четырёхугольника не обращают внимания на завершающее требование.
Впервые эту фигуру описал математик Древней Греции Евклид в своих работах. В своей книге «Начала» он
таким образом характеризует всякий четырёхугольник, не являющийся параллелограммом.
Описывая трапецию, необходимо выделить следующие элементы:
- Параллельные противолежащие стороны именуются основаниями фигуры;
- Две иные стороны именуют боковыми или наклонными сторонами;
- Отрезок, который объединяет средины вспомогательных сторон, прозвали средней линией
четырёхугольника; - Углом при основании трапеции прозвали её внутренний уголок, который образовало основание с
наклонной стороной.
Выделяют такие характеристики трапеции:
- Срединный отрезок трапеции пролегает параллельно основаниям и равняется половине их
суммирования; - Отрезок, который объединяет средины диагоналей трапеции, равняется половинке разности оснований
и пролегает по средней линии; - Отрезок, который параллелен основаниям и пролегает через точку скрещивания диагоналей,
разделяется последней напополам и равняется 2xy / (x + y) среднему гармоническому (один из
методов, которым можно характеризовать «среднюю» величину определённой совокупности чисел)
величин оснований трапеции; - В трапецию можно вписать окружность, если суммирование величин оснований четырёхугольника
равняется суммированию величин её вспомогательных сторон; - Точка скрещивания диагоналей трапеции, точка скрещивания последующих продлений её
вспомогательных сторон и средины оснований располагаются на единой прямой; - Если суммирование углов при одном из оснований трапеции равняется 90°, в таком случае
продолжения наклонных сторон перекрещиваются под прямым углом, а отрезок, объединяющий средины
оснований, равняется половинке их разности; - Диагонали четырёхугольника разделяют его на четыре треугольника. Два из них, которые прилегают к
основаниям, подобны. Два иных, которые прилегают к вспомогательным сторонам, имеют равную
площадь; - Если отношение оснований равно K, тогда отношение площадей треугольников, которые прилегают к
ним, равняется K2; - Прямая Ньютона (прямая, которая объединяет серединки диагоналей четырёхугольника) для
четырёхугольника сходится с её срединным отрезком.
Рассмотренная версия трапеции — это наиболее популярная разновидность геометрической фигуры. Однако,
выделяют и дополнительные ситуации.
Равнобедренная или равнобокая или равнобочная трапеция — та, у которой наклонные, иными словами,
непараллельные, стороны равняются друг другу. В евклидовой геометрии равнобедренной трапецией
именуется выпуклый четырёхугольник с осью симметрии, которая пролегает через средины двух
противолежащих сторон. Во всякой равнобедренной трапеции два противолежащих основания параллельны,
две наклонные стороны имеют одинаковые величины (характеристика, которой параллелограмм также
соответствует). Диагонали также имеют равносильные величины. Углы при всяком основании равняются
друг другу и углы при разнообразных основаниях считаются смежными, иначе говоря, в сумме
составляющие 180 градусов.
Трапеция является равнобедренной лишь в том случае, когда выполняется одно из таких эквивалентных
условий:
- Прямая, пролегающая через средины оснований, ортогональна ним;
- Перпендикуляр, который проложен из вершины на наиболее протяжённое основание, разделяет его на
две части, одна из которых равняется половине суммирования оснований, а другая — половинке
разности; - Углы при всяком основании равносильны;
- Суммирование противолежащих углов равняется 180 градусам;
- Величины диагоналей равносильны;
- Вокруг следующего четырёхугольника можно описать окружность;
- Вершинами подобного четырёхугольника ещё считаются вершины какого-либо антипараллелограмма или
контрпараллелограмма (плоского четырёхугольника, где всякие две противолежащие стороны равняются
друг другу, но не параллельны, в сравнении с параллелограммом); - Если в равнобедренной трапеции диагонали ортогональны, тогда перпендикуляр равняется половине
суммирования базовых сторон.
Диагонали равнобедренной трапеции равносильны. Иными словами, всякая равнобедренная трапеция
считается равнодиагональным четырёхугольником. Тем не менее диагонали равнобедренной трапеции
разделяются в одинаковой пропорции.
Прямоугольная трапеция — та, где одна из наклонных сторон и основание формируют прямой угол (в 90
градусов).
Иным особенным случаем считается трапеция с тремя равносильными сторонами. В иностранной литературе
её именуют трёхсторонней трапецией или триравнобедренной трапецией. Подобный четырёхугольник
анализируется как отсечение четырёх последовательных вершин от правильного многоугольника, который
имеет пять или больше сторон.
По заданному описанию параллелограмм и прямоугольник — особые случаи трапеции. Тем не менее при
применении подобного термина основная доля характеристик равнобедренной трапеции становится
недействительна, так как параллелограмм становится её особым случаем.
Анализирование трапеции неразрывно связано с окружностью:
- Если суммирование базовых сторон трапеции равносильно суммированию вспомогательных сторон, то в
неё можно вписать окружность. Средняя линия в такой ситуации равносильна суммированию наклонных
сторон, разделённой на два, ведь средняя линия трапеции равносильна половинке суммирования
оснований; - В четырёхугольнике его вспомогательная сторона различима из центра вписанной окружности
ортогонально; - Если четырёхугольник можно вписать в окружность, в такой ситуации она равнобедренная.