Как найти силу ампера не зная длины

Содержание:

Сила и закон Ампера:

Действие магнитного поля на проводник с током в 1820 г. исследовал экспериментально Андре Мари Ампер. Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь ее назвали силой Ампера.

Исследуем с помощью динамометра модуль силы Ампера, действующей на участок прямолинейного проводника длиной I с током силой l со стороны магнитного поля индукцией В (рис. 150).

Сила и закон Ампера - формулы и определение с примерами

Согласно экспериментальным данным и результатам вычислений модуль силы:

  • пропорционален длине проводника, находящегося в магнитном поле (F ~ l)
  • пропорционален модулю индукции магнитного поля (F ~ В); пропорционален силе тока в проводнике (F ~ l);
  • зависит от ориентации проводника в магнитном поле, т. е. от угла Сила и закон Ампера - формулы и определение с примерами

Обобщая полученные результаты, запишем выражение для силы Ампера Сила и закон Ампера - формулы и определение с примерами
в виде
Сила и закон Ампера - формулы и определение с примерами
где В — индукция магнитного поля, l — длина участка проводника, находящегося в магнитном поле, I — сила тока в проводнике, Сила и закон Ампера - формулы и определение с примерами — угол, образованный направлением тока и Сила и закон Ампера - формулы и определение с примерами

Закон Ампера

Это выражение называют законом Ампера:

  • модуль силы, с которой магнитное поле действует на находящийся в нем прямолинейный проводник с током, равен произведению индукции В этого поля, силы тока I, длины участка проводника l и синуса угла между направлениями тока и индукции магнитного поля.

Сила Ампера Сила и закон Ампера - формулы и определение с примерами всегда перпендикулярна направлению тока в проводнике и вектору индукции Сила и закон Ампера - формулы и определение с примерами магнитного поля. Для определения направления силы

Правило левой руки

Ампера используют правило левой руки (рис. 151):

Сила и закон Ампера - формулы и определение с примерами
 

если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора индукции магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление тока, то отогнутый на 90° большой палец укажет направление силы Ампера.

Магнитное взаимодействие проводников с током используется для определения в СИ одной из основных единиц — единицы силы тока — ампера.

Один ампер есть сила постоянного тока, поддерживаемого в каждом из двух прямолинейных параллельных проводниках бесконечной длины и ничтожно малого кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, который вызывает между этими проводниками силу взаимодействия, равную Сила и закон Ампера - формулы и определение с примерамиН на каждый метр длины проводников.

Магнитное поле

Обобщение учеными результатов теоретических и экспериментальных исследований различных взаимодействий в природе привело к выводу, что материя может существовать не только в форме вещества, по и в форме поля. Изучая физику в предыдущих классах, вы узнали о существовании электрического и магнитного полей, благодаря которым взаимодействуют наэлектризованные тела. Работы Дж. Максвелла, М. Фарадея и других ученых показали, что эти поля взаимосвязаны и фактически являются проявлениями более универсального электромагнитного поля. И только выбор системы отсчета определяет, что мы наблюдаем — электрическое или магнитное поле. Изучить все свойства электромагнитного поля довольно сложно. Поэтому в физике изучают постепенно отдельные проявления этого ноля. Одним из этапов изучения электромагнитного поля является изучение магнитного поля, которое проявляется в случае, когда заряженные частицы или тела в определенной системе отсчета движутся равномерно. В этом разделе рассматриваются не только условия, при которых магнитное поле наблюдается, но и физические величины, которые описывают его свойства, законы, по которым взаимодействуют магнитные поля и вещественные объекты. Знание этих законов позволяет производить важные для практики расчеты результатов взаимодействия магнитного поля с различными физическими телами.

Явления, которые мы называем магнитными, известны человечеству очень давно. Необычные свойства магнетита (разновидности железной руды) использовались в Древнем Китае, а потом и в других странах для изготовления компасов. Магнитам приписывали магические свойства, их действием объясняли непонятные явления природы, пробовали лечить болезни.
Систематизированные исследования магнитов провел английский физик У. Гильберт в XVI в. Он не только исследовал взаимодействие постоянных .магнитов, но и установил, что Земля является большим магнитом.

Учение о магнитах развивалось длительное время обособленно, как отдельная отрасль науки, пока ряд открытий и теоретических исследований в XIX в. не доказали его органическую связь с электричеством.

Одним из фундаментальных доказательств единства электрических и магнитных явлений является опыт Г.Х. Эрстеда, датского физика, который в 1820 г. заметил, что магнитная стрелка изменяет ориентацию вблизи проводника с током (рис. 2.1).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.1. Опыт Эрстеде

Было вполне очевидно, что причиной изменения ориентации стрелки является электрический ток -направленное движение заряженных частиц в проводнике. C подробным описанием этого опыта вы встречались в 9-м классе.

Магнитное действие движущихся заряженных тел исследовал также американский физик Г. Роуланд в 1878 г. Основная часть его установки представляла собой эбонитовый диск 1, покрытый тонким слоем золота (рис. 2.2). Диск был насажен на вал и мог свободно вместе с ним вращаться между двумя стеклянными пластинами 2. Над эбонитовым диском были укреплены на тонкой нити две намагниченные стальные иголки 3, чувствительные к магнитному полю. Когда диску сообщили некоторый заряд и начали вращать, иголки повернулись на некоторый угол, что свидетельствовало о наличии магнитного поля. При увеличении скорости вращения иголки поворачивались на больший угол.

Сила и закон Ампера - формулы и определение с примерами
Рис. 22. Главная часть установки Роуланда по выявлению магнитного поля движущегося электрически заряженного диска

Опытами Г. Роуланда было подтверждено открытие Эрстеда о связи магнитного поля с движущимися электрически заряженными частицами или телами.

Сила и закон Ампера - формулы и определение с примерами Генри Роуланд (184β-1901) — американский физик; научные работы в области
электродинамики, оптики, спектроскопии и теплоты. Он доказал, что заряженные
тела, если они движутся, вызывают магнитное взаимодействие.

Магнитные явления хотя и связаны с электрическими, но не идентичны им. Это подтверждают опыты.

Если взять два длинных параллельных проводника и присоединить к источнику тока, то заметим, что они взаимодействуют между собой (рис. 2.3) в зависимости от направления тока в них. При токах противоположных направлений проводники отталкиваются (рис. 2.3-а). Если токи одного направления, то проводники притягиваются друг к другу (рис. 2.3-б).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 23. Магнитное взаимодействие проводников с током

Действие проводника с током на магнитную стрелку или другой проводник с током происходит при отсутствии непосредственного контакта между ними, благодаря наличию вокруг проводника магнитного поля.

Магнитное поле имеет свои особенности, которые выделяют его среди других полей:

  1. магнитное поле наблюдается всегда, когда есть движущиеся заряженные частицы или тела;
  2. магнитное поле действует только на движущиеся заряженные тела или частицы.

Другие свойства будут описаны далее.

Магнитная индукция

Наблюдения за магнитными взаимодействиями в лаборатории или в природе показывают, что действия магнитного поля па физические тела или проводники с током при равных условиях могут быть различными.

Интенсивность магнитного взаимодействия может быть различной.

Если для выявления магнитного поля Земли магнитную стрелку компаса приходится устанавливать на специальных опорах, которые существенно уменьшают силы трения, то действие электромагнита, в обмотках которого проходит электрический ток, будет заметным даже тогда, когда стрелка будет просто лежать на столе.

Различным будет и взаимодействие параллельных проводников с током. Сила взаимодействия этих проводников будет изменяться, если будет изменяться сила тока в них или расстояние между ними, — она будет увеличиваться при увеличении силы тока или при уменьшении расстояния.

Для всех таких случаев говорят о «сильном» или «слабом» поле. Аналогичные случаи рассматривались при изучении свойств электрического поля, при рассмотрении действия электрического поля на заряженные тела. Для количественной характеристики электрического поля введена напряженность электрического поля. Для магнитного же поля используется также силовая характеристика и соответствующая ей физическая величина магнитная индукция. Магнитная индукция является векторной величиной и обозначается буквой В. Поскольку для исследования магнитного поля длительное время пользовались магнитной стрелкой на острие, то магнитная индукция как характеристика магнитного поля была связана с действием магнитного поля па магнитную стрелку. Так, направление полюсов стрелки послужило базой для установления направления вектора магнитной индукции изучаемого поля. Условились, что за направление магнитной индукции принимается направление северного полюса стрелки.

Магнитная индукция — векторная величина, имеющая направление.

Исследуем с помощью магнитной стрелки магнитное поле проволочного витка с током.

Замкнув цепь, в которую включен виток, начнем обносить магнитную стрелку на острие вокруг витка. Заметим, что ориентация стрелки при этом будет меняться. В разных точках она будет иметь различную ориентацию. Наиболее ощутимым будет действие поля на стрелку в центре витка (рис. 2.4).

Сила и закон Ампера - формулы и определение с примерами
Puc. 2.4. Продольная ось магнитной стрелки, находящаяся в центре витка с током, перпендикулярна его плоскости

Таким образом, мы установили, что магнитная индукция витка или прямоугольной рамки будет иметь максимальное значение в центре.

Продольная ось магнитной стрелки плоскости витка. Аналогичное явление будет наблюдаться и тогда, когда возьмем прямоугольную рамку или моток провода произвольной формы.

В отличие от напряженности электрического поля магнитная индукция как векторная величина не совпадает по направлению с направлением силы, которая действует на проводник с током. Выясним, как направление вектора магнитной индукции зависит от направления тока в витке.

Магнитная индукция — это силовая характеристика поля. Она определяет силу, которая действует на проводник с током или на движущуюся частицу.

Отметив направление магнитной стрелки при определенном направлении тока в витке, изменим направление последнего на противоположное. Магнитная стрелка развернется на 1800, показывая, что направление магнитной индукции также изменилось. Таким образом, направление магнитной индукции витка с током зависит от направления тока и нем.

Чтобы каждый раз, когда нужно знать направление магнитной индукции, не проводить опыты со стрелкой, пользуются правилом правого винта (буравчика).

Это правило позволяет запомнить связь направления тока в витке с направлением магнитной индукции его поля. Для этого необходимо представить, как будет двигаться правый винт, приставленный перпендикулярно к плоскости витка, при вращении его по направлению тока в витке.

Если направление вращения правого винта, расположенного в центре витка с током, совпадает с направлением тока, то его поступательное движение показывает направление магнитной индукции (рис. 2.5).

Магнитное поле существует и вокруг прямого проводника с током. Для подтверждения этого магнитную стрелку будем обносить вокруг проводника, не изменяя расстояния (рис. 2.6).

Сила и закон Ампера - формулы и определение с примерами

Pиc. 2.5. Определение
направления магнитной
индукции витка с током

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.6. Исследование магнитного
поля прямого проводника с током
при помощи магнитной стрелки

В разных точках ее ориентация будет различной, но ось стрелки всегда будет направлена по касательной к траектории движения.

Соответственно и магнитная индукция проводника с током будет иметь такое ясе направление.
При изменении направления тока в проводнике на противоположное стрелка развернется на 180° и покажет направление магнитной индукции, которое также будет противоположным к прежнему.

Таким образом, направление магнитной индукции прямого проводника зависит от направления тока в нем. Для облегчения его определения, как и в предыдущем случае, на основании анализа результатов эксперимента, сформулировано правило правого винта (рис. 2.7): если направление поступательного движения правого винта совпадает с направлением тока в проводнике, то направление его вращения показывает направление магнитной индукции.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.7. Определение направления магнитной индукции поля прямого проводника с током при помощи правою винта (буравчика)

Для измерения магнитной индукции применяется специальная единица тесла (Тл). Эта единица названа в честь сербского ученого и изобретателя Николы Теслы.

Сила и закон Ампера - формулы и определение с примерами Никола Тесла (1856-1943) — родился в Сербии, изобретатель и физик.
Известен благодаря своим изобретениям в области электротехники
и электроники; работал инженером на предприятиях Венгрии, Франции, США.

В практике используются долевые величины:

  • 1 миллитесла = 1 мТл = 10-3 Тл,
  • 1 микротесла 1 мкТл 10-6 Тл.

Значения магнитной индукции измеряют специальными приборами, которые называются магнитометрами или индикаторами магнитной индукции (рис. 2.8).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.8. Лабораторный магнитометр для школьных опытов

Часто вместо прямых измерений пользуются формулами, которые позволяют рассчитать магнитную индукцию на основании параметров проводника. Таким примером может быть расчет модуля магнитной индукции прямого проводника с током. Экспериментально подтверждено, что магнитная индукция поля прямого проводника с током прямо пропорциональна силе тока в проводнике и обратно пропорциональна расстоянию от его оси:

Сила и закон Ампера - формулы и определение с примерами

Магнитная индукция прямого проводника с током пропорциональна силе тока в нем и обратно пропорциональна расстоянию от проводника до точки наблюдения.

Коэффициент пропорциональности в этой формуле зависит от выбора системы единиц измерений. В Международной системе единиц (СИ) он имеет значение Сила и закон Ампера - формулы и определение с примерами

где μ0 — магнитная постоянная, ее числовое значение 1,256 × × 10-6 Н/А2.

Сила и закон Ампера - формулы и определение с примерами

Тогда окончательно для рассчетов модуля магнитной индукции поля прямого проводника с током имеем формулу:

Сила и закон Ампера - формулы и определение с примерами

где μ0 — магнитная постоянная; I — сила тока в проводнике: r — расстояние от проводника до данной точки поля.

Пример №1

Каково значение модуля магнитной индукции в точке поля, удаленной на 3 см от бесконечно длинного проводника, по которому проходит ток 6 А?

Дано:
r = 3 см,
I = 6 А.
Решение
Магнитная индукция прямого проводника
с током рассчитывается по формуле:
Сила и закон Ампера - формулы и определение с примерами
В — ?

Подставив значения физических величин, получим
Сила и закон Ампера - формулы и определение с примерами
Сила и закон Ампера - формулы и определение с примерами

Ответ: магнитная индукция поля прямого проводника с током равна 4 • 10-5 Тл.

Действие магнитного поля на проводник с током и сила Ампера

Поскольку вокруг проводников с током возникает магнитное поле, естественно предположить, что в магнитном поле на них действует сила.

На проводник с током в магнитном поле действует сила.

Проведем исследование с целью определения, от чего зависит модуль и направление этой силы. Для этого используем установку, в которой прямой проводник подвешен в магнитном поле постоянного магнита так, что его можно включать в электрическую цепь, силу тока в которой можно изменять при помощи реостата. Амперметр будет измерять силу тока в цепи.

Замкнув электрическую цепь, заметим, что проводник отклонится от положения равновесия, а динамометр покажет некоторое значение силы. Увеличим силу тока в проводнике в 2 раза и увидим, что сила, действующая на проводник, также увеличится в 2 раза. Любые другие изменения силы тока будут вызывать соответствующие изменения силы. Сопоставление результатов всех измерений позволяет сделать вывод, что сила F, которая действует на проводник с током, пропорциональна силе тока к нем:
F~I.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила Ампера пропорциональна силе тока в проводнике.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.9. Установка для изучения действия магнитного поля на проводник с током

Расположим еще один магнит рядом с первым. Длина проводника, находящегося в магнитном поле, увеличится приблизительно в 2 раза. Значение силы, действующей на проводник, в этом случае также увеличится в 2 раза. Таким образом, сила FΔ, действующая на проводник с током в магнитном поле, пропорциональна длине проводника Δl, который расположен в магнитном поле:

F~ΔI.

Сила Ампера пропорциональна длине активной части проводника. 

Сила увеличится также тогда, когда применим другой, более мощный магнит с большей магнитной индукцией поля.

Это позволит сделать вывод, что сила Ампера FА зависит от магнитной индукции поля:

F~B.

Опыт позволяет убедиться и в том, что наибольшее значение силы Ампера будет тогда, когда угол между проводником и вектором магнитной индукции будет равен 90°. Если этот угол будет равен нулю, т. е. вектор магнитной индукции будет параллельным проводнику, то сила Ампера также будет равна нулю. Отсюда легко сделать вывод, что сила Ампера зависит от угла между вектором магнитной индукции и проводником.

Окончательно для расчетов имеем формулу Сила и закон Ампера - формулы и определение с примерами

Направление силы Ампера определяется по правилу левой руки (рис. 2.10): если левую руку разместить так, чтобы линии магнитной индукции входили в ладонь, а четыре от. ставленных пальца показывали направление тока в проводнике, то отставленный под углом 90″ большой палец покажет направление силы, действующей на проводник с током в магнитном поле.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.10. При помощи левой pуκu можно определить направление силы Ампера

Если левую руку разместить так. чтобы линии магнитной индукции входили в ладонь, а четыре отставленных пальца показывали направление тока в проводнике, то отставленный под углом 90° большой палец покажет направление силы, действующей на проводник с током в магнитном поле.

Взаимодействие проводников с током

Взаимодействие проводников с током объясняется действием силы Ампера (рис. 2.11).

Каждый из проводников имеет свое магнитное поле, которое действует на соседний проводник с током и способствует появлению силы Ампера. Так, проводник AA‘ по которому проходит ток I1, имеет магнитное поле, модуль индукции B1 которого, как указывалось ранее, равен

Сила и закон Ампера - формулы и определение с примерами

где r — расстояние от проводника до точки наблюдения.

Если проводник CC’ длиной Δl находитсяy на расстоянии r от проводника AA’ и в нем проходит ток I2, то на него действует сила Ампера FА, поскольку он находится в магнитном поле проводника AA’ . Значение этой силы равно Сила и закон Ампера - формулы и определение с примерами

Поскольку проводники параллельны и угол между проводником CC’ и вектором магнитной индукции B равен 90°, то sinα = 1.

Подставим в последнюю формулу значение магнитной индукции поля проводника AA’:

Сила и закон Ампера - формулы и определение с примерами

Силу взаимодействия двух параллельных проводников с током можно определить, зная только расстояние между ними и силу тока в них.

Как и при любом взаимодействии, такая сила, согласно третьему закону Ньютона, действует на каждый из проводников. Только направления их противоположны.

Таким образом, два параллельных проводника нзнимодей-ствуют между собой благодаря магнитным полям, которые образуются вокруг проводников, по которым проходит электрический ток.

Пример №2

Определить модуль силы Ампера, которая действует на проводник с током длиной 25 см в магнитном поле с индукцией 0,04 Тл, если между вектором магнитной индукции и направлением тока угол 30° сила тока в проводнике 0,25 А.

Дано:
∆l = 25 см.
В = 0,04 Тл,

Сила и закон Ампера - формулы и определение с примерами = 30%
I = 0,25 А.

Решение
На проводник с током в магнитном поле действует сила
Сила и закон Ампера - формулы и определение с примерами

Подставим значения всех величин:
Сила и закон Ампера - формулы и определение с примерами

FA— ?

Ответ: модуль силы равен 1,25 • 10-3 Н.

Использование действия силы Ампера

Силу Ампера применяют для преобразования энергии электрического тока в механическую энергию проводника. Такое превращение происходит во многих электротехнических устройствах. Рассмотрим некоторые из них.

Eлектроиэмеритальные приборы магнитоэлектрической системы

Электроизмерительный прибор магнитоэлектрической системы состоит из постоянного магнита и проволочной рамки, расположенной между его полюсами (рис. 2.12). Полюса магнита имеют специальные насадки, создающие однородное магнитное поле, в котором вращение рамки не приводит к изменению угла между магнитной индукцией и проводниками рамки. Этот угол всегда равен 90°.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.12. Устройство электроизмерительного прибора магнитоэлектрической системы

C рамкой соединены две спиральные пружины, которые подводят к рамке электрический ток. Во время прохождения электрического тока по витком рамки возникает сила Ампера, пропорциональная силе тока в рамке. Чем больше сила действует на витки рамки, тем больше закручиваются спиральные пружины, которых возникает сила упругости. Когда сила Ампера и сила упругости станут равными, вращение рамки прекратится.

Стрелка, прикрепленная к рамке, показывает угол поворота рамки. Этот угол пропорционален силе тока в рамке.

Электрический двигатель постоянного тока

Электрический двигатель применяют для преобразования энергии электрического тока в механическую энергию вращения вала двигателя. Принцип его действия подобен принципу действия электроизмерительного прибора магнитоэлектрической системы, описанного выше. Только в его конструкции отсутствует пружина, поэтому рамка может поворачиваться на любой угол. Электрический ток к рамке, размещенной на валу и имеющей стальной сердечник, подается через специальные скользящие контакты-щетки (рис. 2.13).

Сила и закон Ампера - формулы и определение с примерами
Рис. 213. Устройство двигателя постоянного тока

При замыкании цепи питания двигателя ток проходит по рамке и она взаимодействует с магнитным полем постоянного магнита или электромагнита и поворачивается до тех пор, пока ее плоскость не станет параллельной вектору магнит ной индукции. Чтобы она могла нужно сменить направление силы тока в ней, вследствие чего поменяет направлению сила Ампера, действующая на рамку с током в магнитном поле. В двигателе этот процесс осуществляется с помощью двух неподвижных графитометаллических щеток и двух полуколец на валу, к которым подведены концы рамки.

На рисунке 2.14-а показан момент, когда ток в якоре такого направления, что его полюса отталкиваются от одноименных полюсов статора. После поворачивания на некоторый угол якорь окажется в положении, когда разноименные полюса притягиваются (рис 2.14-6). Вследствие инерции якорь проходит это положение равновесия, а благодаря кольцам, которых касаются токоподводящие щетки (рис. 2.14-в), направление тока в якоре изменяется па противоположное и вращение якоря продолжается (см. рис. 2.14-а).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.14 Схемы, которые объясняют действие коллекторного электродвигателя постоянного тока

В промышленных образцах электродвигателей постоянного тока ротор имеет несколько рамок-обмоток. Поэтому и количество пар скользящих контактов в них больше: оно согласуется с количеством обмоток. В целом такое устройство называют коллектором. В новейших моделях двигателей постоянного тока роль коллектора выполняет специальное устройство с электронными приборами.

Таким образом, действие силы Ампера нашло применение в различных технических устройствах: электроизмерительных приборах, электрических двигателях и т. п.

Сила ампера

Вы узнали, что магнитное поле действует на проводник с током с некоторой силой. А из курса физики 8 класса помните, что сила — это векторная физическая величина, поэтому, чтобы полностью определить силу, нужно уметь рассчитывать ее значение и определять направление. От чего зависит значение силы, с которой магнитное поле действует на проводник с током, как направлена эта сила и почему ее называют силой Ампера, вы узнаете из данного параграфа.

Характеристика силы действующей на проводник с током

Между полюсами подковообразного постоянного магнита подвесим на тонких и гибких проводах прямой алюминиевый проводник (рис. 4.1, а). Если через проводник пропустить ток, проводник отклонится от положения равновесия (рис. 4.1, б). Причина такого отклонения — сила, действующая на проводник с током со стороны магнитного поля. Доказал наличие этой силы и выяснил, от чего зависят ее значение и направление, А. Ампер. Именно потому эту силу называют силой Ампера.

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.1. Опыт, демонстрирующий действие магнитного поля на алюминиевый проводник: при отсутствии тока магнитное поле на проводник не действует (а); если в проводнике течет ток, на проводник действует магнитное поле и проводник отклоняется (б)

Сила Ампера — это сила, с которой магнитное поле действует на проводник с током.

Сила Ампера прямо пропорциональна силе тока в проводнике и длине активной части проводника (то есть части, расположенной в магнитном поле). Сила Ампера увеличивается с увеличением индукции магнитного поля и зависит от того, под каким углом к линиям магнитной индукции расположен проводник.

Значение силы Ампера Сила и закон Ампера - формулы и определение с примерами вычисляют по формуле:

Сила и закон Ампера - формулы и определение с примерами

где Сила и закон Ампера - формулы и определение с примерами — магнитная индукция магнитного поля; Сила и закон Ампера - формулы и определение с примерами — сила тока в проводнике; Сила и закон Ампера - формулы и определение с примерами — длина активной части проводника; Сила и закон Ампера - формулы и определение с примерами — угол между направлением вектора магнитной индукции и направлением тока в проводнике (рис. 4.2).

Обратите внимание! Магнитное поле не будет действовать на проводник с током Сила и закон Ампера - формулы и определение с примерами если проводник расположен параллельно магнитным линиям поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.2. Угол Сила и закон Ампера - формулы и определение с примерами — это угол между направлением вектора магнитной индукции и направлением тока в проводнике

Чтобы определить направление силы Ампера, используют правило левой руки:

Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера (рис. 4.3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.3. Определение направления силы Ампера по правилу левой руки

Формула для определения модуля магнитной индукции

Если проводник расположен перпендикулярно линиям магнитной индукции Сила и закон Ампера - формулы и определение с примерами поле действует на проводник с максимальной силой:

Сила и закон Ампера - формулы и определение с примерами

Отсюда получаем формулу для определения модуля магнитной индукции:

Сила и закон Ампера - формулы и определение с примерами

Обратите внимание! Значение магнитной индукции не зависит ни от силы тока в проводнике, ни от длины проводника, а зависит только от свойств магнитного поля.

Например, если уменьшить силу тока в проводнике, то уменьшится и сила Ампера, с которой магнитное поле действует на проводник, а вот значение магнитной индукции останется неизменным.

В СИ единица магнитной индукции — тесла (Тл), единица силы — ньютон (Н), силы тока — ампер (А), длины — метр (м), поэтому:

Сила и закон Ампера - формулы и определение с примерами

1 Тл — это индукция такого однородного магнитного поля, которое действует с максимальной силой 1 Н на проводник длиной 1 м, в котором течет ток силой 1 А.

  • Заказать решение задач по физике

Пример №3

Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.

Анализ физической проблемы. Около любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как будут вести себя проводники.

Решение

Решая задачу, выполним пояснительные рисунки: изобразим проводники А и В, покажем направления тока в них и т. д.

Выясним направление силы Ампера, которая действует на проводник А, находящийся в магнитном поле проводника В.

  1. С помощью правила буравчика найдем направление линий магнитной индукции магнитного поля, созданного проводником В (рис. 1, а). Выясняется, что вблизи проводника А магнитные линии направлены к нам (обозначено «•»).
  2. Воспользовавшись правилом левой руки, определим направление силы Ампера, действующей на проводник А со стороны магнитного поля проводника В (рис. 1, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 1

3. Приходим к выводу: проводник А притягивается к проводнику В.

Теперь выясним направление силы Ампера, которая действует на проводник В, находящийся в магнитном поле проводника А.

1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рис. 2, а). Выясняется, что вблизи проводника В магнитные линии направлены от нас (обозначено Сила и закон Ампера - формулы и определение с примерами

2) Определим направление силы Ампера, действующей на проводник В (рис. 2, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 2

3) Приходим к выводу: проводник В притягивается к проводнику А.

Ответ: два параллельных проводника, в которых текут токи одного направления, притягиваются.

Пример №4

Прямой проводник (стержень) длиной 0,1 м и массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитным линиям поля (рис. 3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 3

Ток какой силы и в каком направлении следует пропустить по стержню, чтобы стержень не давил на опору (завис в магнитном поле)?

Анализ физической проблемы. Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при условиях: 1) сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх); 2) значение силы Ампера будет равно значению силы тяжести: Сила и закон Ампера - формулы и определение с примерами

Дано:

Сила и закон Ампера - формулы и определение с примерами

Найти:

Сила и закон Ампера - формулы и определение с примерами

Поиск математической модели, решение

1. Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90° большой палец был направлен вертикально вверх. Четыре вытянутых пальца укажут направление от нас. Следовательно, ток в проводнике нужно направить от нас.

2. Учитываем, что Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами где Сила и закон Ампера - формулы и определение с примерами

Следовательно, Сила и закон Ампера - формулы и определение с примерами

Из последнего выражения найдем силу тока: Сила и закон Ампера - формулы и определение с примерами

Проверим единицу, найдем значение искомой величины.

Вспомним: Сила и закон Ампера - формулы и определение с примерами

Ответ: Сила и закон Ампера - формулы и определение с примерами от нас.

Подводим итоги:

Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера находят по формуле: Сила и закон Ампера - формулы и определение с примерами где В — индукция магнитного поля; I — сила тока в проводнике; Сила и закон Ампера - формулы и определение с примерами — длина активной части проводника; Сила и закон Ампера - формулы и определение с примерами — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяют по правилу левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера.

Магнитные свойства веществ и гипотеза Ампера

Наверное, каждый из вас видел магниты и даже исследовал их свойства. Если поднести магнит к кучке мелких предметов, некоторые из них (гвоздики, кнопки, скрепки) притянутся к магниту, а некоторые (кусочки мела, медные и алюминиевые монетки, комочки земли) никак не отреагируют. Почему так? Действительно ли магнитное поле не оказывает никакого влияния на некоторые вещества? Именно об этом пойдет речь в параграфе.

Действия электрического и магнитного полей на вещество

Изучая в 8 классе электрические явления, вы узнали, что под влиянием внешнего электрического поля происходит перераспределение электрических зарядов внутри незаряженного тела (рис. 5.1). В результате в теле образуется собственное электрическое поле, направленное противоположно внешнему, и именно поэтому электрическое поле в веществе всегда ослабляется.

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.1. В результате действия электрического поля отрицательно заряженной палочки ближняя к ней часть проводящей сферы приобретает положительный заряд

Вещество изменяет и магнитное поле. Есть вещества, которые (как в случае с электрическим полем) ослабляют магнитное поле внутри себя. Такие вещества называют диамагнетиками. Многие вещества, наоборот, усиливают магнитное поле — это парамагнетики и ферромагнетики.

Дело в том, что любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле, магнитная индукция которого разная для разных веществ.

Слабомагнитные вещества

Вещества, которые намагничиваются, создавая слабое магнитное поле, магнитная индукция которого намного меньше магнитной индукции внешнего магнитного поля (то есть поля, вызвавшего намагничивание), называют слабомагнитными веществами. К таким веществам относятся диамагнетики и парамагнетики.

Диамагнетики (от греч. dia — расхождение) намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю (рис. 5.2, а). Именно поэтому диамагнетики незначительно ослабляют внешнее магнитное поле: магнитная индукция магнитного поля внутри диамагнетика Сила и закон Ампера - формулы и определение с примерами немного меньше магнитной индукции внешнего магнитного поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.2. Образцы из диамагнетика (а) и парамагнетика (б) во внешнем магнитном поле: красные линии — линии магнитного поля, созданного образцом; синие — магнитные линии внешнего магнитного поля; зеленые — линии результирующего магнитного поля

Если диамагнетик поместить в магнитное поле, он будет выталкиваться из него (рис. 5.3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.3. Пламя свечи выталкивается из магнитного поля, так как продукты сгорания — диамагнитные частицы

К диамагнетикам относятся инертные газы (гелий, неон и др.), многие металлы (золото, медь, ртуть, серебро и др.), молекулярный азот, вода и т. д. Тело человека — диамагнетик, так как оно в среднем на 78 % состоит из воды.

Парамагнетики (от греч. para — рядом) намагничиваются, создавая слабое магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.2, б). Парамагнетики незначительно усиливают внешнее поле: магнитная индукция магнитного поля внутри парамагнетика Сила и закон Ампера - формулы и определение с примерами немного больше магнитной индукции внешнего магнитного поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

К парамагнетикам относятся кислород, платина, алюминий, щелочные и щелочноземельные металлы и другие вещества. Если парамагнитное вещество поместить в магнитное поле, то оно будет втягиваться в это поле.

Ферромагнетики

Если слабомагнитные вещества извлечь из магнитного поля, их намагниченность сразу исчезнет. Иначе происходит с сильномагнитными веществами — ферромагнетиками.

Ферромагнетики (от лат. ferrum — железо) — вещества или материалы, которые остаются намагниченными и при отсутствии внешнего магнитного поля.

Ферромагнетики намагничиваются, создавая сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.4, 5.5, а). Если изготовленное из ферромагнетика тело поместить в магнитное поле, оно будет втягиваться в него (рис. 5.5, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.4. Железный гвоздь намагничивается в магнитном поле так, что конец гвоздя, расположенный вблизи северного полюса магнита, становится южным полюсом, поэтому гвоздь притягивается к магниту

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.5. Ферромагнетики создают сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (а); линии магнитной индукции как будто втягиваются в ферромагнитный образец (б)

К ферромагнетикам относится небольшая группа веществ: железо, никель, кобальт, редкоземельные вещества и ряд сплавов. Ферромагнетики значительно усиливают внешнее магнитное поле: магнитная индукция магнитного поля внутри ферромагнетиков Сила и закон Ампера - формулы и определение с примерами в сотни и тысячи раз больше магнитной индукции внешнего магнитного поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Так, кобальт усиливает магнитное поле в 175 раз, никель — в 1120 раз, а трансформаторная сталь (на 96-98 % состоит из железа) — в 8000 раз.

Ферромагнитные материалы условно делят на два типа. Материалы, которые после прекращения действия внешнего магнитного поля остаются намагниченными длительное время, называют магнитожесткими ферромагнетиками. Их применяют для изготовления постоянных магнитов. Ферромагнитные материалы, которые легко намагничиваются и быстро размагничиваются, называют магнитомягкими ферромагнетиками. Их применяют для изготовления сердечников электромагнитов, двигателей, трансформаторов, то есть устройств, которые во время работы постоянно перемагничиваются (о строении и принципе действия таких устройств вы узнаете позже).

Обратите внимание! При достижении температуры Кюри (см. таблицу) ферромагнитные свойства магнитомягких и магнитожестких материалов исчезают — материалы становятся парамагнетиками.

Температура Кюри для некоторых ферромагнетиков

Вещество (или материал) Температура,°С
Гадолиний +19
Железо +770
Кобальт +1127
Неодимовый магнит NdFeB +320
Никель +354

Гипотеза Ампера

Наблюдая действие проводника с током на магнитную стрелку (см. рис. 1.1) и выяснив, что катушки с током ведут себя как постоянные магниты (см. рис. 1.3), А. Ампер выдвинул гипотезу о магнитных свойствах веществ. Ампер предположил, что внутри веществ существует огромное количество незатухающих малых круговых токов и каждый из них, как маленькая катушка, является магнитиком. Постоянный магнит состоит из множества таких элементарных магнитиков, ориентированных в определенном направлении.

Механизм намагничивания веществ Ампер объяснял так. Если тело не намагничено, круговые токи ориентированы беспорядочно (рис. 5.7, а). Внешнее магнитное поле пытается сориентировать эти токи так, чтобы направление магнитного поля каждого тока совпадало с направлением внешнего

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.7. Механизм намагничивания тел согласно гипотезе Ампера: а — круговые токи ориентированы беспорядочно, тело не намагничено; б — круговые токи ориентированы в определенном направлении, тело намагничено

магнитного поля (рис. 5.7, б). У некоторых веществ такая ориентация токов (намагничивание) остается и после прекращения действия внешнего магнитного поля. Таким образом, все магнитные явления Ампер объяснял взаимодействием движущихся заряженных частиц.

Гипотеза Ампера послужила толчком к созданию теории магнетизма. На основе этой гипотезы были объяснены известные свойства ферромагнетиков, однако она не могла объяснить природу диа- и парамагнетизма, а также то, почему только небольшое количество веществ имеет ферромагнитные свойства. Современная теория магнетизма основана на законах квантовой механики и теории относительности А. Эйнштейна.

Подводим итоги:

Любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле.

Диамагнетики Парамагнетики Ферромагнетики
Намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю Намагничиваются, создавая слабое магнитное поле, направленное в сторону внешнего магнитного поля Намагничиваются, создавая сильное магнитное поле, направленное в сторону внешнего магнитного поля; остаются намагниченными после прекращения действия внешнего магнитного поля
Незначительно ослабляют внешнее магнитное поле, выталкиваются из него Незначительно усиливают внешнее магнитное поле, втягиваются в него Усиливают внешнее магнитное поле в сотни и тысячи раз, втягиваются в него
Инертные газы, медь, золото, ртуть, серебро, азот, вода и др. Кислород, платина, алюминий, щелочные металлы и др. Кислород, платина, алюминий, щелочные металлы и др. Железо, никель, кобальт, редкоземельные вещества (например, неодим), ряд сплавов
  • Закон взаимодействия прямолинейных параллельных проводников с током
  • Сила Лоренца
  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Работа по перемещению заряда в электростатическом поле
  • Закон Ома для однородного участка электрической цепи
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений

Содержание:

  • Определение и формула силы Ампера
  • Закон Ампера
  • Силы, действующие на проводники с током в магнитном поле
  • Единицы измерения силы Ампера
  • Примеры решения задач

Определение и формула силы Ампера

Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Ее обозначения:
$bar{F}, bar{F}_A$ . Сила Ампера векторная величина. Ее направление определяет
правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее.
Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на
большой палец укажет направление силы Ампера (рис.1).

Закон Ампера

Элементарная сила Ампера
($dbar{F}_A$) определена законом (или формулой) Ампера:

$$d bar{F}_{A}=I d bar{l} times bar{B}(1)$$

где I – сила тока,
$d bar{l}$ – малый элемент длины проводника – это вектор, равный
по модулю длине проводника, направленный в таком же направлении как вектор плотности тока,
$bar{B}$ – индукция магнитного поля, в которое помещен проводник с током.

Иначе эту формулу для силы Ампера записывают как:

$$d bar{F}_{A}=bar{j} times bar{B} d V(2)$$

где $bar{j}$ – вектор плотности тока, dV – элемент объема проводника.

Модуль силы Ампера находят в соответствии с выражением:

$$d F=I cdot B cdot d l cdot sin alpha(3)$$

где $alpha$ – угол между векторами магнитной индукции и направление течения тока. Из выражения (3) очевидно, что
сила Ампера максимальна в случае перпендикулярности линий магнитной индукции поля по отношению к проводнику с током.

Силы, действующие на проводники с током в магнитном поле

Из закона Ампера следует, что на проводник с током, равным I, действует сила равная:

$$bar{F}_{A}=I int_{l} d bar{l} times bar{B}(4)$$

где $bar{B}$ магнитная индукция, рассматриваемая в пределах малого кусочка проводника dl.
Интегрирование в формуле (4) проводят по всей длине проводника (l). Из выражения (4) следует, что на замкнутый контур с током I,
в однородном магнитном поле действует сила Ампера равная $bar{F}_{A}=0(H)$

Сила Ампера, которая действует на элемент (dl) прямого проводника с током I1, помещённый в магнитное поле, которое
создает другой прямой проводник, параллельный первому с током I2, равна по модулю:

$$d F=frac{mu_{0}}{2 pi} frac{I_{1} I_{2}}{d} d l(5)$$

где d – расстояние между проводниками, $mu_{0}=4 pi cdot 10^{7}$ Гн/м(или Н/А2 ) – магнитная постоянная.
Проводники с токами одного направления притягиваются. Если направления токов в проводниках различны, то они отталкиваются.
Для рассмотренных выше параллельных проводников бесконечной длины сила Амперана единицу длины может быть вычислена по формуле:

$$frac{F}{l}=frac{mu_{0}}{2 pi} frac{I_{1} I_{2}}{d}$$

Формулу (6) в системе СИ применяют для получения количественного значения магнитной постоянной.

Единицы измерения силы Ампера

Основной единицей измерения силы Ампер (как и любой другой силы) в системе СИ является: [FA]=H

В СГС: [FA]=дин

Примеры решения задач

Пример

Задание. Прямой проводник длины l с током I находится в однородном магнитном поле B. На проводник
действует сила F. Каков угол между направлением течения тока и вектором магнитной индукции?

Решение. На проводник с током, находящийся в магнитном поле действует сила Ампера, модуль которой для
прямолинейного проводника с током расположенном в однородном поле можно представить как:

$$F=F_{A}=I B operatorname{lsin} alpha$$

где $alpha$ – искомый угол. Следовательно:

$$alpha=arcsin left(frac{F}{I B l}right)$$

Ответ. $alpha=arcsin left(frac{F}{I B l}right)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Два тонких, длинных проводника с токами лежат в одной плоскости на расстоянии d друг от друга.
Ширина правого проводника равна a. По проводникам текут токи I1 и I2 (рис.1). Какова, сила Ампера, действующая
на проводники в расчете на единицу длины?

Решение. За основу решения задачи примем формулу элементарной силы Ампера:

$$d bar{F}_{A}=I d bar{l} times bar{B}(2.1)$$

Будем считать, что проводник с током I1 создает магнитное поле, а другой проводник в нем находится.Станем искать силу
Ампера, действующую на проводник с током I2. Выделим в проводнике (2) маленький элемент dx (рис.1), который находится
на расстоянии x от первого проводника. Магнитное поле, которое создает проводник 1 (магнитное поле бесконечного прямолинейного проводника с
током) в точке нахождения элементаdxпо теореме о циркуляции можно найти как:

$$B cdot 2 pi x=mu_{0} I_{1} rightarrow B=frac{mu_{0} I_{1}}{2 pi x}$$

Вектор магнитной индукции в точке нахождения элемента dx направлен перпендикулярно плоскости
рисунка, следовательно, модуль элементарной силы Ампера, действующий на него можно представить как:

$$B cdot 2 pi x=mu_{0} I_{1} rightarrow B=frac{mu_{0} I_{1}}{2 pi x}$$

где ток, который течет в элементе проводника dx, выразим как:

$$B cdot 2 pi x=mu_{0} I_{1} rightarrow B=frac{mu_{0} I_{1}}{2 pi x}$$

Тогда выражение для dFA, учитывая (2.2) и (2.4) запишем как:

$$B cdot 2 pi x=mu_{0} I_{1} rightarrow B=frac{mu_{0} I_{1}}{2 pi x}$$

где из рис.1 видно, что $a leq x leq a+b$, по условию задачи силу следует
найти на единицу длины, значит $0 leq l leq 1$ . Для нахождения суммарной силы Ампера, действующей на проводник (2) возьмем двойной интеграл от выражения (2.5):

$$F_{A}=int_{a}^{a+b} int_{0}^{1} frac{mu_{0} I_{1}}{2 pi x} cdot frac{I_{2}}{b} d x d l=int_{a}^{a+b} frac{mu_{0} I_{1}}{2 pi x} cdot frac{I_{2}}{b} d x=frac{mu_{0} I_{1}}{2 pi} cdot frac{I_{2}}{b} ln left|frac{a+b}{a}right|$$

Проводники действуют друг на друга с силами равными по модулю и так как токи направлены одинаково, то они притягиваются.

Ответ. $F_{A}=frac{mu_{0} I_{1}}{2 pi} cdot frac{I_{2}}{b} ln left|frac{a+b}{a}right|$

Читать дальше: Формула силы выталкивания.

Как определить силу Ампера

Сила Ампера действует на проводник с током в магнитном поле. Ее можно измерить непосредственно при помощи динамометра. Для этого к движущемуся под действием силы Ампера проводнику прикрепите динамометр и уравновесьте им силу Ампера. Для того чтобы рассчитать эту силу, измерьте ток в проводнике, индукцию магнитного поля и длину проводника.

Как определить силу Ампера

Вам понадобится

  • — динамометр;
  • — амперметр;
  • — тесламетр;
  • — линейка;
  • — подковообразный постоянный магнит

Инструкция

Непосредственное измерение силы Ампера. Соберите цепь таким образом, чтобы она замыкалась цилиндрическим проводником, который может свободно катиться по двум параллельным проводникам, замыкая их, практически без механического сопротивления (силы трения). Между этими проводниками установите подковообразный магнит. Подключите к цепи источник тока, и цилиндрический проводник начнет катиться по параллельным проводникам. Прикрепите к этому проводнику чувствительный динамометр, и вы измерите значение силы Ампера, действующей на проводник с током в магнитном поле в Ньютонах.

Расчет силы Ампера. Соберите такую же цепь, какая была описана в предыдущем пункте. Узнайте индукцию магнитного поля, в котором находится проводник. Для этого внесите датчик тесламетра между параллельными полосами постоянного магнита и снимите с него показания в теслах. Включите в собранную цепь амперметр последовательно. С помощью линейки измерьте длину цилиндрического проводника в метрах.
Подключите собранную цепь к источнику тока, узнайте силу тока в ней, используя амперметр. Измерения производите в амперах. Для того чтобы рассчитать значение силы Ампера, найдите произведение значений индукции магнитного поля на силу тока и длину проводника (F=B•I•l). В том случае, если между направлениями тока и магнитной индукции угол не равен 90º, измерьте его и умножьте результат на синус этого угла.

Определение направления силы Ампера. Найдите направление силы Ампера по правилу левой руки. Для этого поместите левую руку таким образом, чтобы линии магнитной индукции входили в ладонь, а четыре пальца показывали направление движения электрического тока (от положительного к отрицательному полюсу источника). Тогда отставленный на 90º большой палец руки покажет направление действия силы Ампера.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как узнать ампераж

Содержание

  • 1 Применение правила буравчика
  • 2 Физическая величина
  • 3 Направление силы Ампера
  • 4 Краткие о напряжении, токе и мощности
  • 5 Энергия магнитного поля
  • 6 Два параллельных проводника
  • 7 Как обозначаются амперы, миллиамперы и микроамперы
  • 8 Применение на практике
  • 9 / fizika / Закон Ампера. Взаимодействие параллельных токов
  • 10 Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера
  • 11 Определение
  • 12 Для чего нужно уметь делать перевод электрических единиц
    • 12.1 Ампер в ватт
  • 13 Применение
  • 14 Как переводить миллиамперы в амперы и наоборот

Применение правила буравчика


Данное правило гласит: если при движении вперед этого устройства траектория движения тока в проводнике совпадает с ним, то траектория вращения основания прибора комплементарна траектории движения магнитного контура. Чтобы определить траекторию вращения магнитного контура на представленном графическом изображении нужно знать несколько особенностей.

Часто в задачах по физике нужно, наоборот, определить траекторию движения тока. Чтобы это сделать, дается направление вращения кругов магнитного поля. Ручка буравчика начинается вращаться в сторону, указанную в условиях. Если буравчик движется в поступательном направлении, значит, ток направлен в сторону движения, если же он направлен в обратную, то и ток движется соответственно.

Для определения траектории движения тока в случае, представленном на втором рисунке, тоже можно воспользоваться правилом штопора. Для этого необходимо вращать ручку буравчика в сторону, указанную на изображении контура магнитного поля. Если он будет двигаться поступательно, то ток будет двигаться в сторону от наблюдателя, если же, наоборот, только к наблюдателю.

Важно! Если указана траектория движения потока, то определить траекторию вращения линии магнитного контура можно по вращению ручки буравчика

Оно обозначается при помощи точки или крестика. Точка означает движение в сторону наблюдателя, крестик означает обратное. Легко запомнить этот случай, используя так называемое правило «стрелы», если острие «смотрит», а в лицо, то траектория движения тока в сторону наблюдателя, если же в лицо «смотрит хвост стрелы», то она двигается от наблюдателя.

Как правило буравчика, так и правило правой руки, достаточно легко применить на практике. Для этого нужно расположить кисть соответствующей руки таким образом, чтобы в лицевую сторону направлялся силовой контур магнитного поля, после чего большой палец, отведенный перпендикулярно, необходимо направить сторону движения тока, соответственно, остальные выпрямленные пальцы укажут на траекторию магнитного контура.

Различают исключительные случаи использования правила правой руки для вычисления:

  • уравнения Максвелла,
  • момента силы,
  • угловой скорости,
  • момента импульса,
  • магнитной индукции,
  • тока в проводе, движущегося через магнитное поле.

Физическая величина

Ампер – это единица, которая количественно характеризует силу тока. Ее значение может быть определено путем проведения непосредственных замеров при помощи мультиметра, тестера или амперметра (прямой способ). Сила тока измеряется только путем последовательного включения в электрическую цепь измерительного прибора. Во втором случае ее значение можно узнать путем проведения расчетов (косвенный способ). Если известно напряжение, приложенное к участку цепи, а также его сопротивление, то достаточно разделить первое на второе — и мы получим необходимое значение. На практике не так часто используются амперы – это большая величина. Поэтому приходится применять кратные единицы – микро (10-6) и милли (10-3). А вот для проведения электротехнических расчетов нужно переводить их в основные единицы измерения.(например, миллиамперы в амперы). Рассмотрим следующий пример. Напряжение на участке цепи U = 6 В, а его сопротивление R = 100 Ом. Определим силу тока I на нем по закону Ома:

I = U/R, (1)

где:

  • U – напряжение на участке цепи, В;
  • R – сопротивление этого же участка, Ом;
  • I – сила тока на нем, А.

В результате проведения расчетов получаем I = U/R = 6/100 = 0,06 А. Не совсем удобное число для восприятия. Поэтому его пересчитывают в кратные единицы измерения. В данном случае удобно представить это значение в миллиамперах. Для этого полученное значение 0,06 А умножаем на 1000 и получаем 60 мА. Можно сделать и обратный пересчет — миллиамперы в амперы. Для этого достаточно разделить 60 мА на 1000, и получим все те же 0,06 А. Из этого пересчета видно, сколько в ампере миллиампер — 1000. Поэтому делим или умножаем именно на это число. Если используется приставка «микро», то уже для перехода от одной единицы измерения к другой нужно умножать или делить на 1 000 000.

Направление силы Ампера

Чтобы определить направление этих сил используют правило левой руки. Для этого нужно раскрытую ладонь левой руки расположить около проводника так, чтобы в неё входили линии вектора индукции магнитного поля, а четыре раскрытых пальца указывали направление протекания тока. Тогда отогнутый под прямым углом большой палец укажет направление силы Ампера и Лоренца.

Напомним, что направление вектора магнитной индукции определяется с помощью правила правой руки. Для этого нужно обогнуть четыре пальца правой руки вокруг проводника, большой палец отогнуть под прямым углом (словно показываете «класс»), так чтобы он указывал направление тока. Тогда четыре согнутых пальца будут показывать, как проходят линии магнитного поля, они будут описывать окружности вокруг токопроводящей жилы.

Краткие о напряжении, токе и мощности

Напряжением (измеряют в Вольтах) называется разность потенциалов между двумя точками или работу, выполненную по перемещению единичного заряда. Потенциал, в свою очередь, характеризует энергию в данной точке. Величина тока (количество Ампер) описывает, сколько зарядов протекли через поверхность за единицу времени. Мощность (ватты и киловатты) описывает скорость, с которой этот заряд был перенесен. Из этого следует – чем больше мощность, тем быстрее и больше переместилось носителей заряда через тело. В одном киловатте тысяча ватт, это нужно запомнить для быстрого расчета и перевода.

В теории звучит довольно сложно, давайте рассмотрим на практике. Основная формула, которой вычисляется мощность электрических приборов следующая:

P=I*U*cosФ

Важно! Для чисто активных нагрузок используется формула P=U*I , у которых cosФ равен единице. Активные нагрузки – это нагревательные приборы (электрический обогрев, электропечь с ТЭНами, водонагреватель, электрочайник), лампы накаливания

Все остальные электроприборы имеют некоторое значение реактивной мощности, это обычно небольшие значения, поэтому ими пренебрегают, поэтому расчет в итоге примерный получается.

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

Объемная плотность энергии поля:

Конечно, это не все основные формулы раздела физики «электричество и магнетизм», однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.

Два параллельных проводника

Два бесконечных параллельных проводника в вакууме

Наиболее известным примером, иллюстрирующим силу Ампера, является следующая задача. В вакууме на расстоянии r{displaystyle r} друг от друга расположены два бесконечных параллельных проводника, в которых в одном направлении текут токи I1{displaystyle I_{1}} и I2{displaystyle I_{2}}. Требуется найти силу, действующую на единицу длины проводника.

В соответствии с законом Био — Савара — Лапласа бесконечный проводник с током I1{displaystyle I_{1}} в точке на расстоянии r{displaystyle r} создаёт магнитное поле с индукцией

B1(r)=μ4π2I1r,{displaystyle B_{1}(r)={frac {mu _{0}}{4pi }}{frac {2I_{1}}{r}},}

где μ{displaystyle mu _{0}} — магнитная постоянная.

Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:

dF→1−2=I2dl→×B→1(r).{displaystyle d{vec {F}}_{1-2}=I_{2}d{vec {l}}times {vec {B}}_{1}(r).}

По правилу буравчика, dF→1−2{displaystyle d{vec {F}}_{1-2}} направлена в сторону первого проводника (аналогично и для dF→2−1{displaystyle d{vec {F}}_{2-1}}, а значит, проводники притягиваются).

Модуль данной силы (r{displaystyle r} — расстояние между проводниками):

dF1−2=μ4π2I1I2rdl.{displaystyle dF_{1-2}={frac {mu _{0}}{4pi }}{frac {2I_{1}I_{2}}{r}}dl.}

Интегрируем по участку проводника длины L{displaystyle L} (пределы интегрирования по l{displaystyle l} от 0 до L{displaystyle L}):

F1−2=μ4π2I1I2r⋅L.{displaystyle F_{1-2}={frac {mu _{0}}{4pi }}{frac {2I_{1}I_{2}}{r}}cdot L.}

Если L{displaystyle L} — единичная длина, то это выражение задаёт искомую силу взаимодействия.

Полученная формула используется в СИ для установления численного значения магнитной постоянной μ{displaystyle mu _{0}}. Действительно, ампер, являющийся одной из СИ, определяется в ней как «сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10−7ньютона».

Таким образом, из полученной формулы и определения ампера следует, что магнитная постоянная μ{displaystyle mu _{0}} равна 4π×10−7{displaystyle 4pi times 10^{-7}} Н/А² или, что то же самое, 4π×10−7{displaystyle 4pi times 10^{-7}} Гн/ м точно.

Как обозначаются амперы, миллиамперы и микроамперы

Правильные обозначения: ампер — А, миллиампер — мА, микроампер — мкА.

Эта физическая величина названа фамилией учёного, следовательно, её запись всегда будет содержать в русском обозначении букву А в верхнем регистре, в международном — латинскую букву A также в верхнем регистре.

Обратите внимание! Не стоит путать МА и мА, особенно при решении задач. В первом случае обозначен мегаампер (10^6 А), а во втором — миллиампер (10^-3 А), который в миллиард раз меньше мегаампера

Правописание дольных и кратных единиц, в их числе миллиампер и микроампер, будет выполняться в соответствии с правилами написания единиц и приставок, установленными ранее упомянутой Международной системой измерений (СИ).

  • Приставка пишется слитно с наименованием или обозначением единицы.
  • Недопустимо употребление двух или более приставок подряд (например, микромиллиампер).
  • В большинстве случаев принято выбирать приставку таким образом, чтобы стоящее перед ней число находилось в диапазоне от 0,1 до 1000.

Дополнительная информация! Приставка милли переводится с латинского (mille) как «тысяча». Приставка микро имеет древнегреческие корни (μικρός) и переводится как «малый».

Применение на практике

Закон Ампера является одним из важнейших законов электротехнике. Давайте рассмотрим примеры из его практического применения. Основой почти любого предприятия является электропривод. Двигателя и электромагнитные исполнительные механизмы используются для перемещения или приведения в действие различных узлов:

  • автоматизированных задвижек трубопроводов;
  • грузоподъемных механизмов;
  • электротранспорта (электровозы на жд);
  • трамваи;
  • троллейбусы;
  • электрокары и прочее.

Сила Ампера заставляет двигатель вращаться, из-за взаимодействия между обмотками ротора и статора. Для того чтобы обмотки вращались, их либо переключают с помощью щеточного узла и коллектора в двигателях постоянного тока, либо используют переменный ток.

В динамиках и громкоговорителях тоже закон Ампера нашел свое применение. Там происходит движение мембраны, на которой расположена обмотка из медной проволоки в магнитном поле постоянного магнита.

Её действие наблюдается при коротких замыканиях на ЛЭП. Где под воздействием сверхбольших токов шины и провода начинают изгибаться.

В момент выстрела из рельсотрона у него раздвигаются рельсы. Это обусловлено уже перечисленными причинами.

Напоследок рекомендуем просмотреть полезное видео по теме:

Все явления в электричестве важны, некоторые вносят меньшее влияние, некоторые большее. Однако понимать, где и как они проявляются должен каждый, кто связан с этой сферой, независимо электромонтер, АСУшник или КИПовец. Надеемся, теперь вы знаете, что описывает закон Ампера, а также какое его практическое значение!

Материалы по теме:

  • Закон Джоуля-Ленца
  • Как перевести амперы в киловатты
  • Распределение зарядов в проводнике

/ fizika / Закон Ампера. Взаимодействие параллельных токов

Закон Ампера. Взаимодействие параллельных токов.

Закон Ампера — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельныепроводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма dV проводника с током плотности , находящегося в магнитном поле с индукцией .

Действие магнитного поля на проводник с током исследовал экспериментально Андре Мари Ампер (1820 г.). Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь эту силу назвали силой Ампера.

Сила Ампера — это сила, с которой магнитное поле действует на помещенный в него проводник с током.

Согласно экспериментальным данным модуль силы F:

· пропорционален длине проводника l, находящегося в магнитном поле;

· пропорционален модулю индукции магнитного поля B;

· пропорционален силу тока в проводнике I;

· зависит от ориентации проводника в магнитном поле, т.е. от угла α между направлением тока и вектора индукции магнитного поля B⃗ .

Тогда: модуль силы Ампера равен произведению модуля индукции магнитного поля B, в котором находится проводник с током, длины этого проводника l, силы тока I в нем и синуса угла между направлениями тока и вектора индукции магнитного поля ,

где — сила тока в проводнике;

Модуль вектора индукции магнитного поля;

Длина проводника, находящегося в магнитном поле;

Угол между вектором магнитного поля и направлением тока в проводнике.

Этой формулой можно пользоваться:

· если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;

· если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).

Для определения направления силы Ампера применяют правило левой руки: если ладонь левой руки расположить так, чтобы вектор индукции магнитного поля () входил в ладонь, четыре вытянутых пальца указывали направление тока (), тогда отогнутый на 90° большой палец укажет направление силы Ампера ().

27) Закон Био-Сава-Лапласа и его применение

Закон Био Савара Лапласа определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

Формулировка закона Био Савара Лапласа имеет вид: Определяет в точке А индукцию поля , создаваемую элементом проводника с током на расстоянии от него.

Где – вектор, по модулю равный длине элемента проводника и совпадающий по направлению с током; – радиус-вектор, проведенный из элемента проводника в точку А поля; – модуль радиуса-вектора ; – магнитная постоянная ; – Относительная магнитная проницаемость (среды); — Сила тока (текущего по проводнику), размерность в СИ-А

Направление вектора :

Вектор перпендикулярен и и напревлен по касательной к линии магнитной индукции. Направление определяется по правилу правого винта: направление вращения головки винта дает направление , если поступательное движение винта соотвтествует напрвлению тока в элементе.

Применение закона: магнитное поле прямого тока

тока, текущего по тонкому прямому проводу бесконечной длины. В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами dl и r), выразив через него все остальные величины.

Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера
. Ее обозначения:
. Сила Ампера векторная величина. Ее направление определяет
правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее.
Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на
большой палец укажет направление силы Ампера (рис.1).

Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера

Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.

Анализ задачи:

Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.

Решение:

В ходе решения выполним объяснительные рисунки: изобразим проводники А и В, покажем направление тока в них и др.

Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.

1) С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (отметка «•»).

2) Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.

3) Приходим к выводу: проводник А привлекается к проводнику В.

Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.

1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (отметка «х»).

2) Определим направление силы Ампера, действующая на проводник В.

3) Приходим к выводу: проводник В привлекается к проводнику А.

Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.

Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?

Анализ задачи:

Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:

  1. сила Ампера будет направлена ​​противоположно силе тяжести (то есть вертикально вверх)
  2. значение силы Ампера равна значению силы тяжести FA =  Fтяж

Направление тока определим, воспользовавшись правилом левой руки.

Решение:

Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.

Учитываем, что FA =  Fтяж.  FA= BIlsinα, где sin α = 1; Fтяж = mg

Из последнего выражения найдем силу тока: I = mg/Bl

Проверим единицу, найдем значение искомой величины.

Ответ: I = 8 А; Ток в направлении от нас.

Подводим итоги

Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.

Определение

Закон Ампера гласит, что сила, которая возникает вокруг проводника, прямо пропорциональна его длине, силе тока и магнитной индукции, а также косинуса угла между проводником и вектором магнитной индукции. Соответственно его формула:

F=BILcosa

Эта F является силой Ампера. Ничего не напоминает? И формула, и сам её физический смысл аналогичен силе Лоренца. Отличием является лишь то, что закон Ампера справедлив для проводника в магнитном поле, а Лоренца действует на заряженные частицы.

Если его представить в векторной форме, то уравнение будет иметь вид:

А в дифференциальной форме:

Есть и другая формулировка: закон Ампера характеризует силу, действующую на проводник в магнитном поле. Он был открыт Андре Мари Ампером в 1820 году.

В чем измеряется сила Ампера? Как и другие силы в физике – в Ньютонах (Н).

Интересно! В отечественной физике в большинстве случаев придерживаются системы единиц измерения СИ. Так вот в этой системе под величиной 1 Ампер понимают такой ток, при протекании которого по двум проводникам расположенным параллельно и в 1 метре друг от друга, возникала бы сила взаимодействия в 2*10^(-7) Н. При этом они имеют бесконечную длину, минимальную площадь поперечного сечения и расположены в вакууме.

Так как этот закон подразумевает возникновение какой-то силы, то нет сомнений что при наличии нескольких таких сил они будут взаимодействовать между собой. Давайте разберёмся как именно.

При взаимодействии параллельных токов, протекающих в одном направлении, два расположенных рядом проводника начнут притягиваться. Если токи будут протекать в разных направлениях — проводники будут отталкиваться

Это и есть самое важное действие в этом законе

Для чего нужно уметь делать перевод электрических единиц

Очень часто, используя бытовую технику, хозяйка может увидеть маркировку на розетке «220В 6А» или другую похожую и не понять, что это может серьезно повредить электрическую сеть в доме, так как такая маркировка указывает на максимальную величину мощности нагрузки, которую можно подключить в розетку.

Ампер в ватт

Для того чтобы найти, сколько единиц мощности (ватт) можно подключить в имеющуюся розетку, достаточно умножить значения напряжения на величину тока. В нашем случае 220 умножаем на 6 = 1320 Вт — величина мощности, максимальная для данной розетки. Когда мы подключаем в нее бытовую технику, надо смотреть на ее мощность. Тепловой обогреватель (масляный радиатор) в нашем случае можем включать только при половинном значении его мощности.


Перевод амперов в ватты

Для выбора защиты для домашнего оборудования (автомат) надо уметь делать обратный перевод из величины мощности оборудования, включенного одновременно в сеть, в амперы. Для защиты бойлера мощностью 2,5 кВт (= 2500 ватт) в однофазной сети 220 вольт надо сделать следующее: мощность/напряжение = 11,36 А. Для защиты оборудования нам будет достаточно купить и установить автомат с разрывом цепи на 16 ампер.

Применение

Любые узлы в электротехнике, где под действием электромагнитного поля происходит движение каких-либо элементов, используют закон Ампера.
Принцип работы электромеханических машин (движение части обмотки ротора относительно части обмотки статора) основан на использовании закона Ампера, и самый широко распространённый и используемый чуть ли не во всех технических конструкциях агрегат — это электродвигатель, либо, что конструктивно почти то же самое — генератор. Именно под действием силы Ампера происходит вращение ротора, поскольку на его обмотку влияет магнитное поле статора, приводя в движение.
Любые транспортные средства на электротяге для приведения во вращение валов, на которых находятся колёса, используют силу Ампера (трамваи, электрокары, электропоезда и др).

Также магнитное поле приводит в движение механизмы электрозапоров (электродвери, раздвигающиеся ворота, двери лифта). Другими словами, любые устройства, которые работают на электричестве и имеют движущиеся узлы, основаны на эксплуатации закона Ампера.

Также, он находит применение во многих других видах электротехники, например, в динамическое головке (динамике): в динамике (громкоговорителе) для возбуждения мембраны, которая формирует звуковые колебания используется постоянный магнит, на него под действием электромагнитного поля, создаваемого расположенным рядом проводником с током, действует сила Ампера, которая изменяется в соответствии с нужной звуковой частотой.

Также:

  • Электродинамическое сжатие плазмы; например, в токамаках, установках Z-пинч.
  • .

Как переводить миллиамперы в амперы и наоборот

При переводе значений из одной величины в другую следует уметь работать со степенями и стандартным видом числа в физике. Будет проще переводить, зная соответствие степеней и приставок. Рекомендуется освоить это.

Чтобы конвертировать миллиамперы в амперы, следует разделить имеющееся числовое значение на 1000 или умножить на 10^-3 при работе со стандартным видом. А для обратного перевода следует произвести либо умножение на 1000, либо умножить значение на 10^3.

Пример: Сколько ампер в 500 миллиамперах?

Миллиампер меньше ампера в 1000 раз, значит нужно разделить на 1000; 500/1000 = 0,5. Получается 0,5 А.

Конвертер

1 мкА= 10^-6 А = 0,0000001 А. Микроампер меньше ампера в миллион раз. Для перевода первой величины во вторую потребуется произвести деление на 1000000 или умножение на 10^-6 А.

Чтобы перевести микроамперы в миллиамперы, необходимо учитывать, что 1 мА = 1000 мкА. Для перевода величин будут использоваться те же действия, что и для миллиампер и ампер в первом алгоритме.

Электричество — обширнейшая тема в физике, для её усвоения необходимо понимание многих процессов и прежде всего — основной единицы, характеризующей её — ампера. А для правильного перевода величин необходимо знание приставок, принятых в СИ, и математики.

Определение

Сила Ампера — сила, которая действует на проводник с током, помещенный в магнитное поле.

Модуль силы Ампера обозначается как FA. Единица измерения — Ньютон (Н).

Математически модуль силы Ампера определяется как произведение модуля вектора магнитной индукции B, силы тока I, длины проводника l и синуса угла α между условным направлением тока и вектором магнитной индукции:

FA=BIlsinα

Максимальное значение сила Ампера принимает, когда ток в проводнике направлен перпендикулярно вектору магнитной индукции, так как sin90°=1. И сила Ампера отсутствует совсем, если ток в проводнике направлен относительно вектора магнитной индукции вдоль одной линии. В этом случае угол между ними равен 0, а sin0°=1.

Пример №1. Максимальная сила, действующая в однородном магнитном поле на проводник с током длиной 10 см, равна 0,02 Н. Сила тока в проводнике равна 8 А. Найдите модуль вектора магнитной индукции этого поля.

10 см = 0,1 м

Так как речь идет о максимальной силе, действующей на проводник с током, тоsinα при этом равен 1 (проводник с током расположен перпендикулярно вектору магнитной индукции).

Определение направления силы Ампера

Направление вектора силы Ампера определяется правилом левой руки.

Правило левой руки

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции B входила в ладонь, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на отрезок проводника (направление силы Ампера).

Пример №2. В однородном магнитном поле находится рамка, по которой начинает течь ток (см. рисунок). Какое направление (вверх, вниз, влево, вправо, от наблюдателя, наблюдателю) имеет сила, действующая на нижнюю сторону рамки?

Так как в нижней стороне рамки ток направлен вправо, то четыре пальца левой руки нужно направить вправо. Саму левую руку при этом нужно расположить перпендикулярно плоскости рисунка ладонью вверх, чтобы в нее входили линии вектора магнитной индукции. Если отогнуть большой палец на прямой угол, то он покажет направление силы Ампера, действующей на нижнюю часть рамки. В данном случае она направлена в сторону от наблюдателя.

Работа силы Ампера

Проводники, на которые действует сила Ампера, могут перемещаться под действием этой силы. В этом случае говорят, что сила Ампера совершает работу. Из курса механики вспомним, что работа равна:

A=Fscosα

F — сила, совершающая работу, s — перемещение, совершенное телом под действием этой силы, α — угол между вектором силы и вектором перемещения.

Отсюда работа, совершаемая силой Ампера, равна:

A=FAscosα=BIlsinβscosα

α — угол между вектором силы и вектором перемещения, β — угол между условным направлением тока и вектором магнитной индукции.

Пример №3. Проводник длиной l = 0,15 м перпендикулярен вектору магнитной индукции однородного магнитного поля, модуль которого B = 0,4 Тл. Сила тока в проводнике I = 8 А. Найдите работу, которая была совершена при перемещении проводника на 0,025 м по направлению действия силы Ампера.

Так как проводник расположен перпендикулярно вектору магнитной индукции, и поле однородно, то синус угла между ними равен «1». Так как направление перемещение проводника совпадает с направлением действия силы Ампера, то косинус угла между ними тоже равен «1». Поэтому формула для вычисления работы силы Ампера принимает вид:

A=BIls

Подставим известные данные:

A=0,4·8·0,15·0,025=0,012 (Дж)=12 (мДж)

Задание EF17704

Как направлена сила Ампера, действующая на проводник № 3 со стороны двух других (см. рисунок), если все проводники тонкие, лежат в одной плоскости и параллельны друг другу? По проводникам идёт одинаковый ток силой I.

а) вверх

б) вниз

в) к нам

г) от нас


Алгоритм решения

1.Определить направление вектора результирующей магнитной индукции первого и второго проводников в любой точке третьего проводника.

2.Используя правило левой руки, определить направление силы Ампера, действующей на третий проводник со стороны первых двух проводников.

Решение

На третьем проводнике выберем произвольную точку и определим, в какую сторону в ней направлен результирующий вектор B, равный геометрической сумме векторов магнитной индукции первого и второго проводников (B1и B2). Применим правило буравчика. Мысленно сопоставим острие буравчика с направлением тока в первом проводнике. Тогда направление вращения его ручки покажем, что силовые линии вокруг проводника 1 направляются относительно плоскости рисунка против хода часовой стрелки. Ток во втором проводнике направлен противоположно току в первом. Следовательно, его силовые линии направлены относительно плоскости рисунка по часовой стрелке.

В точке А вектор B1 направлен в сторону от наблюдателя, а вектор B2— к наблюдателю. Так как второй проводник расположен ближе к третьему, создаваемое им магнитное поле в точке А более сильное (силы тока во всех проводниках равны по условию задачи). Следовательно, результирующий вектор B направлен к наблюдателю.

Теперь применим правило левой руки. Расположим ее так, чтобы четыре пальца были направлены в сторону течения тока в третьем проводнике. Ладонь расположим так, чтобы результирующий вектор B входил в ладонь. Теперь отставим большой палец на 90 градусов. Относительно рисунка он покажет «вверх». Следовательно, сила Ампера FА, действующая на третий проводник, направлена вверх.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18417

Чему равна сила Ампера, действующая на стальной прямой проводник с током длиной 10 см и площадью поперечного сечения 2⋅10–2 мм2 , если напряжение на нём 2,4 В, а модуль вектора магнитной индукции 1 Тл? Вектор магнитной индукции перпендикулярен проводнику. Удельное сопротивление стали 0,12 Ом⋅мм2/м.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Записать формулу для определения силы Ампера.

3.Выполнить решение в общем виде.

4.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Длина проводника: l = 10 см.

 Площадь поперечного сечения проводника: S = 2⋅10–2 мм2.

 Напряжение в проводнике: U = 2,4 В.

 Модуль вектора магнитной индукции: B = 1 Тл.

 Удельное сопротивление стали: r = 0,12 Ом⋅мм2/м.

 Угол между проводником с током и вектором магнитной индукции: α = 90о.

10 см = 0,1 м

Сила Ампера определяется формулой:

FA=BIlsinα

Так как α = 90о, синус равен 1. Тогда сила Ампера равна:

FA=BIl

Силу тока можно выразить из закона Ома:

I=UR

Сопротивление проводника вычисляется по формуле:

R=rlS

Тогда сила тока равна:

I=USrl

Конечная формула для силы Ампера принимает вид:

FA=BlUSrl=BUSr=1·2,4·2·1020,12=0,4 (Н)

Ответ: 0,4

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17725

На непроводящей горизонтальной поверхности стола лежит жёсткая рамка массой m из однородной тонкой проволоки, согнутая в виде квадрата AСDЕ со стороной a(см. рисунок). Рамка находится в однородном горизонтальном магнитном поле, вектор индукции B которого перпендикулярен сторонам AE и CD и равен по модулю В. По рамке течёт ток в направлении, указанном стрелками (см. рисунок). При какой минимальной силе тока рамка начнет поворачиваться вокруг стороны CD?


Алгоритм решения

1.Сделать список известных данных.

2.Определить, при каком условии рамка с током будет вращаться вокруг стороны CD.

3.Выполнить решение в общем виде.

Решение

По условию задачи известными данными являются:

 Сторона квадратной рамки с током: a.

 Вектор магнитной индукции однородного горизонтального магнитного поля, в котором лежит рамка: B.

Пусть по рамке течёт ток I. На стороны АЕ и CD будут действовать силы Ампера:

FA1=FA2=IaB

Для того чтобы рамка начала поворачиваться вокруг оси CD, вращательный момент сил, действующих на рамку и направленных вверх, должен быть не меньше суммарного момента сил, направленных вниз. Момент силы Ампера относительно оси, проходящей через сторону CD:

MA=Ia2B

Момент силы тяжести относительно оси CD:

Mmg=12mga

Чтобы рамка с током оторвалась от горизонтальной поверхности, нужно чтобы суммарный момент сил был больше нуля:

MA+Mmg>0

Так как момент силы тяжести относительно оси CD отрицательный, это неравенство можно записать в виде:

Ia2B>12mga

Отсюда выразим силу тока:

I>mga2a2B

I>mg2aB

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 10.8k

Понравилась статья? Поделить с друзьями:
  • Как найти перегоревший светодиод в лампе мультиметром
  • Полярная система координат как найти угол
  • Как найти карту 2016 года
  • Privileged instruction victoria как исправить
  • Как дела мне надо найти