Как найти середину стороны в прямоугольном треугольнике

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

Обратная теорема Пифагора:

Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным

Что такое средняя линия треугольника

В данной публикации мы рассмотрим определение, свойства и признак средней линии треугольника, а также разберем пример решения задачи для лучшего понимания теоретического материала.

Определение средней линии треугольника

Отрезок, который соединяет середины двух сторон треугольника, называется его средней линией.

  • KL – средняя линия треугольника ABC
  • K – середина стороны AB: AK = KB
  • L – середина стороны BC: BL = LC

Свойства средней линии треугольника

Свойство 1

Средняя линия треугольника параллельна одной из его сторон (которую не пересекает) и в два раза меньше этой стороны.

На рисунке выше:

Свойство 2

Средняя линия треугольника отсекает от него подобный треугольник (в соотношении 1:2), площадь которого в 4 раза меньше исходного.

На рисунке выше:

  • △KBL ∼ △ABC (подобие по пропорциональности всех сторон)
  • Стороны △KBL в два раза меньше соответствующих сторон △ABC:
    AB = 2KB, BC = 2BL, AC = 2KL
    .
  • S△ABC = 4 ⋅ S△KBL

Свойство 3

В любом треугольнике можно провести три средние линии.

KL, KM и ML – средние линии треугольника ABC.

Свойство 4

Три средние линии треугольника делят его на 4 равных по площади треугольника.

Признак средней линии треугольника

Отрезок, проходящий через середину одной из сторон треугольника, пресекающий вторую и параллельный третьей стороне, является средней линией этого треугольника.

Пример задачи

Дан треугольник, две стороны которого равны 6 и 8 см. Найдите длину средней линии, соединяющей эти стороны.

Треугольник с заданными сторонами является прямоугольным, причем известные значения – это длины катетов. Средняя линия, которая соединяет катеты, параллельна гипотенузе и равна половине ее длины.

Мы можем найти гипотенузу, воспользовавшись теоремой Пифагора.

BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
BC = 10.

Таким образом, средняя линия LM = 1 /2 ⋅ BC = 1 /2 ⋅ 10 = 5.

Как найти среднюю линию треугольника?

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие треугольника

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, которые не лежат на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

  • Прямоугольный. Один угол прямой, то есть равен 90 градусам, два других меньше 90 градусов.
  • Остроугольный. Градусная мера всех углов больше 0, но меньше 90 градусов.
  • Тупоугольный. Один угол тупой, два других — острые.

Треугольник считают равнобедренным, если две его стороны равны. Эти стороны называют боковыми сторонами, а третью — основанием.

Треугольник, у которого все стороны равны, называется равносторонним или правильным.

Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, которая лежит напротив прямого угла — гипотенуза, а две другие стороны — катеты.

Правильный (равносторонний или равноугольный) треугольник — это правильный многоугольник, в котором все стороны равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

Свойства треугольников:

  • В треугольнике против большего угла лежит большая сторона — и наоборот.
  • Сумма углов треугольника равна 180 градусов.
  • Все углы равностороннего треугольника равны 60 градусам.
  • В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Понятие средней линии треугольника

Определение средней линии треугольника подходит для любого вида этой фигуры.

​Средняя линия треугольника — отрезок, который соединяет середины двух сторон. В любом треугольнике можно провести три средних линии.

​Основанием считается сторона, которой параллельна средняя линия.

Как найти среднюю линию треугольника — расскажем дальше, а для начала еще немного разберемся со всеми определениями.

Понятие средней линии прямоугольного треугольника

Математики говорят: в любом треугольнике можно провести три средних линии. В прямоугольном треугольнике этот отрезок будет равен половине основания — это и есть формула средней линии прямоугольного треугольника.

Прямой угол помогает нам применить другие признаки равенства и подобия. Для углов в прямоугольном треугольнике можно использовать геометрические тождества без дополнительных построений, а любую из сторон можно найти по теореме Пифагора.

В прямоугольном треугольнике две средние линии перпендикулярны катетам, а третья равна медиане, проведенной к гипотенузе. Средние линии острого и разностороннего треугольника не обладают подобными свойствами.

Свойства средней линии треугольника

Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей — этот отрезок можно назвать средней линией этого треугольника.

Свойства:

  1. Средняя линия равна половине длины основания и параллельна ему.
  2. Средняя линия отсекает треугольник, подобный данному с коэффициентом 1/2; его площадь равна четверти площади данного.
  3. Три средние линии разделяют исходную фигуру на четыре равных треугольника. Центральный из них называют дополнительным.
  4. Три средние линии разделяют исходный прямоугольный треугольник на четыре равных прямоугольных треугольника.

Теорема о средней линии треугольника

Теорема о средней линии треугольника звучит так:

Средняя линия треугольника параллельна основанию и равна его половине. А так выглядит формула нахождения средней линии треугольника:

Докажем теорему:

По условию нам дано, что MA = MB, NA = NC

Рассмотрим два образовавшихся треугольника ΔAMN и ΔABC.

(по второму признаку подобия треугольников).

△ABC, то Следовательно, ВС = 2МN. Значит, доказано, что средняя линия равна половине основания.

△ABC, то ∠1 = ∠2 . Так как ∠1 и ∠2 — соответственные углы, то по признаку параллельности прямых MN || BC.

Параллельность средней линии и соответствующего ей основания доказана.

Пример 1. В треугольнике ΔABC AB = 8, BC = 7, CA = 5, точки M, K, N — середины сторон AB, BC, CA соответственно. Найти периметр ΔMNK.

Соединим середины сторон треугольника ΔABC и получим его средние линии, которые образуют треугольник ΔMNK. Найдем их длины по теореме о средней линии:

Ответ: периметр треугольника ΔMNK равен 10.

Пример 2. В прямоугольном треугольнике АВС есть две средние линии: MN и NP, равные 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.

Площадь треугольника равна половине произведения основания на высоту. Так как треугольник прямоугольный, то его площадь найдем как половину произведения катетов:

Так как MN — средняя линия, то по теореме о средней линии она равна половине катета AC:

Значит, AC = 2MN = 2 × 3 = 6.

Так как NP — средняя линия, то по теореме о средней линии она равна половине катета BC:

Значит, BC = 2NP = 2 × 4 = 8.

Тогда найдем площадь большого треугольника, используя формулу, указанную выше:

S = ½ × 6 × 8 = ½ × 48 = 24.

Ответ: площадь большого прямоугольного треугольника равна 24.

источники:

Что такое средняя линия треугольника

http://skysmart.ru/articles/mathematic/kak-najti-srednyuyu-liniyu-treugolnika

Как найти среднюю линию треугольника

​Средняя линия треугольника — отрезок, соединяющий середины двух его сторон.

Свойства и признаки

Признак средней линии: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей, то этот отрезок называется средней линией данного треугольника.

Свойства:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  1. Равна половине длины основания и параллельна ему.
  2. Отсекает треугольник, подобный данному с коэффициентом 1/2; его площадь равна четверти площади данного.
  3. Три средние линии разделяют исходную фигуру на четыре равных треугольника. Центральный из них называют дополнительным треугольником.
  4. Три средние линии разделяют исходный прямоугольный треугольник на четыре равных прямоугольных треугольника.

Формула для расчета

Теорема

Средняя линия треугольника параллельна основанию и равна её половине.

Доказательство

(A_1C_1) — средняя линия

Рассмотрим (triangle BA_1C_1) и (triangle BAC) :

Из этого следует, что треугольники подобны по двум пропорциональным сторонам и углу между ними.

Следовательно, (angle BA_1C_1=angle BAC) , как соответственные элементы подобных треугольников. Следовательно (A_1C_1parallel AC) по признаку параллельности.

Кроме того, из подобия следует, что (frac=frac12)

Примечание

Данная формула одинаково работает для любого треугольника: равнобедренного, равностороннего (правильного).

Задачи на использование теоремы

Задача 1

В прямоугольном треугольнике ABC проведены средние линии: MN; NP; MP. При этом MN=NP=2. Найти площадь треугольника ABC.

Задача 1

Рассмотрим прямоугольный треугольник NMP:

(S_=frac12times MNtimes NP=frac12times2times2=2)

Все маленькие треугольники равны, следовательно (S_=2times4=8)

Задача 2

Площадь треугольника ABC равна 8. MN — средняя линия. Необходимо вычислить площадь треугольника BMN.

Задача 2

Задача 3

В треугольнике ABC точки M, N, K – середины сторон AB, BC, AC соответственно, MN=12, MK=10, KN=8. Необходимо узнать периметр треугольника ABC.

Средняя линия треугольника

Средняя линия треугольника

Найдем площадь треугольника ABC:

[S_{ABC} =frac{1}{2} ACcdot BK=frac{1}{2} cdot 12cdot 5=30 cm^{2} ]

Так как средняя линия MNотсекает треугольник MBN, площадь которого равна одной четвёртой площади исходного треугольника ABC, то площадь треугольника MBNравна:

[S_{MBN} =frac{1}{4} S_{ABC} =frac{1}{4} cdot 30=7,5 cm^{2} ]

AC=2KN=8см , AB=2NL=10см , BC=2KL=16см

Теперь можно найти периметр треугольника ABCкак сумму длин всех его сторон:

P_{ABC} =AC+AB+BC=8+10+16=34

см

Что такое средняя линия треугольника

В данной публикации мы рассмотрим определение, свойства и признак средней линии треугольника, а также разберем пример решения задачи для лучшего понимания теоретического материала.

  • Определение средней линии треугольника
  • Свойства средней линии треугольника
    • Свойство 1
    • Свойство 2
    • Свойство 3
    • Свойство 4

    Определение средней линии треугольника

    Отрезок, который соединяет середины двух сторон треугольника, называется его средней линией.

    Средняя линия треугольника

    • KL – средняя линия треугольника ABC
    • K – середина стороны AB: AK = KB
    • L – середина стороны BC: BL = LC

    Свойства средней линии треугольника

    Свойство 1

    Средняя линия треугольника параллельна одной из его сторон (которую не пересекает) и в два раза меньше этой стороны.

    На рисунке выше:

    • KL параллельна AC
    • KL = 1 /2 ⋅ AC

    Свойство 2

    Средняя линия треугольника отсекает от него подобный треугольник (в соотношении 1:2), площадь которого в 4 раза меньше исходного.

    На рисунке выше:

    • △KBL ∼ △ABC (подобие по пропорциональности всех сторон)
    • Стороны △KBL в два раза меньше соответствующих сторон △ABC:
      AB = 2KB, BC = 2BL, AC = 2KL
      .
    • S△ABC = 4 ⋅ S△KBL

    Свойство 3

    В любом треугольнике можно провести три средние линии.

    Три средние линии треугольника

    KL, KM и ML – средние линии треугольника ABC.

    • KL || AC, KL = 1 /2 ⋅ AC
    • KM || BC, KM = 1 /2 ⋅ BC
    • ML || AB, ML = 1 /2 ⋅ AB

    Свойство 4

    Три средние линии треугольника делят его на 4 равных по площади треугольника.

    Деление треугольника на 4 равных треугольника тремя средними линиями

    Признак средней линии треугольника

    Отрезок, проходящий через середину одной из сторон треугольника, пресекающий вторую и параллельный третьей стороне, является средней линией этого треугольника.

    Пример задачи

    Дан треугольник, две стороны которого равны 6 и 8 см. Найдите длину средней линии, соединяющей эти стороны.

    Треугольник с заданными сторонами является прямоугольным, причем известные значения – это длины катетов. Средняя линия, которая соединяет катеты, параллельна гипотенузе и равна половине ее длины.

    Средняя линия в прямоугольном треугольнике

    Мы можем найти гипотенузу, воспользовавшись теоремой Пифагора.

    BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
    BC = 10.

    Таким образом, средняя линия LM = 1 /2 ⋅ BC = 1 /2 ⋅ 10 = 5.

Одним из важных понятий, с помощью которого легко решается целый класс задач по геометрии, является средняя линия треугольника. 

Разберём данное понятие, рассмотрим свойства, и научимся правильно решать задачи на эту тему.

Определение и признаки средней линии треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется его средней линией.

Средняя линия треугольника

Отрезок, у которого один из концов совпадает с серединой одной из сторон, другой находится на второй стороне, проведённый параллельно третьей стороне, является средней линией треугольника.

Доказательство следует из теоремы Фалеса.

Теорема Фалеса

Теорема о средней линии треугольника

Средняя линия треугольника параллельна основанию (третьей стороне) и равна её половине.

Существует три вида доказательств этого положения. Каждое из них базируется на одной из ключевых позиций планиметрии.

Пусть дан треугольник ABC, M – середина стороны AB, N – середина BC.

По определению, MN – средняя линия ΔABC.

1

Необходимо доказать, что MN II AC, MN = ½AC.

Доказательства

Первый способ

Пусть прямая MK II AC. Тогда по теореме Фалеса MK пересекает сторону BC в её середине. В этом случае отрезок MN лежит на прямой MK. 

Следовательно, MN II AC.

Пусть NP II AB.

2

Тогда NP – средняя линия по теореме Фалеса, то есть AP = PC.

Так как AMNP – параллелограмм по определению, то AP = MN. Из этого и предыдущего утверждения следует, что длина MN равна ½AC.

Доказано.

Второй способ

Рассматриваются треугольники MBN и ABC. В них угол B является общим,  

3

По второму признаку подобия треугольников ΔMBN ∼ ΔABC. Следовательно, углы BMN и BAC равны.

Поскольку эти углы являются соответственными, то прямые MN и AC параллельны.

Формула MN = ½AC следует из условий 

3

поскольку пропорциональность двух пар сторон влечёт соответствующее отношение для третьей пары сторон.

Доказано.

Третий способ

Рассматривается сумма векторов

4

Поскольку в результате образуется замкнутая ломаная, то

5

Отсюда следует, что

6

Так как

7

то

8

9

Из последнего равенства следуют условия теоремы.

Доказано.

Следствия из теоремы с доказательствами

Следствие №1

Средняя линия отсекает треугольник, подобный данному, с коэффициентом подобия ½ и площадью, составляющий ¼ площади заданного треугольника.

Доказательство.

1

По определению стороны AB и BC делятся пополам, поэтому

10

Согласно теореме,

11

Из третьего признака подобия вытекает рассматриваемое свойство.

Поскольку площади подобных фигур относятся как квадрат коэффициента подобия, то получается вторая часть свойства, то есть площадь маленького треугольника относится к площади большого как

12

Доказано.

Следствие №2

Три средних линии треугольника разбивают его на четыре равных треугольника, подобные заданному, с коэффициентом подобия ½.

Доказательство.

2_2

Поскольку MN – средняя линия, то MN II AC, поэтому ∠BMN = ∠BAP, ∠BNM = ∠BCA как соответственные при MN II AC и секущей AB или BC соответственно.

Поскольку MP – средняя линия, то MP II BC, поэтому ∠MPA = ∠BCA как соответственные при MP II BC и секущей AC.

Таким образом: ∠BNM = ∠BCA = ∠MPA.

Так как MN – средняя линия, то сторона MN = ½AC, поэтому MN = AP.

Следовательно, ΔAMP = ΔMBN по второму признаку равенства треугольников.

Равенство остальных пар треугольников доказывается аналогично.

По основному свойству ΔMBN ∼ ΔABC с коэффициентом подобия ½. Так как все полученные маленькие треугольники равны между собой, то каждый из них, следовательно, подобен большому с тем же коэффициентом.

Доказано.

Свойства средней линии треугольника

Теорема и следствия из неё составляют основные свойства средней линии треугольника.

g9

Согласно второму утверждению, вид большого треугольника такой же, как и у маленьких. То есть для равностороннего и равнобедренного треугольников средние линии отсекают равносторонние и равнобедренные треугольники.

Высоты тупоугольного треугольника, проведённые к тупому углу из вершин острых, располагаются вне треугольника. Поэтому часто рассматривают не саму среднюю линию, а её продолжение. Учитывая подобие получаемых фигур, можно утверждать, что точкой пересечения с продолжением средней линии высота делится на две равные части.

Биссектриса угла треугольника точкой пересечения со средней линией также делится пополам.

Средняя линия прямоугольного треугольника

Для прямоугольного треугольника две средние линии перпендикулярны катетам, а третья равна медиане, проведённой к гипотенузе.

Средняя линия прямоугольного треугольника

Остроугольный разносторонний треугольник не имеет средних линий, обладающих подобными характеристиками.

Пример решения задачи

20

Доказать, что середины сторон произвольного выпуклого четырёхугольника являются вершинами параллелограмма.

Решение.

Проводя диагональ четырёхугольника, получают разбиение на два треугольника, в каждом из которых построена средняя линия, параллельная по основной теореме диагонали, как основанию.

Так как две прямые, параллельные третьей, параллельны между собой, то противолежащие стороны образованного средними линиями четырёхугольника параллельны.

Аналогично доказывается параллельность двух других сторон нового четырёхугольника. По определению четырёхугольник, полученный соединением середин сторон заданного четырёхугольника, является параллелограммом.

Доказано.

Как найти середину треугольника

Геометрические задачи на построение, в которых использовались только циркуль и линейка, зародились еще в древней Греции. Уже во времена Евклида и Платона математики умели решать множество геометрических задач. Например, строить правильные треугольники, квадраты, разбивать отрезки на равные части и находить центр треугольника.

Как найти середину треугольника

Вам понадобится

  • — лист бумаги или тетрадь (лучше в клеточку)
  • — линейка
  • — карандаш
  • — циркуль

Инструкция

Отметьте на плоскости три точки А, В и С, причём так, чтобы они не лежали на одной прямой. Соедините полученные точки между собой отрезками АВ, ВС и СВ. У вас получился треугольник АВС – геометрическая фигура, имеющая три стороны, три вершины и три угла.

Найдите середину отрезка АВ. Для этого возьмите циркуль и проведите две окружности одинакового радиуса, равного отрезку АВ с центрами в вершинах А и В. Найдите точки пересечения P и Q двух построенных окружностей. С помощью линейки постройте отрезок, концами которого будут точки P и Q. Найдите искомую середину отрезка АВ – ею будет являться точка пересечения стороны АВ с отрезком PQ.

Найдите середины стороны ВС. Для этого возьмите циркуль и проведите две окружности одинакового радиуса равного отрезку ВС с центрами в вершинах В и С. Найдите точки пересечения H и G двух построенных окружностей. С помощью линейки постройте отрезок, концами которого будут точки H и G. Найдите искомую середину отрезка BC – ею будет являться точка пересечения стороны BC с отрезком HG.

Найдите середины стороны СА. Для этого возьмите циркуль и проведите две окружности одинакового радиуса, равного отрезку СА с центрами в вершинах С и А. Найдите точки пересечения M и N двух построенных окружностей. С помощью линейки постройте отрезок, концами которого будут точки M и N. Найдите искомую середину отрезка СА – ею будет являться точка пересечения стороны СА с отрезком MN.

Постройте медианы треугольника. Для этого с помощью линейки и карандаша проведите отрезки, соединяющие вершины треугольника с серединами противолежащих сторон этого треугольника. В результате правильно построения медианы должны пересечься в одной точке.

Найдите центр треугольника. Им будет являться точка пересечения медиан. Центр треугольника ещё по-другому называют центром тяжести.

Полезный совет

Помните о точности построений, иначе вы не получите желаемого результата.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Прямоугольный треугольник

Любой треугольник всегда можно представить как «сумму» или «разность» двух прямоугольных треугольников – достаточно провести высоту. Поэтому многие свойства произвольных треугольников и многоугольников следуют из свойств прямоугольного треугольника и высот произвольного треугольника.

В логике теорем | Для решения задач | Задачи | Комментарии

1 Дополнительное построение, ведущее к теореме о средней линии треугольника, трапеции и свойствам подобия треугольников.

Прямоугольный треугольник

Проводим из вершины прямого угла отрезок прямой, составляющий с катетом CA угол, равный углу CAB заданного прямоугольного треугольника ABC. В результате получим равнобедренный треугольник ACM с углами при основании alpha. Но другой треугольник, получающийся при таком построении, также будет равнобедренным, поскольку каждый его угол при основании равен d-alpha (по свойству углов прямоугольного треугольника и по построению — из прямого угла «вычли» угол alpha). В силу того, что треугольники BMC и AMC равнобедренные с общей стороной MC имеем равенство MB=MA=MC, т.е. MC – медиана, проведенная к гипотенузе прямоугольного треугольника, и она равна половине гипотенузы.
Следствие 1. Середина гипотенузы является центром окружности, описанной вокруг этого треугольника, поскольку получилось, что середина гипотенузы равноудалена от вершин прямоугольного треугольника.
Следствие 2. Средняя линия прямоугольного треугольника, соединяющая середину гипотенузы и середину катета, параллельна противоположному катету и равна его половине.

PL08

Опустим в равнобедренных треугольниках BMC и AMC высоты MH и MG на основания. Поскольку в равнобедренном треугольнике, высота, опущенная на основание, является также и медианой (и биссектрисой), то MH и MG –линии прямоугольного треугольника, соединяющие середину гипотенузы с серединами катетов. По построению они оказываются параллельными противоположным катетам и равные их половинам, поскольку треугольники равны MHC и MGC равны (причем MHCG – прямоугольник). Этот результат является основанием для доказательства теоремы о средней линии произвольного треугольника и, далее, средней линии трапеции и свойства пропорциональности отрезков, отсекаемых параллельными прямыми на двух пересекающих их прямых.

2 Все прямоугольные треугольники с одинаковым острым углом — подобны. Взгляд на тригонометрические функции.

Прямоугольный треугольник

Треугольники со сторонами штрихованными и с не штрихованными подобны по равенству двух углов. Поэтому frac{a'}{a}=frac{b'}{b}=frac{c'}{c}, откуда

frac{a'}{c'}=frac{a}{c},,frac{b'}{c'}=frac{b}{c},,frac{b'}{a'}=frac{b}{a}.

Это значит, что указанные отношения зависят лишь от острого угла прямоугольного треугольника и по сути определяют его. Это одно из оснований появления тригонометрических функций:

sinalpha=frac{a'}{c'}=frac{a}{c}=cosbeta,,cosalpha=frac{b'}{c'}=frac{b}{c}=sinbeta,

mathrm{tg}beta=frac{b'}{a'}=frac{b}{a}=mathrm{ctg}alpha.

Часто запись тригонометрических функций угла в подобных прямоугольных треугольниках наглядней записи соотношений подобия !

3 Пример дополнительного построения — высота, опущенная на гипотенузу. Вывод теоремы Пифагора на основе подобия треугольников.

Прямоугольный треугольник

Опустим на гипотенузу AB высоту CH. Имеем три подобных треугольника ABC, AHC и CHB. Запишем выражения для тригонометрических функций:

cosbeta=frac{c_1}{a}=frac{a}{c},,cosalpha=frac{c_2}{b}=frac{b}{c}.

Отсюда видно, что a^2=c_1c,,b^2=c_2c. Складывая, получаем теорему Пифагора, поскольку c_1+c_2=c:

a^2+b^2=(c_1+c_2)c=c^2.

1Все прямоугольные треугольники с одинаковым острым углом — подобны. Взгляд на тригонометрические функции.

Прямоугольный треугольник

Треугольники со сторонами штрихованными и с не штрихованными подобны по равенству двух углов. Поэтому frac{a'}{a}=frac{b'}{b}=frac{c'}{c}, откуда

frac{a'}{c'}=frac{a}{c},,frac{b'}{c'}=frac{b}{c},,frac{b'}{a'}=frac{b}{a}.

Это значит, что указанные отношения зависят лишь от острого угла прямоугольного треугольника и по сути определяют его. Это одно из оснований появления тригонометрических функций:

sinalpha=frac{a'}{c'}=frac{a}{c}=cosbeta,,cosalpha=frac{b'}{c'}=frac{b}{c}=sinbeta,

mathrm{tg}beta=frac{b'}{a'}=frac{b}{a}=mathrm{ctg}alpha.

Часто запись тригонометрических функций угла в подобных прямоугольных треугольниках наглядней записи соотношений подобия !

2Пример дополнительного построения — высота, опущенная на гипотенузу. Вывод теоремы Пифагора на основе подобия треугольников.

Прямоугольный треугольник

Опустим на гипотенузу AB высоту CH. Имеем три подобных треугольника ABC, AHC и CHB. Запишем выражения для тригонометрических функций:

cosbeta=frac{c_1}{a}=frac{a}{c},,cosalpha=frac{c_2}{b}=frac{b}{c}.

Отсюда видно, что a^2=c_1c,,b^2=c_2c. Складывая, получаем теорему Пифагора, поскольку c_1+c_2=c:

a^2+b^2=(c_1+c_2)c=c^2.

Другое доказательство теоремы Пифагора см.в комментарии к задаче 4.

3Важный пример дополнительного построения – построение угла, равного одному из углов треугольника.

Прямоугольный треугольник

Проводим из вершины прямого угла отрезок прямой, составляющий с катетом CA угол, равный углу CAB заданного прямоугольного треугольника ABC. В результате получим равнобедренный треугольник ACM с углами при основании alpha. Но другой треугольник, получающийся при таком построении, также будет равнобедренным, поскольку каждый его угол при основании равен d-alpha (по свойству углов прямоугольного треугольника и по построению — из прямого угла «вычли» угол alpha). В силу того, что треугольники BMC и AMC равнобедренные с общей стороной MC имеем равенство MB=MA=MC, т.е. MC – медиана, проведенная к гипотенузе прямоугольного треугольника, и она равна половине гипотенузы.
Следствие 1. Середина гипотенузы является центром окружности, описанной вокруг этого треугольника, поскольку получилось, что середина гипотенузы равноудалена от вершин прямоугольного треугольника.
Следствие 2. Средняя линия прямоугольного треугольника, соединяющая середину гипотенузы и середину катета, параллельна противоположному катету и равна его половине.

PL08

Опустим в равнобедренных треугольниках BMC и AMC высоты MH и MG на основания. Поскольку в равнобедренном треугольнике, высота, опущенная на основание, является также и медианой (и биссектрисой), то MH и MG –линии прямоугольного треугольника, соединяющие середину гипотенузы с серединами катетов. По построению они оказываются параллельными противоположным катетам и равные их половинам, поскольку треугольники равны MHC и MGC равны (причем MHCG – прямоугольник). Этот результат является основанием для доказательства теоремы о средней линии произвольного треугольника и, далее, средней линии трапеции и свойства пропорциональности отрезков, отсекаемых параллельными прямыми на двух пересекающих их прямых.

Задачи
Использование свойств подобия -1
Использование основных свойств — 2
Использование дополнительного построения 3-4

1234

Высота, опущенная из вершины прямого угла прямоугольного треугольника равна корню квадратном из длин отрезков, на которые она делит гипотенузу.

Найти геометрическое место точек (ГМТ) пересечения медиан всевозможных прямоугольных треугольников, гипотенуза АВ которых зафиксирована.

В неравнобедренном прямоугольном треугольнике из вершины прямого угла проведены медиана, биссектриса и высота.
а)Докажите, что биссектриса делит угол между медианой и высотой пополам.
б) Покажите, что верно и обратное, т.е. если из вершины С неравнобедренного треугольника проведена биссектриса, которая делит угол между медианой и высотой, проведенными из той же вершины, пополам, то угол С — прямой.

Доказательство утверждения а)

Доказательство утверждения б)

На гипотенузе прямоугольного треугольника как на стороне во внешнюю сторону построен квадрат. Докажите, что отрезок, соединяющий вершину прямого угла треугольника с центром квадрата, делит этот угол пополам.

Дополнительное построение

Исторические комментарии
Исчисление прямоугольных треугольников Виета и его интерпретация

Авторские учебные материалы для старшеклассников, студентов и аспирантов

Понравилась статья? Поделить с друзьями:
  • Как в текст документе найти слово
  • Я не знаю даже как тебя нашел
  • Как найти масштаб в километрах
  • Как найти англоговорящих друзей по переписке
  • Как составить тех карту на торт