Как найти силу избыточного гидростатического давления

Гидростатическое давление: формула и свойства.

Гидростатическое давление

Гидростатическое давление – это давление, производимое на жидкость силой тяжести.

Гидростатикой называется раздел гидравлики, в котором изучаются законы равновесия жидкостей и рассматривается практическое приложение этих законов.

Для того, чтобы понять гидростатику необходимо определиться в некоторых понятиях и определениях.

В этой статье мы подготовили для Вас, всю необходимую информацию о гидростатическом давлении, начиная от закона Паскаля и определения формулы гидростатического давления и до свойств давления и применения законов гидростатики в повседневной жизни.

Содержание

  • Закон Паскаля для гидростатики.
  • Определение и формула гидростатического давления
  • Сила гидростатического давления
  • Измерение гидростатического давления
  • Свойства гидростатического давления

Закон Паскаля для гидростатики.

В 1653 году французским ученым Б. Паскалем был открыт закон, который принято называть основным законом гидростатики.

Звучит он так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Закон Паскаля легко понимается если взглянуть на молекулярное строение вещества. В жидкостях и газах молекулы обладают относительной свободой, они способны перемещаться друг относительно друга, в отличии от твердых тел. В твердых телах молекулы собраны в кристаллические решетки.

Относительная свобода, которой обладают молекулы жидкостей и газов, позволяет передавать давление производимое на жидкость или газ не только в направлении действия силы, но и во всех других направлениях.

Закон Паскаля для гидростатики нашел широкое распространение в промышленности. На этом законе основана работа гидроавтоматики, управляющей станками с ЧПУ, автомобилями и самолетами и многих других гидравлических машин.

Определение и формула гидростатического давления

Из описанного выше закона Паскаля вытекает, что:

Величина гидростатического давления не зависит от формы сосуда, в котором находится жидкость и определяется произведением

P = ρ& #215; g × h , где

ρ – плотность жидкости

g – ускорение свободного падения

h – глубина, на которой определяется давление.

Гидростатическое давление в сосуде

Для иллюстрации этой формулы посмотрим на 3 сосуда разной формы.

Во всех трёх случаях давление жидкости на дно сосуда одинаково.

Полное давление жидкости в сосуде равно

P = P0 + ρ × g × h , где

P0 – давление на поверхности жидкости. В большинстве случаев принимается равным атмосферному.

Сила гидростатического давления

Выделим в жидкости, находящейся в равновесии, некоторый объем, затем рассечем его произвольной плоскостью АВ на две части и мысленно отбросим одну из этих частей, например верхнюю. При этом мы должны приложить к плоскости АВ силы, действие которых будет эквивалентно действию отброшенной верхней части объема на оставшуюся нижнюю его часть.

Гидростатическое давление на точку

Рассмотрим в плоскости сечения АВ замкнутый контур площадью ΔF, включающий в себя некоторую произвольную точку a. Пусть на эту площадь воздействует сила ΔP.

Тогда гидростатическое давление формула которого выглядит как

Рср = ΔP / ΔF

представляет собой силу, действующую на единицу площади, будет называться средним гидростатическим давлением или средним напряжением гидростатического давления по площади ΔF.

Истинное давление в разных точках этой площади может быть разным: в одних точках оно может быть больше, в других – меньше среднего гидростатического давления. Очевидно, что в общем случае среднее давление Рср будет тем меньше отличаться от истинного давления в точке а, чем меньше будет площадь ΔF, и в пределе среднее давление совпадет с истинным давлением в точке а.

Для жидкостей, находящихся в равновесии, гидростатическое давление жидкости аналогично напряжению сжатия в твердых телах.

Единицей измерения давления в системе СИ является ньютон на квадратный метр (Н/м2) – её называют паскалем (Па). Поскольку величина паскаля очень мала, часто применяют укрупненные единицы:

килоньютон на квадратный метр – 1кН/м2 = 1×103 Н/м2

меганьютон на квадратный метр – 1МН/м2 = 1×106 Н/м2

Давление равное 1×105 Н/м2 называется баром (бар).

В физической системе единицей намерения давления является дина на квадратный сантиметр (дина/м2), в технической системе – килограмм-сила на квадратный метр (кгс/м2). Практически давление жидкости обычно измеряют в кгс/см2, а давление равное 1 кгс/см2 называется технической атмосферой (ат).

Между всеми этими единицами существует следующее соотношение:

1ат = 1 кгс/см2 = 0,98 бар = 0,98 × 105 Па = 0,98 × 106дин = 104 кгс/м2

Следует помнить что между технической атмосферой (ат) и атмосферой физической (Ат) существует разница. 1 Ат = 1,033 кгс/см2 и представляет собой нормальное давление на уровне моря. Атмосферное давление зависит от высоты расположения места над уровнем моря.

Измерение гидростатического давления

Измерение гидростатического давления

На практике применяют различные способы учета величины гидростатического давления. Если при определении гидростатического давления принимается во внимание и атмосферное давление, действующее на свободную поверхность жидкости, его называют полным или абсолютным. В этом случае величина давления обычно измеряется в технических атмосферах, называемых абсолютными (ата).

Часто при учете давления атмосферное давление на свободной поверхности не принимают во внимание, определяя так называемое избыточное гидростатическое давление, или манометрическое давление, т.е. давление сверх атмосферного.

Манометрическое давление определяют как разность между абсолютным давлением в жидкости и давлением атмосферным.

Рман = Рабс – Ратм

и измеряют также в технических атмосферах, называемых в этом случае избыточными.

Случается, что гидростатическое давление в жидкости оказывается меньше атмосферного. В этом случае говорят, что в жидкости имеется вакуум. Величина вакуума равняется разнице между атмосферным и и абсолютным давлением в жидкости

Рвак = Ратм – Рабс

и измеряется в пределах от нуля до атмосферы.

Свойства гидростатического давления

Свойства гидростатического давления

Гидростатическое давление воды обладает двумя основными свойствами:

Первое свойство является простым следствием того положения, что в покоящейся жидкости отсутствуют касательные и растягивающие усилия.

Предположим, что гидростатическое давление направлено не по нормали, т.е. не перпендикулярно, а под некоторым углом к площадке. Тогда его можно разложить на две составляющие – нормальную и касательную. Наличие касательной составляющей из-за отсутствия в покоящейся жидкости сил сопротивления сдвигающим усилиям неизбежно привело бы к движению жидкости вдоль площадки, т.е. нарушило бы её равновесие.

Поэтому единственным возможным направлением гидростатического давления является его направление по нормали к площадке.

Если предположить что гидростатическое давление направлено не по внутренней, а по внешней нормали, т.е. не внутрь рассматриваемого объекта а наружу от него, то вследствие того, что жидкость не оказывает сопротивления растягивающим усилиям – частицы жидкости пришли бы в движение и её равновесие было бы нарушено.

Следовательно, гидростатическое давление воды всегда направлено по внутренней нормали и представляет собой сжимающее давление.

Из этого же правило следует, что если измениться давление в какой-то точке, то на такую же величину измениться давление в любой другой точке этой жидкости. В этом заключается закон Паскаля, который формулируется следующим образом: Давление производимое на жидкость, передается внутри жидкости во все стороны с одинаковой силой.

На применение этого закона основываются действие машин, работающих под гидростатическим давлением.


Ещё одним фактором влияющим на величину давления является вязкость жидкости, которой до недавнего времени приято было пренебрегать. С появлением агрегатов работающих на высоком давлении вязкость пришлось так же учитывать. Оказалось, что при изменении давления, вязкость некоторых жидкостей, таких как масла, может изменяться в несколько раз. А это уже определяет возможность использовать такие жидкости в качестве рабочей среды.

Вместе со статьей «Гидростатическое давление: определение, формула и свойства.» смотрят:

Гидростатический парадокс и сила давления на стенку

Гидростатический парадокс и сила давления на стенку

Гидравлические машины это? Описание и принцип работы.

Гидравлические машины это? Описание и принцип работы.

Гидравлическое сопротивление

Гидравлическое сопротивление

Графическое
изображение распределения гидростатического
давления по поверхности тела, погруженного
в жидкость, называется эпюрой
гидростатического
давления
.

При
построении эпюр гидростатического
давления используются два основных
принципа, вытекающие из свойств
гидростатического давления:

  • гидростатическое
    давление является векторной
    величиной
    .
    Вектор гидростатического давления
    направлен по нормали к поверхности
    тела, погруженного в жидкость;

  • модуль
    вектора

    гидростатического давления определяется
    по уравнению (1.11) для построения эпюр
    абсолютного давления и (1.12) для построения
    эпюр избыточного гидростатического
    давления.

Для плоских
прямоугольных стенок эпюры избыточного
и абсолютного гидростатического давления
имеют вид, представленный на рис. 1.14
и
рис. 1.15.

Равнодействующая
элементарных сил гидростатического
давления, действующих на какую-либо
стенку, называется
силой гидростатического давления
.

Рис.
1.14

Рис.
1.15

Сила
гидростатического давления на площадку
определяется произведением её площади
на гидростатическое давление в центре
тяжести площадки (рис. 1.16).

(1.15)

где
P
– сила гидростатического давления, Н;

hцт
– глубина погружения центра тяжести
фигуры, м;

pцт
– гидростатическое давление в центре
тяжести фигуры, Па.

Рис.
1.16

Точка
приложения силы Р
называется центром давления. Координата
центра давления
для симметричных относительно осиNN
фигур определится из уравнения

(1.16)

где
I0
– момент инерции площади
относительно оси mm.

Значения
I0

и yцт
для некоторых фигур приведены в
приложении 5.

Сила
гидростатического давления Р
может быть определена графическим
способом как произведение площади эпюры
гидростатического давления на ширину
стенки.

(1.17)

где
S
– площадь эпюры гидростатического
давления, Н/м;

b
– ширина стенки, м.

Сила
давления проходит через центр тяжести
эпюры гидростатического давления и
направлена по нормали к поверхности.

Сила
избыточного гидростатического давления
для плоских прямоугольных стенок,
изображенных на рис. 1.14, может быть
определена по формулам:

Вертикальная
стенка

(1.18)

Горизонтальная
стенка

(1.19)

где

– площадь дна, м2.

Наклонная
стенка

(1.20)

Закон Архимеда

Сила,
с которой жидкость действует на
погруженное в неё тело, равна весу
жидкости в объёме погруженного тела и
направлена вертикально вверх.

(1.21)

где
R
выталкивающая сила, Н;

 – плотность
жидкости, кг/м3;

W
– объём погруженного тела, м3.

Задачи

    1. Определить
      силу избыточного гидростатического
      давления на вертикальную стенку
      водонапорного бака шириной 5 м.
      В баке, размеры которого в плане
      составляют 45 м,
      находится 35 м3
      воды. Построить эпюру избыточного
      гидростатического давления на эту
      стенку.

    2. Определить
      силу избыточного гидростатического
      давления на за-слонку, закрывающую
      отверстие в стенке резервуара (рис.
      1.17). Резервуар заполнен нефтью
      = 850 кг/м3.
      Размеры заслонки 1010 см.
      Высота слоя нефти до начала заслонки
      м.
      Построить эпюру избыточного
      гидростатического давления на заслонку.

Рис.
1.17

Решение.
Силу избыточного гидростатического
давления определим графическим способом
как произведение площади эпюры избыточного
гидростатического давления (рис. 1.17б)
на ширину заслонки

Эпюра
избыточного гидростатического давления
имеет форму трапеции, площадь которой
определяется как произведение полусуммы
оснований на высоту

где
АВ
= gh1
= 8509,816
= 50,03103 Па

гидростатическое давление
в точке
А;

СD
= gh2
= 8509,816,1
= 50,86103 Па
– гидростатическое давление
в точке
В;

ВС
= h2h1
= 6,1-6,0 = 0,1 м
– высота трапеции.

Тогда

Сила
избыточного гидростатического давления

    1. Определить
      силу избыточного гидростатического
      давления на заслонку размерами a
      = 15 см,
      b
      = 20 см
      (рис. 1.17а), закрывающую отверстие
      в
      стенке резервуара с бензином плотностью

      = 700 кг/м3.
      Высота слоя бензина до начала заслонки
      м.
      Построить эпюру избыточного
      гидростатического давления.

    2. Определить
      силу избыточного гидростатического
      давления на откос пожарного водоёма
      (рис. 1.18) шириной 8 м, если глубина
      воды в водоеме 3,5м, угол наклона
      откоса составляет 45.
      Построить эпюру избыточного
      гидростатического давления.

Рис.
1.18

    1. Канал
      шириной 4 м
      и глубиной 3 м
      перегорожен щитом прямоугольной формы
      (рис. 1.19). Определить силу тяги, необходимую
      для подъ-
      ёма щита весом 15 кН,
      если коэффициент трения щита о
      поверхность пазов составляет 0,5.

Рис.
1.19

Решение.
Сила тяги может быть определена как
сумма веса щита G
и силы трения щита о поверхность пазов

Сила
трения определяется как произведение
силы нормального (в данном случае
гидростатического) давления на коэффициент
трения.

Силу
избыточного гидростатического давления
определим графическим способом как
произведение эпюры избыточного
гидростатического давления на ширину
стенки

Тогда

    1. Определить
      силу тяги, необходимую для подъёма
      щита весом 10 кН,
      который перегораживает канал глубиной
      м.
      Ширина щита 3 м.
      Коэффициент трения щита о поверхность
      пазов 0,4 (рис. 1.19).

    2. Определить
      силу избыточного гидростатического
      давления и центр давления на наклонную
      крышку, которая закрывает круглую
      трубу диаметром 1 м
      водовыпуска из пожарного водоема (рис.
      1.20). Угол наклона крыши
      = 60.
      Ось водовыпуска находится на глубине
      Н
      = 2 м.

Рис.
1.20

Решение.
Силу давления на крышку определим
аналитическим способом как произведение
гидростатического давления в центре
тяжести крышки на её площадь:

Площадь
крышки, имеющей форму эллипса

где
а
и b
– полуоси эллипса.

Тогда

Расстояние
до центра тяжести эллипса

Координата
центра давления

Момент
инерции эллипса

Тогда

    1. Определить
      силу избыточного гидростатического
      давления и центр давления на наклонную
      крышку (рис. 1.21), если:

а)
H
= 3 м;
d
= 0,8 м;
= 45;

б)
H
= 3,5 м;
d
= 0,9 м;
= 30;

в)
H
= 4 м;
d
= 1,0 м;
= 50.

Рис.
1.21

    1. Определить
      силу избыточного гидростатического
      давления и центр давления на плоский
      затвор (рис. 1.21), которым перекрывается
      водовыпуск пожарного водоема. Глубина
      водоема 3 м,
      высота прямоугольного канала водовыпуска
      h
      = 1 м,
      ширина b
      = 0,8 м,
      угол наклона затвора к горизонту
      = 30.
      Построить эпюру избыточного
      гидростатического давления на затвор.

    2. Определить
      силу избыточного гидростатического
      давления на промежуточную вертикальную
      стенку пожарного резервуара шириной
      м.
      Стенка разделяет резервуар на два
      отсека (рис. 1.22), уровень воды в первом
      отсеке 2 м,
      во втором – 1 м.
      Построить эпюру избыточного
      гидростатического давления.

Рис.
1.22

    1. Для
      приведённых на рисунке 1.23 плоских
      прямоугольных фигур построить эпюры
      избыточного гидростатического давления.

Рис. 1.23

    1. Для
      приведённых на рисунке 1.24 криволинейных
      стенок построить эпюры избыточного
      гидростатического давления.

Рис. 1.24

    1. Определить
      минимальный диаметр шарового поплавка,
      который обеспечивает автоматическое
      закрытие клапана при наполнении
      резервуара (рис. 1.25), если а
      = 120 мм,
      b
      = 600 мм.
      Вода поступает в резервуар под давлением
      p
      = 1,5105 Па
      по трубе диаметром 150 мм.
      Массой рычага, клапана и поплавка
      пренебречь.

Рис. 1.25

    1. Плотность
      жидкости измеряется при помощи ареометра
      (рис. 1.26). Внешний диаметр трубки
      20 мм,
      диаметр шарика с дробью 30 мм,
      масса ареометра 0,060 кг.
      Определить плотность жидкости, если
      глубина погружения в ней ареометра
      составляет h
      = 150 мм.

Рис. 1.26

    1. Определить
      глубину погружения ареометра в жидкость
      плотностью 800 кг/м3
      (рис. 1.26), если внешний диаметр трубки
      25 мм,
      диаметр шарика с дробью 40 мм,
      масса ареометра 0,080 кг.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Главная страница

Содержание

Введение

Основы гидростатики

Основы гидродинамики

Гидравлические сопротивления

Истечние жидкости из отверстий, насадков и из-под затворов

Гидравлический расчет простых трубопроводов

Гидравлические машины

Лекция 2. ОСНОВЫ ГИДРОСТАТИКИ

Гидравлика делится на два раздела: гидростатика и гидродинамика. Гидродинамика является более обширным
разделом и будет рассмотрена в последующих лекциях. В этой лекции будет рассмотрена гидростатика.

Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости
и их практическое применение.

В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением.
Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних
слоях водоема, испытывают меньшие силы сжатия, чем частицы жидкости, находящиеся у дна.

Рассмотрим резервуар с плоскими вертикальными стенками, наполненный жидкостью (рис.2.1, а). На дно
резервуара действует сила P равная весу налитой жидкости G = γ V, т.е. P = G.

Если эту силу P разделить на площадь дна Sabcd, то мы получим среднее гидростатическое
давление
, действующее на дно резервуара.

Гидростатическое давление обладает свойствами.

Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке
касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.

Для доказательства этого утверждения вернемся к рис.2.1, а. Выделим на боковой стенке резервуара
площадку Sбок (заштриховано). Гидростатическое давление действует на эту площадку в виде
распределенной силы, которую можно заменить одной равнодействующей, которую обозначим P. Предположим,
что равнодействующая гидростатического давления P, действующая на эту площадку, приложена в точке
А и направлена к ней под углом φ (на рис. 2.1 обозначена штриховым отрезком со
стрелкой). Тогда сила реакции стенки R на жидкость будет иметь ту же самую величину, но
противоположное направление (сплошной отрезок со стрелкой). Указанный вектор R можно разложить на
два составляющих вектора: нормальный Rn (перпендикулярный к заштрихованной площадке) и
касательный Rτ к стенке.

Рис. 2.1. Схема, иллюстрирующая свойства гидростатического давления
а — первое свойство; б — второе свойство

Сила нормального давления Rn вызывает в жидкости напряжения сжатия. Этим напряжениям
жидкость легко противостоит. Сила Rτ действующая на жидкость вдоль
стенки, должна была бы вызвать в жидкости касательные напряжения вдоль стенки и частицы должны были бы
перемещаться вниз. Но так как жидкость в резервуаре находится в состоянии покоя, то составляющая
Rτ отсутствует. Отсюда можно сделать вывод первого свойства
гидростатического давления.

Свойство 2. Гидростатическое давление неизменно во всех направлениях.

В жидкости, заполняющей какой-то резервуар, выделим элементарный кубик с очень малыми сторонами
Δx, Δy, Δz (рис.2.1, б). На каждую из боковых поверхностей будет
давить сила гидростатического давления, равная произведению соответствующего давления Px,
Py , Pz на элементарные площади. Обозначим вектора давлений,
действующие в положительном направлении (согласно указанным координатам) как P’x,
P’y, P’z, а вектора давлений, действующие в обратном направлении
соответственно x, y, z. Поскольку кубик
находится в равновесии, то можно записать равенства

P’xΔyΔz=xΔyΔz
P’yΔxΔz = yΔxΔz
P’zΔxΔy + γΔx, Δy, Δz = zΔxΔy

где γ — удельный вес жидкости;
Δx, Δy, Δz — объем кубика.

Сократив полученные равенства, найдем, что

P’x = P»x; P’y = P»y; P’z + γΔz = z

Членом третьего уравнения γΔz, как бесконечно малым по сравнению с P’z
и z, можно пренебречь и тогда окончательно

P’x = P»x; P’y = P»y; P’z=P»z

Вследствие того, что кубик не деформируется (не вытягивается вдоль одной из осей), надо полагать, что
давления по различным осям одинаковы, т.е.

P’x = P»x = P’y = P»y = P’z=P»z

Это доказывает второй свойство гидростатического давления.

Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.

Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки
давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического
давления может быть записано в виде

P=f(x, y, z)

Рассмотрим распространенный случай равновесия жидкости, когда на нее действует только одна массовая сила —
сила тяжести, и получим уравнение, позволяющее находить гидростатическое давление в любой точке
рассматриваемого объема жидкости. Это уравнение называется основным уравнением гидростатики.

Пусть жидкость содержится в сосуде (рис.2.2) и на ее свободную поверхность действует давление P0
. Найдем гидростатическое давление P в произвольно взятой точке М, расположенной на
глубине h. Выделим около точки М элементарную горизонтальную площадку dS и построим на
ней вертикальный цилиндрический объем жидкости высотой h. Рассмотрим условие равновесия указанного
объема жидкости, выделенного из общей массы жидкости. Давление жидкости на нижнее основание цилиндра теперь
будет внешним и направлено по нормали внутрь объема, т.е. вверх.

Рис. 2.2. Схема для вывода основного уравнения гидростатики

Запишем сумму сил, действующих на рассматриваемый объем в проекции на вертикальную ось:

PdS — P0 dS — ρghdS = 0

Последний член уравнения представляет собой вес жидкости, заключенный в рассматриваемом вертикальном цилиндре
объемом hdS. Силы давления по боковой поверхности цилиндра в уравнение не входят, т.к. они
перпендикулярны к этой поверхности и их проекции на вертикальную ось равны нулю. Сократив выражение на
dS и перегруппировав члены, найдем

P = P0 + ρgh = P0 + hγ

Полученное уравнение называют основным уравнением гидростатики. По нему можно посчитать давление в любой
точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления
P0 на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев
жидкости.

Из основного уравнения гидростатики видно, что какую бы точку в объеме всего сосуда мы не взяли, на нее
всегда будет действовать давление, приложенное к внешней поверхности P0. Другими словами
давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем
направлениям одинаково. Это положение известно под названием закона Паскаля.

Поверхность, во всех точках которой давление одинаково, называется поверхностью уровня (подробно рассмотрим
в п.2.6). В обычных условиях поверхности уровня представляют собой горизонтальные плоскости.

Пусть мы имеем резервуар с наклонной правой стенкой, заполненный жидкостью с удельным весом γ. Ширина
стенки в направлении, перпендикулярном плоскости чертежа (от читателя), равна b
(рис.2.3). Стенка условно показана развернутой относительно оси АВ и заштрихована на рисунке. Построим
график изменения избыточного гидростатического давления на стенку АВ.

Так как избыточное гидростатическое давление изменяется по линейному закон P=γgh,
то для построения графика, называемого эпюрой давления, достаточно найти давление в двух точках, например
А и B.

Рис. 2.3. Схема к определению равнодействующей гидростатического давления на плоскую
поверхность

Избыточное гидростатическое давление в точке А будет равно

PA = γh = γ·0 = 0

Соответственно давление в точке В:

PB = γh = γH

где H — глубина жидкости в резервуаре.

Согласно первому свойству гидростатического давления, оно всегда направлено по нормали к ограждающей
поверхности. Следовательно, гидростатическое давление в точке В, величина которого равна γH,
надо направлять перпендикулярно к стенке АВ. Соединив точку А с концом
отрезка γH, получим треугольную эпюру распределения давления АВС с прямым
углом в точке В. Среднее значение давления будет равно

Если площадь наклонной стенки S=bL, то равнодействующая гидростатического давления равна

где hc = Н/2 — глубина погружения центра тяжести плоской поверхности под уровень жидкости.

Однако точка приложения равнодействующей гидростатического давления ц.д. не всегда будет совпадать
с центром тяжести плоской поверхности. Эта точка находится на расстоянии l от центра тяжести и равна
отношению момента инерции площадки относительно центральной оси к статическому моменту этой же площадки.

где JАx — момент инерции площади S относительно центральной оси, параллельной
Аx.

В частном случае, когда стенка имеет форму прямоугольника размерами bL и одна из его сторон лежит
на свободной поверхности с атмосферным давлением, центр давления ц.д. находится на расстоянии b/3
от нижней стороны.

Пусть жидкость заполняет резервуар, правая стенка которого представляет собой цилиндрическую криволинейную
поверхность АВС (рис.2.4), простирающуюся в направлении читателя на ширину b. Восстановим из
точки А перпендикуляр АО к свободной поверхности жидкости. Объем жидкости в отсеке АОСВ
находится в равновесии. Это значит, что силы, действующие на поверхности выделенного объема V, и
силы веса взаимно уравновешиваются.

Рис. 2.4. Схема к определению равнодействующей гидростатического давления на
цилиндрическую поверхность

Представим, что выделенный объем V представляет собой твердое тело того же удельного веса, что и
жидкость (этот объем на рис.2.4 заштрихован). Левая поверхность этого объема (на чертеже вертикальная
стенка АО) имеет площадь Sx = bH, являющуюся проекцией криволинейной поверхности АВС на
плоскость yOz.

Cила гидростатического давления на площадь Sx равна Fx = γ
Sxhc.

С правой стороны на отсек будет действовать реакция R цилиндрической поверхности. Пусть точка
приложения и направление этой реакции будут таковы, как показано на рис.2.4. Реакцию R разложим на
две составляющие Rx и Rz.

Из действующих поверхностных сил осталось учесть только давление на свободной поверхности
Р0. Если резервуар открыт, то естественно, что давление Р0 одинаково
со всех сторон и поэтому взаимно уравновешивается.

На отсек АВСО будет действовать сила собственного веса G = γV, направленная вниз.

Спроецируем все силы на ось Ох:

Fx — Rx = 0 откуда Fx = Rx = γSxhc

Теперь спроецируем все силы на ось Оz:

Rx — G = 0 откуда Rx = G = γV

Составляющая силы гидростатического давления по оси Oy обращается в нуль, значит Ry = Fy = 0.

Таким образом, реакция цилиндрической поверхности в общем случае равна

а поскольку реакция цилиндрической поверхности равна равнодействующей гидростатического давления R=F,
то делаем вывод, что

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление,
направленное снизу вверх и равное весу жидкости в объеме погруженной части тела.

Pвыт = ρжgVпогр

Для однородного тела плавающего на поверхности справедливо соотношение

где: V — объем плавающего тела;
ρm — плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь
гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние
называется устойчивостью. Вес жидкости, взятой в объеме погруженной части судна называют
водоизмещением, а точку приложения равнодействующей давления (т.е. центр давления) — центром
водоизмещения
. При нормальном положении судна центр тяжести С и центр водоизмещения d лежат
на одной вертикальной прямой O’-O», представляющей ось симметрии судна и называемой осью плавания
(рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна
KLM вышла из жидкости, а часть K’L’M’, наоборот, погрузилось в нее. При этом получили новое
положении центра водоизмещения d’. Приложим к точке d’ подъемную силу R и линию ее
действия продолжим до пересечения с осью симметрии O’-O». Полученная точка m называется
метацентром, а отрезок mC = h называется метацентрической высотой. Будем считать h
положительным, если точка m лежит выше точки C, и отрицательным — в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1) если h > 0, то судно возвращается в первоначальное положение;
2) если h = 0, то это случай безразличного равновесия;
3) если h<0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее
опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше
будет остойчивость судна.

Как уже отмечалось выше, поверхность, во всех точках которой давление одинаково, называется поверхностью
уровня
или поверхностью равного давления. При неравномерном или непрямолинейном движении на частицы
жидкости кроме силы тяжести действуют еще и силы инерции, причем если они постоянны по времени, то жидкость
принимает новое положение равновесия. Такое равновесие жидкости называется относительным покоем.

Рассмотрим два примера такого относительного покоя.

В первом примере определим поверхности уровня в жидкости, находящейся в цистерне, в то время как цистерна
движется по горизонтальному пути с постоянным ускорением a (рис.2.6).

Рис. 2.6. Движение цистерны с ускорением

К каждой частице жидкости массы m должны быть в этом случае приложены ее вес G = mg и сила
инерции Pu, равная по величине ma. Равнодействующая
этих сил направлена к вертикали под углом α, тангенс которого равен

Так как свободная поверхность, как поверхность равного давления, должна быть нормальна к указанной
равнодействующей, то она в данном случае представит собой уже не горизонтальную плоскость, а наклонную,
составляющую угол α с горизонтом. Учитывая, что величина этого угла зависит только от
ускорений, приходим к выводу, что положение свободной поверхности не будет зависеть от рода находящейся в
цистерне жидкости. Любая другая поверхность уровня в жидкости также будет плоскостью, наклоненной к горизонту
под углом α. Если бы движение цистерны было не равноускоренным, а равнозамедленным,
направление ускорения изменилось бы на обратное, и наклон свободной поверхности обратился бы в другую сторону
(см. рис.2.6, пунктир).

В качестве второго примера рассмотрим часто встречающийся в практике случай относительного покоя жидкости
во вращающихся сосудах (например, в сепараторах и центрифугах, применяемых для разделения жидкостей). В этом
случае (рис.2.7) на любую частицу жидкости при ее относительном равновесии действуют массовые силы: сила
тяжести G = mg и центробежная сила Pu = mω2r, где r
— расстояние частицы от оси вращения, а ω — угловая скорость вращения сосуда.

Рис. 2.7. Вращение сосуда с жидкостью

Поверхность жидкости также должна быть нормальна в каждой точке к равнодействующей этих сил R и
представит собой параболоид вращения. Из чертежа находим

С другой стороны:

где z — координата рассматриваемой точки. Таким образом, получаем:

откуда

или после интегрирования

В точке пересечения кривой АОВ с осью вращения r = 0, z = h = C, поэтому окончательно будем
иметь

т.е. кривая АОВ является параболой, а свободная поверхность жидкости параболоидом. Такую же форму
имеют и другие поверхности уровня.

Для определения закона изменения давления во вращающейся жидкости в функции радиуса и высоты выделим
вертикальный цилиндрический объем жидкости с основанием в виде элементарной горизонтальной площадки dS
(точка М) на произвольном радиусе r и высоте z и запишем условие его равновесия в
вертикальном направлении. С учетом уравнения (2.11) будем иметь

После сокращений получим

Это значит, что давление возрастает пропорционально радиусу r и уменьшается пропорционально
высоте z.

Проверить себя ( Тест )

Наверх страницы

Понимание законов и свойств гидростатического давления необходимо при создании и применении оборудования, работающего на гидроавтоматике, насосов любых видов, типов.

Оглавление:

Закон Паскаля

Особенности измерения

Кавитация


Если заглянем в словарь или «Википедию», выясним, что гидростатическое давление — это давление силы тяжести на жидкость. Занимается гидростатикой один из разделов гидравлики, где изучаются законы равновесия жидкостей и оцениваются возможности применения этих законов на практике.

Самое важное о гидростатическом давлении: закон Паскаля и формула

Гидростатическое давление определение


Закон гидростатики был открыт Паскалем в 1653 году. Звучит закон так: давление на поверхность жидкости, которое передается внешними силами, передается в жидкости во всех направлениях одинаково. Другими словами, давление на жидкость передается не только в направлении действия силы, но и равнозначно во все другие направления.


Этот закон оказался весьма полезным и нашел широкое применение в промышленности. На законе Паскаля основана работа гидроавтоматики, которая управляет автомобилями, станками с ЧПУ, самолетами, другими гидравлическими машинами.


Формула гидростатического давления выглядит так:


P = phg, где получается, что гидростатическое давление равно перемножению:


p – плотность жидкости,


g – ускорение свободного падения, постоянная величина,


h – глубина, где необходимо определить давление.

По ней происходит расчет гидростатического давления.


Важно: величина гидростатического давления не зависит от формы сосуда, где находится жидкость.

Гидростатический парадокс

Особенности измерения гидростатического давления и его свойства


Учет величины гидростатического давления может вестись разными способами. Если необходимо рассчитать полное или абсолютное гидростатическое давление, учитывающее атмосферное давление, действующее на поверхность жидкости, величина измеряется в абсолютных технических атмосферах. Но часто атмосферное давление на свободной поверхности не учитывают, определяя манометрическое или избыточное гидростатическое давление — то, которое действует сверх атмосферного. Чтобы найти манометрическое давление, нужно из абсолютного вычесть атмосферное. Измеряет
ся избыточное давление также в технических атмосферах, но уже избыточных.

Гидростатическое давление 2 свойство


1. Гидростатическое давление воды всегда направлено к площади, на которую воздействует, по внутренней нормали. Это свойство обусловлено тем, что в покоящейся жидкости нет растягивающих и касательных усилий. И отсюда следует вывод: при изменении давления в определенной точке следует ожидать такого же изменения в любой другой точке жидкости.


2. В конкретной точке величина давления не зависит от направления — оно одинаково по всем направлениям. Другими словами, внешнее давление на свободную поверхность жидкости передается во все точки без изменений.


3. На величину давления влияет вязкость жидкости. Вязкость — свойство жидкости сопротивляться перемещению одной ее части относительно другой. Это свойство проявляется только во время движения, колебания жидкости и распределяет скорости по живому сечению потока.

Несколько слов о кавитационном режиме насосов

Последствия кавитации насос


При достижении определенных условий в насосах может возникать кавитация — явление, которое создается при снижении гидростатического давления и характеризуется появлением пузырьков газа в движущейся жидкости. В зоне, где гидростатическое давление повышается, пузырьки схлопываются.


В случае с лопастными насосами кавитацию чаще всего можно наблюдать в зоне потока максимальной скорости — вблизи входной кромки на лопатке рабочего колеса. Там, где пузырек схлопывается, резко увеличивается давление — если в момент схлопывания пузырек пара находится на поверхности лопатки или рабочего колеса, то удар воздействует на эту поверхность, что рано или поздно приведет к эрозии металла. Разрушение рабочих элементов лопастных насосов — самое опасное следствие кавитации. Кроме того, кавитация вызывает резкий шум техники, треск, вибрацию, может сопровождаться падением мощности, напора, подачи и КПД.


Сегодня не существует материалов, которые имели бы абсолютную устойчивость к кавитационным разрушениям, поэтому нельзя допускать работу насосов в кавитационном режиме. Основное средство по предупреждению кавитации — регулирование давления во всасывающем трубопроводе. Оптимальные параметры определяются высотой всасывания жидкости во время функционирования насоса.


Чтобы определить критический кавитационный запас, при производстве насоса проводят кавитационные испытания. В результате каждый режим работы насосного оборудования получает кавитационную характеристику, определяемую зависимостью мощности и напора насоса от кавитационного запаса.

#ФОРМА

Как Определить силу избыточного гидростатического давления воды?

Виктор Долгов
[337]

7 лет назад 

2.12)Определить силу избыточного гидростатического давления воды на

цилиндрическую поверхность АВ радиусом R = 3 м. Удельный вес воды принять равным

10000 Н/м3, ширина поверхности l = 1 м

bezdelnik
[34.1K]

Что такое ИЗБЫТОЧНОЕ гидростатическое давление ? 
—  7 лет назад 

Виктор Долгов
[337]

давление, превышающее атмосферное давление 
—  7 лет назад 

bezde­lnik
[34.1K]

7 лет назад 

Сила избыточного давления на тело погруженное в жидкость равно весу жидкости вытесненной этим телом. В данном случае в жидкость погружена цилиндра. Её объём V=Pi*R^2*l/4=7 м3, сила гидростатического давления равна произведению удельного веса воды на объём F=10000*7=70000 Н.

комментировать

в избранное

ссылка

отблагодарить

Знаете ответ?

Понравилась статья? Поделить с друзьями:
  • Как найти время доставки
  • Как составить договор на электричество
  • Как найти работу в астрахани без опыта
  • Ошибка 401 летай тв как исправить на телевизоре
  • Как найти канал домашний на приставке