Как найти силу кулона в треугольнике

Закон Кулона, определение и формула — электрические точечные заряды и их взаимодействие

Между заряженными телами существует сила взаимодействия, благодаря которой они могут притягиваться или отталкиваться друг от друга. Закон Кулона описывает данную силу, показывает степень её действия в зависимости от размеров и формы самого тела. Об этом физическом законе пойдёт речь в данной статье.

Неподвижные точечные заряды

Закон Кулона применим к неподвижным телам, размер которых намного меньше их расстояния до других объектов. На таких телах сосредоточен точечный электрический заряд. При решении физических задач размерами рассматриваемых тел пренебрегают, т.к. они не имеют особого значения.

На практике покоящиеся точечные заряды изображаются следующим образом:

В данном случае q1 и q2 — это положительные электрические заряды, и на них действует сила Кулона (на рисунке не показана). Размеры точечных объектов не имеют значения.

Обратите внимание! Покоящиеся заряды располагаются друг от друга на заданном расстоянии, которое в задачах обычно обозначается буквой r. Далее в статье данные заряды будем рассматривать в вакууме.

Крутильные весы Шарля Кулона

Это прибор, разработанный Кулоном в 1777 году, помог вывести зависимость силы, названной в последствии в его честь. С его помощью изучается взаимодействие точечных зарядов, а также магнитных полюсов.

Крутильные весы имеют небольшую шёлковую нить, расположенную в вертикальной плоскости, на которой висит уравновешенный рычаг. На концах рычага расположены точечные заряды.

Под действием внешних сил рычаг начинает совершать движения по горизонтали. Рычаг будет перемещаться в плоскости до тех пор, пока его не уравновесит сила упругости нити.

В процессе перемещений рычаг отклоняется от вертикальной оси на определённый угол. Его принимают за d и называют углом поворота. Зная величину данного параметра, можно найти крутящий момент возникающих сил.

Крутильные весы Шарля Кулона выглядят следующим образом:

Коэффициент пропорциональности k и электрическая постоянная

В формуле закона Кулона есть параметры k — коэффициент пропорциональности или — электрическая постоянная. Электрическая постоянная представлена во многих справочниках, учебниках, интернете, и её не нужно считать! Коэффициент пропорциональности в вакууме на основе можно найти по известной формуле:

Здесь — электрическая постоянная,

— число пи,

— коэффициент пропорциональности в вакууме.

Дополнительная информация! Не зная представленные выше параметры, найти силу взаимодействия между двумя точечными электрическими зарядами не получится.
Формулировка и формула закона Кулона

Чтобы подытожить вышесказанное, необходимо привести официальную формулировку главного закона электростатики. Она принимает вид:

Сила взаимодействия двух покоящихся точечных зарядов в вакууме прямо пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Причём произведение зарядов необходимо брать по модулю!

В данной формуле q1 и q2 — это точечные заряды, рассматриваемые тела; r 2 — расстояние на плоскости между этими телами, взятое в квадрате; k — коэффициент пропорциональности ( для вакуума).

Направление силы Кулона и векторный вид формулы

Для полного понимания формулы закон Кулона можно изобразить наглядно:

F1,2 — сила взаимодействия первого заряда по отношению ко второму.

F2,1 — сила взаимодействия второго заряда по отношению к первому.

Также при решении задач электростатики необходимо учитывать важное правило: одноимённые электрические заряды отталкиваются, а разноимённые притягиваются. От этого зависит расположение сил взаимодействия на рисунке.

Если рассматриваются разноимённые заряды, то силы их взаимодействия будут направлены навстречу друг другу, изображая их притягивание.

Формула основного закона электростатики в векторном виде можно представить следующим образом:

— сила, действующая на точечный заряд q1, со стороны заряда q2,

— радиус-вектор, соединяющий заряд q2 с зарядом q1,

Важно! Записав формулу в векторном виде, взаимодействующие силы двух точечных электрических зарядов надо будет спроецировать на ось, чтобы правильно поставить знаки. Данное действие является формальностью и часто выполняется мысленно без каких-либо записей.

Где закон Кулона применяется на практике

Основной закон электростатики — это важнейшее открытие Шарля Кулона, которое нашло своё применение во многих областях.

Работы известного физика использовались в процессе изобретения различных устройств, приборов, аппаратов. К примеру, молниеотвод.

При помощи молниеотвода жилые дома, здания защищают от попадания молнии во время грозы. Таким образом, повышается степень защиты электрического оборудования.

Молниеотвод работает по следующему принципу: во время грозы на земле постепенно начинают скапливаться сильные индукционные заряды, которые поднимаются вверх и притягиваются к облакам. При этом на земле образуется немаленькое электрическое поле. Вблизи молниеотвода электрическое поле становится сильнее, благодаря чему от острия устройства зажигается коронный электрический заряд.

Далее образованный на земле заряд начинает притягиваться к заряду облака с противоположным знаком, как и должно быть согласно закону Шарля Кулона. После этого воздух проходит процесс ионизации, а напряжённость электрического поля становится меньше возле конца молниеотвода. Таким образом, риск попадания молнии в здание минимален.

Обратите внимание! Если в здание, на котором установлен молниеотвод, попадёт удар, то пожара не произойдёт, а вся энергия уйдёт в землю.

На основе закона Кулона было разработано устройство под названием “Ускоритель частиц”, которое пользуется большим спросом сегодня.

В данном приборе создано сильное электрическое поле, которое увеличивает энергию попадающих в него частиц.

Направление сил в законе Кулона

Как и говорилось выше, направление взаимодействующих сил двух точечных электрических зарядов зависит от их полярности. Т.е. одноимённые заряды будут отталкиваться, а разноимённые притягиваться.

Кулоновские силы также можно назвать радиус-вектором, т.к. они направлены вдоль линии, проведённой между ними.

В некоторых физических задачах даются тела сложной формы, которые не получается принять за точечный электрический заряд, т.е. пренебречь его размерами. В сложившейся ситуации рассматриваемое тело необходимо разбить на несколько мелких частей и рассчитывать каждую часть по отдельности, применяя закон Кулона.

Полученные при разбиении вектора сил суммируются по правилам алгебры и геометрии. В результате получается результирующая сила, которая и будет являться ответом для данной задачи. Данный способ решения часто называют методом треугольника.

История открытия закона

Взаимодействия двух точечных зарядов рассмотренным выше законом в первый раз были доказаны в 1785 Шарлем Кулоном. Доказать правдивость сформулированного закона физику удалось с использованием крутильных весов, принцип действия которых также был представлен в статье.

Кулон также доказал, что внутри сферического конденсатора нет электрического заряда. Так он пришёл к утверждению, что величину электростатических сил можно менять путём изменения расстояния между рассматриваемыми телами.

Таким образом, закон Кулона по-прежнему является главнейшим законом электростатики, на основе которого было сделано немало величайших открытий. В рамках данной статьи была представлена официальная формулировка закона, а также подробно описаны его составляющие части.

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Что такое электрическая ёмкость, в чём измеряется и от чего зависит

Определение ёмкости последовательно или параллельно соединённых конденсаторов — формула

Что такое электрический ток простыми словами

Определение площади сечения проводника по его диаметру

Что такое активная и реактивная мощность переменного электрического тока?

Электрический заряд. Закон Кулона

теория по физике 🧲 электростатика

Электризация и электрический заряд

Электростатика — раздел физики, изучающий неподвижные заряды.

Электризация — процесс, в результате которого тело приобретает электрический заряд. Если тело начиняет притягивать к себе другие тела, то говорят, что оно наэлектризовано, или приобрело электрический заряд.

Электрический заряд — физическая величина, определяющая способность тел участвовать в электромагнитных взаимодействиях.

Электрический заряд обозначается как q. Единица измерения — Кулон (Кл).

В природе существуют два вида зарядов, которые условно назвали положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные притягиваются.

Закон сохранения заряда Алгебраическая сумма зарядов в замкнутой системе сохраняется:

Замкнутая система в электростатике — такая система, которая не обменивается зарядами с

Окружающая среда — это комплекс окружающих человека или другой живой организм физических, географических, биологических, социальных, культурных и политических условий, который определяет форму и характер его существования.

Экспериментально доказано, что заряды можно делить, но до определенного предела. Носитель наименьшего электрического заряда — электрон. Он заряжен отрицательно.

q e = − 1 , 6 · 10 − 19 К л

m e = 9 , 1 · 10 − 31 к г

Модуль любого заряда кратен заряду электрона:

N — избыток электронов.

В процессе электризации от одного тела к другому передаются только электроны. Если у тела избыток электронов, то оно заряжено отрицательно, а если недостаток, то — положительно.

Внимание! Заряженные тела притягивают к себе нейтральные тела и тела с противоположным зарядом. Отталкивание наблюдается только между одноименно заряженными телами.

Пример №1. На двух одинаковых металлических шарах находятся положительный заряд 7 нКл и отрицательный заряд 1 нКл. Каким станет заряд на каждом шаре при соприкосновении шаров?

После того, как шары соприкоснутся, заряд на них выровняется. Так как большим зарядом обладает положительно заряженный шар, то оба шара в итоге будут заряжены положительно:

(7 – 1)/2 нКл = 3 нКл

Каждый шар будет иметь положительный заряд, равный 3 нКл.

Закон Кулона

Два неподвижных точечных заряда в вакууме взаимодействуют друг с другом с силой, прямо пропорциональной квадрату расстояния между ними:

F K = k | q 1 | | q 2 | r 2 . .

F K — сила, с которой взаимодействуют два точечных заряда (кулоновская сила, или сила Кулона). | q 1 | (Кл) и | q 2 | (Кл) — модули зарядов, r (м) — расстояние между зарядами, k — коэффициент пропорциональности, который численно равен силе взаимодействия между двумя точечными зарядами по 1 Кл, находящимися на расстоянии 1 м друг от друга:

k = 1 4 π ε 0 . . = 9 · 10 9 Н · м 2 / К л 2

ε 0 — электрическая постоянная равная, 8,85∙10 –12 Кл 2 /(Н∙м 2 ). Закон Кулона в среде

F K = k | q 1 | | q 2 | ε r 2 . .

ε — диэлектрическая проницаемость. Это табличная величина, которая показывает, во сколько раз электрическое взаимодействие в среде уменьшается по сравнению с вакуумом.

Направление силы Кулона

Направление силы Кулона зависит от знаков зарядов. На рисунке ее прикладывают к центру заряженного тела.

Подсказки к задачам

Подсказка №1

При соприкосновении одинаковых проводящих шариков, один из которых заряжен, заряд между шариками делится поровну:

Подсказка №2

При соприкосновении одинаковых проводящих шаров заряды складываются с учетом знаков и делятся поровну. Модули зарядом двух шариков:

q ′ 1 = q ′ 2 = | q 1 ± q 2 | 2 . .

Пример №2. Два маленьких одинаковых металлических шарика заряжены положительными зарядами q и 5q и находятся на некотором расстоянии друг от друга. Шарики привели в соприкосновении и раздвинули на прежнее расстояние. Как изменилась сила взаимодействия шариков?

Изначально сила Кулона была равна:

F K 1 = k q 5 q r 2 . . = 5 k q 2 r 2 . .

Когда шарики коснулись, заряд каждого из них стал равен:

q ′ = 5 q + q 2 . . = 3 q

После того, как шарики раздвинули на прежнее расстояние, сила взаимодействия между ними стала равна:

F K 2 = k 3 q 3 q r 2 . . = 9 k q 2 r 2 . .

Поделим вторую силы на первую и получим:

F K 2 F K 1 . . = 9 k q 2 r 2 . . · r 2 5 k q 2 . . = 9 5 . . = 1 , 8

Следовательно, после всех манипуляций сила взаимодействия между двумя заряженными шариками увеличилась в 1,8 раз.

Точечный отрицательный заряд q помещён слева от неподвижных положительно заряженных шариков (см. рисунок). Куда направлена равнодействующая кулоновских сил, действующих на заряд q?

Алгоритм решения

  1. Вспомнить, как взаимодействуют разноименные заряды.
  2. Установить взаимодействие заряда с каждым из шариков.
  3. Выяснить, куда будет направлена равнодействующая сила, действующая на заряд со стороны заряженных шариков.

Решение

Отрицательные и положительные заряды притягиваются. Следовательно, каждый из положительно заряженных шариков притягивает отрицательный заряд q к себе — каждая из сил (FK1 и FK2) будет направлена вправо. Поэтому их равнодействующая FK тоже будет направлена вправо.

pазбирался: Алиса Никитина | обсудить разбор | оценить

В треугольнике АВС угол С – прямой. В вершине А находится точечный заряд Q. Он действует с силой 2,5·10 –8 Н на точечный заряд q, помещённый в вершину С. Если заряд q перенести в вершину В, то заряды будут взаимодействовать с силой 9,0·10 –9 Н. Найдите отношение AC/BC.

Закон Кулона.

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряжен­ных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов. Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

.

где |q1| и |q2| — модули зарядов; r — расстояние между ними; k — коэффициент пропорциональнос­ти, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединя­ющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока — 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 1 А за 1 с.

Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой 1 т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в 1 А — вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент k в законе Кулона при его записи в СИ выражается в Н · м 2 /Кл 2 . Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

k = 9 · 10 9 Н·м 2 /Кл 2 .

Часто его записывают в виде , где ɛ0 =8,85 · 10 — 12 2 /H·м 2 — электрическая постоянная. В среде с диэлектрической проницаемостью ɛ закон Кулона имеет вид:

.

источники:

Автор статьи

Екатерина Владимировна Мосина

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Историческая справка

Закон Кулона входит в число основных экспериментальных фактов, находящихся в основании теории б электричестве. Этот закон для определения силы взаимодействия точечных зарядов $q_1 $ и $q_2$, которые находятся на расстоянии $r$, имеет вид:

где ${varepsilon }_0=8,8cdot {10}^{-12}frac{Ф}{м}$.

Этот закон установлен Ш. Кулоном в 1785 г. экспериментально. Кулон измерял силы взаимодействия заряженных тел. Точность опытов была плохой, только аналогии с силами тяготения дала уверенность в том, что закон в виде (1) справедлив. С результатами эксперимента, обычно сравнивают следствия из закона Кулона, и на этой основе делается вывод о точности и границах применения данного закона. Первая проверка закона была проведена Кавендишем за 13 лет до Кулона. Кавендиш работ не публиковал, но надо отметить, что его метод был более точным, чем эксперименты Кулона. Позднее опыты по проверке закона Кулона проводил Максвелл. Эти опыты подтвердили справедливость закона Кулона с большой точностью. В соответствии с современными представлениями электромагнитные взаимодействия осуществляются посредством фотонов. Вследствие чего вопрос о справедливости закона Кулона сводится к вопросу о равенстве массы фотона нулю. Все частицы обладают корпускулярными и волновыми свойствами. Энергия фотона (${varepsilon }_{nu }=hnu $) и ${varepsilon }_{nu }=m_{nu }c^2$, где $m_{nu }$ — масса фотона, $h$ — постоянная Планка. Масса $m_{nu}$ больше массы покоя, если у фотона масса отлична от нуля. Следовательно, если найти верхний предел для $m_{nu }$, получим ограничение для массы покоя фотона. Если существование электромагнитных волн с большой длиной волны (а лучше бесконечной) доказать, то можно утверждать, что $m_{nu }$ очень мало. Наиболее длинные электромагнитные волны, которые удалось наблюдать на сегодняшний момент, образуются в виде стоячих волн в пространстве между поверхностью Земли и ионосферой. Они носят имя Шумана, а точнее называются резонансами Шумана. Минимальный резонанс Шумана соответствует частоте $nu $=8Гц. С учетом расстояния от поверхности Земли было получено, что $m_{nu }

Для малых расстояний закон Кулона проверяется в экспериментах, связанных с элементарными частицами. Уже опыты Резерфорда доказали, что закон Кулона справедлив с большой точностью на расстоянии ${10}^{-15}м$.

До работ Фарадея закон Кулона трактовался с позиций дальнодействия, то есть считалось, что одно тело действует на другое без посредников (действие на расстоянии). В первой половине 18 века сложился другой взгляд на механизм взаимодействия, в соответствии с которым существует посредник, осуществляющий непрерывную передачу сил.(теория близкодействия). Поначалу таким посредником назначили, так называемый Мировой эфир. Состояние которого характеризовали некоторыми механическими свойствами. Попытка математического описания механической картины передачи электрических взаимодействий была сделана Максвеллом. Он пытался представить электромагнитные силы в виде механических сил, которые вызываются натяжением и давлением в эфире. Позже Максвелл перешел к феноменологической формулировке взаимодействия и охарактеризовал состояние среды с помощью векторов: напряженности электростатического поля ($overrightarrow{E}$), электрического смещения ($overrightarrow{D}$), напряженности магнитного поля ($overrightarrow{H}$), магнитной индукции ($overrightarrow{B}$), которым не дал никакой механической интерпретации. В 1864 г. Максвелл сформулировал уравнения электромагнитного поля (уравнения Максвелла). Надежда на механическое толкование электромагнитных взаимодействий умерла. Поле стало основной сущностью, посредством которого осуществляется электромагнитное взаимодействие. Оно характеризуется величинами, которые не могут интерпретироваться в рамках механики. После того как Герц записал уравнения Максвелла в современном виде стало очевидно, что поле существует в пространстве и времени наряду с материей.

«Закон Кулона и его полевая трактовка» 👇

Полевая трактовка закона Кулона

Пусть мы имеем два точечных заряда $q_1 (точка 1) $ и $q_2$(точка 2).Тогда ${overrightarrow{F}}_{12}$- сила, с которой заряд $q_1$ действует на заряд $q_2$. ${overrightarrow{F}}_{21}$- сила, с которой заряд $q_2$ действует на заряд $q_1$. ${overrightarrow{r}}_{12}$- вектор из точки (1) в точку (2), ${overrightarrow{r}}_{21}$ — вектор из точки (2) в точку (1). Исходя из принятых нами обозначений, запишем закон Кулона:

По своему физическому содержанию формулы (2) и (3) различны. Они определяют силы, которые действуют на второй (2) и первый (3) заряды, то есть описывают силы в разных точках пространства. Механизм же возникновения этих сил одинаков. Заряды вокруг себя создают электрическое поле. Это поле принято характеризовать напряженностью ($overrightarrow{E}$). Напряженностью электрического поля является физическая величина, которая равна отношению силы, с которой действует поле на положительный заряд, помещенный в данную точку поля к заряду. Соответственно, с учетом (2,3), запишем:

Соответственно:

Формула (4) описывает напряженность электрического поля, которое образуется зарядом $q_1.$ Формула (5) характеризует силу, с которой поле с напряженностью ${overrightarrow{E}}_2$ действует на заряд, который находится в точке поля.
Действие одного заряда на другой делится на:

  1. Точечный заряд создает вокруг себя электрическое поле, напряженность которого равна:
  2. [overrightarrow{E}=frac{1}{4pi {varepsilon }_0}frac{q}{r^2}frac{overrightarrow{r}}{r} left(8right),]

    где $overrightarrow{r}$- радиус — вектор, проведенный из точки нахождения заряда до точки, в которой определяется напряженность.

  3. На точечный заряд q, который находится в точке поля с напряженностью $overrightarrow{E}$, действует сила равная:
  4. [overrightarrow{F}=qoverrightarrow{E} left(9right).]

Эти два утверждения дают полевую трактовку Закона Кулона.

Если имеется несколько источников поля (количество зарядов $N$), то результирующую силу, действующую на пробный заряд $q$ можно найти как:

[overrightarrow{F}=sumlimits^N_{i=1}{overrightarrow{F_{ia}}}left(10right),]

где $overrightarrow{F_{ia}}$ — сила, с которой N зарядов действуют на заряд $q$.

Закон Кулона в формуле (1) записан для вакуума, если мы имеем дело с какой-то средой, ее диэлектрические свойства характеризует диэлектрическая проницаемость среды ($varepsilon $), тогда уравнение (1) примет вид:

[overrightarrow{F}=frac{1}{4pi {varepsilon varepsilon }_0}frac{q_1q_2overrightarrow{r}}{r^3} left(11right).]

Пример 1

Задание: Три одинаковых точечных заряда величиной $q$ поместили в вершинах равностороннего треугольника. Найдите величину точечного заряда $Q$, который надо поместить в центр масс треугольника, чтобы система находилась в состоянии равновесия.

Решение:

Пример 1

Рис. 1

Для определенности допустим, что заряды в вершинах треугольника отрицательные, тогда на пересечении медиан (в центре масс) положительный.

Рассмотрим силы, которые действуют на заряд ${-q}_1$. Это будут три силы Кулона, две — отталкивания, со стороны зарядов в вершинах и одна — притяжения со стороны «центрального». Тогда условие равновесия сил запишем в виде:

[overrightarrow{F_{12}}+overrightarrow{F_{13}}+overrightarrow{F_{10}}=0 left(1.1right).]

Выберем ось OX, как указано на рис.1, найдем проекцию уравнения (1) на эту ось:

[F_{12}{cos left(frac{alpha }{2}right) }+F_{13}{cos left(frac{alpha }{2}right) }-F_{10}=0 left(1.2right),]

где $alpha $- угол треугольника (так как треугольник равносторонний, следовательно, $alpha =60{}^circ $).

Так как по условию задачи треугольник равносторонний, заряды в вершинах одинаковые и равны q, то $F_{12}=F_{13}$, а по закону Кулона:

[F_{12}=F_{13}=frac{q^2}{4 pi varepsilon varepsilon_0a^2} left(1.3right),]

где a — сторона треугольника. Для силы $F_{10}$ по закону Кулона получим:

[F_{10}=frac{qQ}{4pi varepsilon varepsilon_0r^2} left(1.4right).]

В таком случае выражение (1.2) запишем в виде:

[frac{2q^2}{4pi {varepsilon varepsilon }_0a^2}{cos left(frac{alpha }{2}right) }=frac{qQ}{4pi {varepsilon varepsilon }_0r^2} left(1.5right),]

где точка пересечения медиан делит их в соотношении 2:1, если считать от вершины, следовательно:

[r=frac{2}{3}{acos left(frac{alpha }{2}right) }left(1.6right).]

Подставляем (1.6) в (1.5) выражаем $Q$, получаем:

[Q=frac{8qcos^3left(frac{б}{2}right)}{9}]

Ответ: $Q=frac{8qcos^3left(frac{alpha }{2}right)}{9}$ (Кл).

Пример 2

Задание: Положительный точечный заряд 1 Кл находится на плоскости XOY в точке, которая определена радиус — вектором$overrightarrow{{ r}_1}=4overrightarrow{i}+6overrightarrow{j}$,(м) где $i$ и $j$ — орты осей. Найдите модуль напряженности электрического поля E в точке с радиус-вектором $overrightarrow{{ r}_2}=16overrightarrow{i}-overrightarrow{j} (м)$.

Решение:

Найдем разность векторов $overrightarrow{{ r}_2}$-$overrightarrow{{ r}_1}$, получим:

[overrightarrow{{ r}_2}-overrightarrow{{ r}_1}=12overrightarrow{i}-overrightarrow{7j} left(2.1right).]

Из закона Кулона выражение для напряженности электростатического поля может быть записано как:

[E=frac{1}{4pi {varepsilon }_0}frac{q}{r^2}=kfrac{q}{r^2} left(2.2right),]

где $k=9•{10}^9frac{Нм^2}{{Кл}^2}$

Найдем $r$, получим:

[r=left|overrightarrow{{ r}_2}-overrightarrow{{ r}_1}right|=sqrt{{12}^2+7^2}approx 13,89 (м)]

Вычислим напряженность (модуль), получим:

[E=9cdot {10}^9frac{1}{193}approx 4,7{cdot 10}^7 left(frac{В}{м}right).]

Ответ: Напряженность поля в заданной точке $4,7{cdot 10}^7frac{В}{м}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Тема: 11. Закон Кулона  (Прочитано 196872 раз)

0 Пользователей и 2 Гостей просматривают эту тему.

А2.10. Одноимённые точечные заряды q1 = q2 = q3 = q расположены в вершинах равностороннего треугольника со стороной а. Модуль силы, действующей в вакууме на каждый заряд, равен:
[ 1)frac{q^{2}}{4pi varepsilon _{0} cdot a^{2}} ;{rm ; ; }2)frac{q^{2} sqrt{3}}{8pi varepsilon _{0} cdot a^{2}} ;{rm ; ; }3)frac{q^{2} sqrt{3}}{4pi varepsilon _{0} cdot a^{2}} ;{rm ; ; }4)frac{q^{2} sqrt{3} }{2pi varepsilon _{0} cdot a^{2}} ;{rm ; ; }5)frac{3q^{2}}{4pi varepsilon _{0} cdot a^{2}}. ]
Решение: заряды равны, расстояния между ними одинаковые, поэтому силы, с которыми они взаимодействуют, равны по модулю. Изобразим силы, действующие на третий заряд со стороны оставшихся двух (см. рис.). Модули сил определим по закону Кулона. Модуль равнодействующей этих сил F0 определим по теореме косинусов для диагонали параллелограмма (угол между сторонами в нашем случае равен 60° т.к. треугольник равносторонний)
[ begin{array}{l} {F_{1} =F_{2} =F=frac{q^{2}}{4pi varepsilon _{0} cdot a^{2}},} \ {F_{0} =sqrt{F_{1}^{2} +F_{2}^{2} +2cdot F_{1} cdot F_{2} cdot cos 60{}^circ } =Fsqrt{3}.} end{array} ]
Ответ: 3).


Записан


В1.1. Имеется некоторое вещество в количестве ν = 0,50 моль. Если у каждой тысячной молекулы отнять один электрон, то вещество приобретёт заряд, равный …Кл.
Решение: зная количество вещества, определим число молекул N, разделив его на тысячу, найдём число электронов. Заряд вещества будет положительным и равным по модулю суммарному заряду отнятых электронов
[ begin{array}{l} {N=nu cdot N_{a} ,N_{e} =frac{nu cdot N_{a}}{1000} ,} \ {q=N_{e} cdot e=frac{nu cdot N_{a} cdot e}{1000}.} end{array} ]
Na = 6.02∙1023 моль-1 – постоянная Авогадро, e = 1,6∙10-19 Кл — элементарный заряд (заряд электрона равен отрицательному элементарному).
Ответ: 48 Кл.


Записан


В1.2. Два положительных точечных заряда взаимодействуют в вакууме с силой, модуль которой F = 2,0 Н. Один заряд больше другого в k = 9 раз. Расстояние между зарядами r = 100 см. Величина Q большего заряда равна … мкКл.
Решение: пусть q = Q/9 – меньший заряд. Запишем закон Кулона и найдём Q
[ begin{array}{l} {F=frac{kcdot Qcdot frac{Q}{9}}{r^{2}} =frac{kcdot Q^{2} }{9cdot r^{2}} ,} \ {Q=3rcdot sqrt{frac{F}{k}} .} end{array} ]
Ответ: 45 мкКл.


Записан


В1.3. Два закреплённых точечных заряда q и 9q находятся на расстоянии l = 1,0 м друг от друга. Расстояние r от заряда q, на котором нужно поместить заряд 2q, чтобы он находился в равновесии, составляет … см.
Решение: (см. реш. А2.7.) для того, чтобы заряд находился в равновесии, сумма сил, действующих на него должна быть равна нулю. На заряд 2q действует кулоновские силы отталкивания F1 со стороны заряда q, и F2, со стороны заряда   9q. Эти силы должны быть равны по модулю и противоположны по направлению. При этом, заряд 2q должен находится на прямой, соединяющей заряды q и 9q, ближе к заряду q, дальше от заряда 9q, между этими зарядами (см. рис.). Запишем условие равновесия:
[ begin{array}{l} {F_{1} =F_{2} ,frac{kleft|qright|cdot left|2qright|}{r^{2} } =frac{kleft|9qright|cdot left|2qright|}{left(l-rright)^{2}},} \ {sqrt{frac{1}{r^{2}}} =sqrt{frac{9}{left(l-rright)^{2}}} ,frac{1}{r} =frac{3}{l-r},} \ {r=frac{l}{4}.} end{array} ]
Ответ: 25 см.


Записан


В1.4. Каждая из двух одинаковых сферических капелек воды имеет заряд, равный элементарному электрическому заряду. Если сила электрического отталкивания капелек уравновешивает силу гравитационного притяжения, то радиус r капельки равен … мкм.
Решение: будем считать, что расстояние между капельками R значительно больше радиуса r капельки. Масса капельки m = ρ∙V, где ρ = 1000 кг/м3 – плотность воды, V = 4πr3/3 – объём шара. Воспользуемся законом всемирного тяготения для определения силы гравитационного притяжения Fg и законом Кулона, для определения силы электрического отталкивания Fk. По условию задачи, эти силы равны по модулю, т.е.
[ begin{array}{l} {F_{g} =F_{k} ,{rm ; ; ; ; ; }Gcdot frac{m_{1} cdot m_{2} }{R^{2} } =kcdot frac{q_{1} cdot q_{2}}{R^{2}} ,{rm ; ; ; ; ; }Gcdot m^{2} =kcdot e^{2},} \ {Gcdot left(rho cdot frac{4}{3} pi cdot r^{3} right)^{2} =kcdot e^{2},} \ {r=sqrt[{6}]{frac{9cdot kcdot e^{2}}{16cdot Gcdot rho ^{2} cdot pi ^{2}}}.} end{array} ]
Ответ: 76 мкм.


Записан


В1.5. Точечный заряд q = 2,0∙10-9 Кл находится на расстоянии r = 30 мм от металлической заземлённой стенки. Модуль силы, с которой взаимодействуют точечный заряд и стенка, равен …мкН.
Решение: под действием электрического поля заряда q электроны пластины придут в движения и начнут скапливаться под точечным зарядом, создавая отрицательный индуцированный заряд (пластина заземлена, то эти заряды натекут из заземления). Потенциал пластины постоянен и равен нулю.
Воспользуемся методом изображений, т.е. взаимодействие пластины с зарядом идентично взаимодействию двух точечных зарядов. Действительно, поле, создаваемое двумя точечными зарядами q1 = +q и q2 = –q , находящимися на расстоянии 2r друг от друга имеет во всех точках плоскости, перпендикулярной отрезку, соединяющими заряды и проходящей через ее середину, потенциал равный нулю, так как эти точки находятся на равном расстоянии от двух зарядов равных по величине и противоположных по направлению (см. рис.). Таким образом, сила взаимодействия будет равна
[ F=kcdot frac{left|qright|cdot left|-qright|}{left(2rright)^{2}} =frac{kcdot q^{2}}{4cdot r^{2}}. ]
Ответ: 10 мкН.


Записан


В1.6. Два одинаковых проводящих шарика, расположенные в вакууме и имеющие заряды q1 = 38 нКл и q2 = –18нКл, соприкоснулись и разошлись на расстояние r = 10 см. Модуль силы взаимодействия между ними после соприкосновения равен … мкН.
Решение: при соприкосновении заряд межу шариками перераспределится, а т.к. шарики одинаковые, то на них будут одинаковые заряды q. Запишем закон сохранения электрического заряда:
[ q_{1} +q_{2} =2q,{rm ; ; ; ; ; ; }q=frac{q_{1} +q_{2}}{2}. ]
Запишем закон Кулона для шариков после соприкосновения
[ F=frac{kcdot q^{2}}{r^{2}} =frac{kcdot left(q_{1} +q_{2} right)^{2} }{4cdot r^{2}}. ]
Ответ: 90 мкН.


Записан


В1.7. Согласно ядерной модели атом водорода состоит из протона и электрона, вращающегося вокруг протона по круговой орбите радиусом R = 0,53∙10-10 м. Модуль скорости движения электрона по орбите равен … км/с.
Решение: при движении по окружности центростремительное ускоре-ние электрону (имеющему отрицательный элементарный заряд e) сообщает сила кулоновского взаимодействия (притяжения) со стороны положительно заряженного протона (заряд протона равен элементарному). Запишем второй закон Ньютона, учтём, что центростремительное ускорение a = υ2/R, e = 1,6∙10-19 Кл, масса электрона m = 9,1∙10-31 кг:
[ begin{array}{l} {F=mcdot a,{rm ; ; ; ; }frac{kcdot e^{2}}{R^{2}} =mcdot frac{upsilon ^{2}}{R},} \ {upsilon =sqrt{frac{kcdot e^{2} }{mcdot R}}.} end{array} ]
Ответ: 2,2∙103 км/с.


Записан


В1.8. Два одинаковых маленьких шарика подвешены на лёгких нитях длиной l = 1,1 м, закреплённых в одной точке. После того как шарикам сообщили одинаковые заряды q = 1,0 мкКл, нити разошлись так, что угол между ними стал φ = 60°. Масса шарика равна …г.
Решение:  шарики находятся в равновесии: сумма сил равна нулю. T – сила натяжения нити, F – сила кулоновского отталкивания, mg – сила тяжести (см. рис.). Угол α = φ/2.
В проекциях на систему координат:

Ось X:   F = T∙ sinα,
Ось Y:   mg = T∙ cosα,

разделим уравнения, учтём закон Кулона и что расстояние между шариками r =2∙l∙sinα:
[ begin{array}{l} {frac{kcdot q^{2}}{r^{2} cdot mg} =tgalpha ,} \ {m=frac{kcdot q^{2} }{4cdot l^{2} cdot gcdot sin ^{2} left(frac{phi }{2} right)cdot tgleft(frac{phi }{2} right)}.} end{array} ]
Ответ: 1,3 г.


Записан


В1.9. В вершинах равностороннего треугольника, сторона которого а = 50 мм, находятся одинаковые заряды q = 0,32 мкКл. Модуль силы, действующей на один из них, равен …Н.
Решение: см. решение задания А2.10.
[ F_{0} =frac{q^{2} sqrt{3} }{4pi varepsilon _{0} cdot a^{2}}. ]
Ответ: 0,64 Н.


Записан


Условие задачи:

Три одинаковых точечных заряда по -1,7 нКл каждый находятся в вершинах равностороннего треугольника. Найти величину точечного заряда, который надо поместить в центре треугольника, чтобы вся система находилась в равновесии?

Задача №6.1.22 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(q=-1,7) нКл, (Q-?)

Решение задачи:

Схема к решению задачиКаждый заряд (q) действует на другой такой же заряд с силой отталкивания (F_0), которую можно определить из закона Кулона:

[{F_0} = frac{{k{{left| q right|}^2}}}{{{a^2}}};;;;(1)]

Коэффициент пропорциональности (k) равен 9·109 Н·м2/Кл2.

Теперь найдём равнодействующую двух сил (F), с которой два заряда действуют на третий. Для этого воспользуемся принципом независимости действия сил (принципом суперпозиции) и теоремой косинусов (смотри схему к решению).

[{F^2} = F_0^2 + F_0^2 – 2F_0^2 cdot cos left( {180^circ – 2alpha } right)]

Из тригонометрии известно, что:

[cos left( {180^circ – 2alpha } right) = – cos 2alpha ]

Тогда:

[{F^2} = F_0^2 + F_0^2 + 2F_0^2 cdot cos 2alpha ]

Также в равностороннем треугольнике угол (alpha) равен 30°, поэтому:

[{F^2} = F_0^2 + F_0^2 + 2F_0^2 cdot cos 60^circ = 3F_0^2]

[F = sqrt 3 {F_0}]

Учитывая (1), имеем:

[F = frac{{sqrt 3 k{{left| q right|}^2}}}{{{a^2}}};;;;(2)]

Помещенный в центр равностороннего треугольника заряд должен быть положительным, чтобы уравновесить силу (F), при этом силу притяжения можно также найти из закона Кулона:

[F = frac{{kQleft| q right|}}{{{r^2}}}]

Здесь (r) – расстояние от вершины равностороннего треугольника до его центра (центр – это точка пересечения медиан треугольника), его можно найти по такой формуле (за выводом формулы обратитесь к учебнику по математике):

[r = frac{{sqrt 3 a}}{3}]

В таком случае:

[F = frac{{3kQleft| q right|}}{{{a^2}}};;;;(3)]

Осталось только приравнять (2) и (3):

[Q = frac{{left| q right|}}{{sqrt 3 }}]

Посчитаем ответ к задаче:

[Q = frac{{1,7 cdot {{10}^{ – 9}}}}{{sqrt 3 }} = 9,8 cdot {10^{ – 10}};Кл approx 1;нКл]

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

6.1.21 На нити подвешен маленький шарик массой 10 г, которому сообщили заряд 1 мкКл
6.1.23 Две частицы массой 10 г и зарядом 2 мкКл находятся в вершинах равностороннего
6.1.24 В вертикальной трубке, заполненной воздухом, закреплен точечный заряд 5 мкКл

Пусть
на заряд Q
действуют несколько сил со стороны
других зарядов. Для того чтобы определить
результирующую силу
,
действующую на этот заряд, нужно узнать
еёнаправление
и модуль.

Направление
результирующей силы
определяетсяпо
принципу суперпозиции

сил (векторной суммы), а модуль – из
геометрических построений.

Рекомендуемая
последовательность решения задач:

  1. сделать
    рисунок, на котором, в соответствии с
    условием задачи, указать расположение
    всех зарядов;

  2. построить
    силы, действующие со стороны каждого
    заряда на заряд Q
    с учётом знаков всех зарядов (см. рис.
    2). Все силы должны быть приложены к
    точке, в которой расположен заряд Q
    (то есть начинаться в этой точке) и
    направлены по линии, соединяющей заряды;

  3. построить
    векторную сумму всех сил (по правилу
    треугольника или параллелограмма, если
    силы по результатам построений не
    лежат на одной прямой). Таким образом,
    мы определим направление
    вектора результирующей силы;

  4. модуль
    равнодействующей силы вычисляется в
    зависимости от расположения и величины
    составляющих её сил, каждая из которых
    рассчитывается по закону Кулона.

Например,
для системы, состоящей из трех зарядов,

.

При
расчете модуля результирующей силы по
результатам построения возможны четыре
варианта (рис. 2, а, б, в, г):

  1. векторы
    составляющих сил направлены в одну
    сторону. Модуль определяется как
    алгебраическая сумма сил:

;

  1. векторы
    составляющих сил направлены в разные
    стороны. Модуль определяется как
    алгебраическая разность сил:

;

  1. векторы
    составляющих сил образуют между собой
    угол α.
    Модуль определяется по теореме косинусов:

;

  1. векторы
    составляющих сил перпендикулярны друг
    другу. Модуль определяется по теореме
    Пифагора (частный случай теоремы
    косинусов):

.

1. Как ведет себя
положительный заряд + q1,
помещенный в поле неподвижного
отрицательного зарядаq2:

а) движется с
постоянной скоростью к q2;

б) движется
равноускоренно к заряду q2;

в) движется
равнозамедленно к заряду q2;

г) остается в покое.

2. Если отрицательный
точечный заряд, находящийся посередине
между точечными зарядами qи2q, заменить
на противоположный по знаку заряд, как
изменится модуль и направление
результирующей силы?

а) модуль силы не
меняется, направление меняется на
противоположное;

б) модуль силы
уменьшается в 2 раза, направление меняется
на противоположное;

в) модуль силы
равен нулю;

г) модуль силы
увеличится в 2 раза, направление не
меняется;

д) модуль силы
увеличится в 3 раза, направление не
меняется.

3.
Как направлена равнодействующая сила
на зарядq3
со стороны зарядовq1иq2(|q1|=|q2|расстояния между зарядами одинаковые):

4. Как направлена
сила, действующая на положительный
точечный заряд, расположенный в центре
квадрата?

Задача
1.1.
В
вершинах равностороннего треугольника
со стороной а
расположены два положительных и один
отрицательный заряды, одинаковых по
величине и равных q.
Найти силу, действующую на заряд Q0 < 0,
расположенный на пересечении медиан.

Решение.Сделаем
рисунок, произвольно расположив заряды
в вершинах треугольника. Расставим
силы, действующие на заряд Q0
со стороны зарядов q1,
q2,
и
q3,
и обозначим их соответственно
(рис. 3, а).

Направление
результирующей силы по определяем по
принципу суперпозиции:

.

Для
этого необходимо сложить три вектора.
Так как величина зарядов q1,
q2
и
q3
одинакова и они равноудалены от заряда
Q0,
то силы
будут одинаковы по модулю.

Из
рисунка видно, что сначала удобно сложить
векторы
по правилу параллелограмма (рис. 3 б).

.

Модуль
вектора
определим по теореме косинусов

,

где
α
– угол между векторами
.

С
учётом того, что
,α
= 120º; cos
α
= – 0,5, получим:
.

Теперь
нужно сложить векторы
.
(рис. 3 в). Из рисунка видно, что эти векторы
направлены в одну сторону, значит, их
векторная сумма равна их алгебраической
сумме. С учётом того, что,
модуль результирующей силы

.

По закону Кулона

.


Обратите
внимание
,
что в законе Кулона все заряды пишутся
со знаком «+», так как знак заряда
учитывался при геометрических построениях.

Расстояние
r
выразим из рисунка через сторону
треугольника а:

.

Окончательно
получим:

.

Задача
1.2.
В
вершинах правильного шестиугольника
со стороной а
расположены точечные заряды q,
2q,
3
q,
4q,
5q,
6q.
Найти силу, действующую на заряд Q0
> 0, расположенный на пересечении
диагоналей.

Решение.
Сделаем
рисунок, произвольным образом расположив
заряды в вершинах шестиугольника. Если
все заряды одноимённые, то между зарядом
Q0
и остальными зарядами действует сила
отталкивания. Расставим силы, действующие
на заряд Q0
со стороны каждого заряда, и обозначим
их соответствующими индексами (рис. 4,
а).

По
закону Кулона

; ;;;;.

По принципу
суперпозиции

.

Сначала
сложим попарно силы, лежащие на одной
прямой (рис. 4 б). Так как эти силы направлены
в разные стороны, то модули равнодействующих
сил равны алгебраической разности этих
сил.

Равнодействующая
сил
равнаи направлена в сторону большей силы, то
есть в сторону.
Равнодействующая силравнаи направлена в сторону.
Наконец, равнодействующая силравнаи направлена в сторону.

Мы видим, что
векторы равнодействующих сил одинаковы.

Теперь
сложим векторы
(см. задачу 1.1):

.

По
теореме косинусов

.

С
учётом того, что
,α
= 120º; cos
α
= – 0,5, получим:

Теперь
осталось сложить векторы
(рис. 4 в). Так как векторы сонаправлены
и одинаковы по модулю, то окончательно
получим:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Высота в прямоугольном треугольнике как найти сторону
  • Как найти длину возрастающей
  • Сталкер время альянса 3 как найти киборгов
  • Как исправить ошибки процессора амд
  • Как найти участника вов по интернету