Как найти силу однородного магнитного поля

Сила Ампера.

Действие магнитного поля на проводник с током

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F=B.I.. sin α — закон Ампера.

закон Ампера

Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

Направление силы Ампера (правило левой руки)

Действие магнитного поля на движущийся заряд.

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца: Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца

Направление силы Лоренца (правило левой руки) Направление F определяется по правилу левой руки: вектор F перпендикулярен векторам В и v..

Направление силы Лоренца (правило левой руки)

Правило левой руки сформулировано для положительной частицы. Сила, действующая на отрицательный заряд будет направлена в противоположную сторону по сравнению сположительным.

Сила, действующая на отрицательный заряд будет направлена в противоположную сторону по сравнению сположительным

Если вектор v частицы перпендикулярен вектору В, то частица описывает траекторию в виде окружности: 

Роль центростремительной силы играет сила Лоренца: Роль центростремительной силы играет сила Лоренца

Роль центростремительной силы играет сила Лоренца

При этом радиус окружности: радиус окружности,

а период обращения период обращения

не зависит от радиуса окружности!

радиус окружности

период обращения

Если вектор скорости и частицы не перпендикулярен В, то частица описывает траекторию в виде винтовой линии (спирали).

Если вектор скорости и частицы не перпендикулярен В, то частица описывает траекторию в виде винтовой линии (спирали)

Действие магнитного поля на рамку с током

На рамку действует пара сил, в результате чего она поворачивается.

  1. Направление вектора силы – правилу левой руки.
  2. F=BIlsinα=ma
  3. M=Fd=BIS sinα — вращающий момент

Действие магнитного поля на рамку с током

Устройство электроизмерительных приборов

1.Магнитоэлектрическая система:

1 — рамка с током; 2 — постоянный магнит; 3 — спиральные пружины; 4 — клеммы;

5 — подшипники и ось; 6 — стрелка; 7 — шкала (равномерная)

Принцип действия: взаимодействие рамки с током и поля магнита.

Угол поворота рамки и стрелки  ~ I..

Устройство электроизмерительных приборов

2. Электромагнитная система:

1 — не­подвижная катушка; 2 — щель (магнит­ное поле); 3 — ось с подшипниками;

4 — сердечник; 5 — стрелка; 6 -шкала; 7 — спиральная пружина

Принцип действия: взаимодействие магнитного поля катушки со стальным сердечником, где Fмаг ~ I.

Электромагнитная система

Использование силы Лоренца

В циклических ускорителях: 1 — вакуум­ная камера; 2 и 3 – дуанты;

4 —  источник заряженных частиц; 5 — мишень.

В циклотроне магнитное поле управляет движением заряженной частицы. Период обращения частицы в цикло­троне: .

Т не зависит от R и υ!

Электрическое поле между дуантами разгоняет частицы, а магнитное поворачивает поток частиц. В момент попадания частиц в ускоряющий промежуток направление электрического поля меняется так, чтобы оно всегда увеличивало скорость частиц.

Использование силы Лоренца

Схема действия масс-спектрографа Для выделения частиц с одинаковой скоростью используют взаимно перпендикулярные магнитные (B1) и электрические (E) поля. Тогда Для выделения частиц с одинаковой скоростью используют взаимно перпендикулярные магнитные (B1) и электрические (E) поля.

Т.к. радиус окружности, то удельный заряд удельный заряд, следовательно 

 можно определить удельный заряд частицы, заряд. массу.

Схема действия масс-спектрографа

Движение заряженных частиц в магнитном поле Земли. Вблизи магнитных полюсов Земли космические заряженные частицы движутся по спирали (с ускорением) Одно из основных положений теории Максвелла говорит о том, что заряженная частица, движущаяся с ускорением, является источником электромагнитных волн — возникает т.н. синхротронное излучение. Столкновение заряженных частиц с атомами и молекулами из верхних слоев атмосферы приводит к возникновению полярных сияний.

Магнитное поле

Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).

Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.

Свойства магнитного поля:

  • магнитное поле материально;
  • источник и индикатор поля – электрический ток;
  • магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
  • величина поля убывает с расстоянием от источника поля.

Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.

Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.

Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.

Силовая характеристика магнитного поля – вектор магнитной индукции( vec{B} )​. Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ​( I )​ и его длине ​( l )​:

Обозначение – ( vec{B} ), единица измерения в СИ – тесла (Тл).

1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.

Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.

Направление вектора магнитной индукции можно определить по правилу буравчика:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Для определения магнитной индукции нескольких полей используется принцип суперпозиции:

магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:

Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным.

Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.

Свойства магнитных линий:

  • магнитные линии непрерывны;
  • магнитные линии замкнуты (т.е. в природе не существует магнитных зарядов, аналогичных электрическим зарядам);
  • магнитные линии имеют направление, связанное с направлением тока.

Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.

На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил ​( M )​:

где ​( I )​ – сила тока в проводнике, ​( S )​ – площадь поверхности, охватываемая контуром, ​( B )​ – модуль вектора магнитной индукции, ​( alpha )​ – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.

Тогда для модуля вектора магнитной индукции можно записать формулу:

где максимальный момент сил соответствует углу ​( alpha )​ = 90°.

В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Содержание

  • Взаимодействие магнитов
  • Магнитное поле проводника с током
  • Сила Ампера
  • Сила Лоренца
  • Основные формулы раздела «Магнитное поле»

Взаимодействие магнитов

Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.

Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ​( N )​ и южный ​( S )​.

Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.

Разделить полюса магнита нельзя.

Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.

Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Сила Ампера

Сила Ампера – сила, которая действует на проводник с током, находящийся в магнитном поле.

Закон Ампера: на проводник c током силой ​( I )​ длиной ​( l )​, помещенный в магнитное поле с индукцией ​( vec{B} )​, действует сила, модуль которой равен:

где ​( alpha )​ – угол между проводником с током и вектором магнитной индукции ​( vec{B} )​.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​( B_perp )​ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.

Сила Ампера не является центральной. Она направлена перпендикулярно линиям магнитной индукции.

Сила Ампера широко используется. В технических устройствах создают магнитное поле с помощью проводников, по которым течет электрический ток. Электромагниты используют в электромеханическом реле для дистанционного выключения электрических цепей, магнитном подъемном кране, жестком диске компьютера, записывающей головке видеомагнитофона, в кинескопе телевизора, мониторе компьютера. В быту, на транспорте и в промышленности широко применяют электрические двигатели. Взаимодействие электромагнита с полем постоянного магнита позволило создать электроизмерительные приборы (амперметр, вольтметр).

Простейшей моделью электродвигателя служит рамка с током, помещенная в магнитное поле постоянного магнита. В реальных электродвигателях вместо постоянных магнитов используют электромагниты, вместо рамки – обмотки с большим числом витков провода.

Коэффициент полезного действия электродвигателя:

где ​( N )​ – механическая мощность, развиваемая двигателем.

Коэффициент полезного действия электродвигателя очень высок.

Алгоритм решения задач о действии магнитного поля на проводники с током:

  • сделать схематический чертеж, на котором указать проводник или контур с током и направление силовых линий поля;
  • отметить углы между направлением поля и отдельными элементами контура;
  • используя правило левой руки, определить направление силы Ампера, действующей на проводник с током или на каждый элемент контура, и показать эти силы на чертеже;
  • указать все остальные силы, действующие на проводник или контур;
  • записать формулы для остальных сил, упоминаемых в задаче. Выразить силы через величины, от которых они зависят. Если проводник находится в равновесии, то необходимо записать условие его равновесия (равенство нулю суммы сил и моментов сил);
  • записать второй закон Ньютона в векторном виде и в проекциях;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​( q )​ – заряд частицы, ​( v )​ – скорость частицы, ​( B )​ – модуль вектора магнитной индукции, ​( alpha )​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​( B_perp )​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно.

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​( m )​ – масса частицы, ​( v )​ – скорость частицы, ​( B )​ – модуль вектора магнитной индукции, ​( q )​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы.

Если вектор скорости направлен под углом ​( alpha )​ (0° < ( alpha ) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.

В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ​( vec{v}_2 )​, параллелен вектору ( vec{B} ), а другой, ( vec{v}_1 ), – перпендикулярен ему. Вектор ( vec{v}_1 ) не меняется ни по модулю, ни по направлению. Вектор ( vec{v}_2 ) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости ( vec{v}_1 ). Частица будет двигаться по окружности. Период обращения частицы по окружности – ​( T )​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору ( vec{B} ). Частица движется по винтовой линии с шагом ​( h=v_2T )​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Основные формулы раздела «Магнитное поле»

Магнитное поле

3.2 (63.28%) 128 votes

Магнитная сила между параллельными проводниками

F = μ * μ0 * I1 * I2 * l / (2 π r)

F — сила
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
I1, I2 — силы тока в проводниках
l — длина проводников
r — расстояни



Найти

  • F
  • μ
  • μ0
  • I1
  • I2
  • l
  • π
  • r


  Известно, что:


=
  



Вычислить ‘F

Магнитная сила между параллельными проводниками

F = 2 * 10^(-7) * μ * I1 * I2 * l / r

F — сила
μ — относительная магнитная проницаемость
I1, I2 — силы тока в проводниках
l — длина проводников
r — расстояни



Найти

  • F
  • μ
  • I1
  • I2
  • l
  • r


  Известно, что:


=
  



Вычислить ‘F

Магнитная постоянная

μ0 = 4π * 10^(-7)

μ0 — магнитная постоянная



Найти

  • μ0
  • π


  Известно, что:


=
  



Вычислить ‘μ0

Напряжённость магнитного поля

H = I / l

H — напряжённость магнитного поля
I — сила тока
l — длина магнитной линии



Найти

  • H
  • I
  • l


  Известно, что:


=
  



Вычислить ‘H

Индукция магнитного поля

B = μ0 * μ * H

B — магнитная индукция
μ0 — магнитная постоянная
μ — относительная магнитная проницаемость
H — напряжённость магнитного поля



Найти

  • B
  • μ0
  • μ
  • H


  Известно, что:


=
  



Вычислить ‘B

Максимальный момент магнитного поля

M_max = B I S

M_макс — максимальный момент силы
B — магнитная индукция
I — сила тока
S — площадь контура



Найти

  • M_макс
  • BIS


  Известно, что:


=
  



Вычислить ‘M_макс

Магнитная индукция

M = I S B sin(a)

M — магнитный момент
I — сила тока
S — площадь контура
B — магнитная индукция
α — угол



Найти

  • M
  • ISB
  • a


  Известно, что:


=
  



Вычислить ‘M

Момент однородного магнитного поля

p_m = I * S

p_m — магнитный момент
I — сила тока
S — площадь контура



Найти

  • p_m
  • I
  • S


  Известно, что:


=
  



Вычислить ‘p_m

Магнитное поле прямолинейного проводника конечной длины с током

B = μ * μ0 * I * (cos(a1)+cos(a2)) / (4 π r)

B — магнитная индукция
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
I — сила тока
r — расстояние до проводника
a1, a2 — у



Найти

  • B
  • μ
  • μ0
  • I
  • a1
  • a2
  • π
  • r


  Известно, что:


=
  



Вычислить ‘B

Индукция магнитного поля, созданного бесконечно длинным прямым проводником с током

B = μ * μ0 * I  / (2 π r)

B — магнитная индукция
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
I — сила тока
r — расстояние до проводника



Найти

  • B
  • μ
  • μ0
  • I
  • π
  • r


  Известно, что:


=
  



Вычислить ‘B

Магнитная индукция поля в центре кругового тока (витка)

B = μ * μ0 * I / (2 R)

B — магнитная индукция
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
I — сила тока
R — радиус



Найти

  • B
  • μ
  • μ0
  • I
  • R


  Известно, что:


=
  



Вычислить ‘B

Напряжённость магнитного поля: бесконечной прямой провод

H = I / ( 2 π r)

H — напряжённость магнитного поля
I — сила тока
r — расстояние до проводника



Найти

  • H
  • I
  • π
  • r


  Известно, что:


=
  



Вычислить ‘H

Напряжённость магнитного поля в центре витка

H = I / (2 R)

H — напряжённость магнитного поля
I — сила тока
R — радиус



Найти

  • H
  • I
  • R


  Известно, что:


=
  



Вычислить ‘H

Магнитная индукция соленоида

B = μ * μ0 * N * I / l

B — магнитная индукция
μ — относительная магнитная проницаемость
μ0 — магнитная постоянная
N — число витков
I — сила тока
l — длина соленоида



Найти

  • B
  • μ
  • μ0
  • N
  • I
  • l


  Известно, что:


=
  



Вычислить ‘B

Напряжённость магнитного поля соленоида

H = N*I / l

H — напряжённость магнитного поля
N — число витков
I — сила тока
l — длина соленоида



Найти

  • H
  • N
  • I
  • l


  Известно, что:


=
  



Вычислить ‘H

Магнитный поток и угол

Φ = BS cos(a)

Φ — магнитный поток
B — магнитная индукция
S — площадь
α — угол



Найти

  • Φ
  • BS
  • a


  Известно, что:


=
  



Вычислить ‘Φ

Магнитный поток

Φ = BS

Φ — магнитный поток
B — магнитная индукция
S — площадь



Найти

  • Φ
  • BS


  Известно, что:


=
  



Вычислить ‘Φ

Сила Ампера

F = I * l * B * sin(a)

F — сила
I — сила тока
l — длина проводника
B — магнитная индукция
α — угол



Найти

  • F
  • I
  • l
  • B
  • a


  Известно, что:


=
  



Вычислить ‘F

Магнитная индукция и сила Ампера

B = F_max / (I * l)

B — магнитная индукция
F_макс — максимальная сила Ампера
I — сила тока
l — длина роводника



Найти

  • B
  • F_макс
  • I
  • l


  Известно, что:


=
  



Вычислить ‘B

Сила Лоренца

F = q v B sin(a)

F — сила
q — заряд
v — скорость
B — магнитная индукция
α — угол



Найти

  • F
  • q
  • v
  • B
  • a


  Известно, что:


=
  



Вычислить ‘F

Сила Лоренца и сила Ампера

F_L = F_A / N

F_L — сила Лоренца
F_A — сила Ампера
N — число свободных электрических зарядов



Найти

  • F_L
  • F_A
  • N


  Известно, что:


=
  



Вычислить ‘F_L

Сила электромагнитного поля

F = qE + qvB sin(a)

F — сила
q — заряд
E — электрическое поле
v — скорость
B — магнитная индукция
α — угол



Найти

  • F
  • q
  • E
  • v
  • B
  • a


  Известно, что:


=
  



Вычислить ‘F

Радиуса движения заряженной частицы в магнитном поле

r = mv /(qB)

r — радиус
m — масса
v — скорость
q — заряд
B — магнитная индукция



Найти

  • r
  • m
  • v
  • q
  • B


  Известно, что:


=
  



Вычислить ‘r

Период вращения заряженной частицы в магнитном поле

T = 2 π m / (qB)

T — период вращения
m — масса
q — заряд
B — магнитная индукция



Найти

  • T
  • π
  • m
  • q
  • B


  Известно, что:


=
  



Вычислить ‘T

Силы Лоренца и Ампера

Магнитное поле порождается движущимися электрическими зарядами. И в свою очередь электрические заряды, движущиеся в магнитном поле, испытывают силовое воздействие с его стороны.

Сила, действующая на движущийся заряд, называется силой Лоренца.

Магнитные поля не реагируют на неподвижный электрический заряд, так же как не действует сила Ампера на обесточенный проводник.

Для возникновения силы Лоренца необходимо выполнить три условия:

  1. У частицы должен быть отрицательный или положительный заряд.
  2. Заряженная частица должна находиться в магнитном поле.
  3. Частица должна быть в движении, то есть вектор v ≠ 0.

Если хотя бы одно из условий не выполняется, сила Лоренца не возникает

Размерность силы Лоренца в международной системе СИ – ньютон (Н). Разумеется, модуль силы Лоренца настолько крохотная величина, по сравнению с ньютоном, что её записывают в виде К×10-n Н.

Поскольку электрический ток представляет собой упорядоченное движение электрических зарядов, то в случае, когда он протекает через магнитное поле, силы Лоренца, действующие на отдельные носители, складываются в одну общую силу, которая называется силой Ампера.

Сила Ампера

Модуль силы Ампера определяется с помощью формулы, похожей на формулу силы Лоренца:

Схожесть формул объясняется тем, что сила Ампера является макроскопическим проявлением силы Лоренца. Направление действия этих сил совпадает.

Формулы силы Ампера и силы Лоренца

Поскольку сила Ампера — это результат действия силы Лоренца, то и формулы, описывающие эти силы, близки, единицы измерения одинаковы. Сила Ампера и сила Лоренца пропорциональны величине перпендикулярной составляющей индукции, следовательно, эта часть в обеих формулах будет общей. Кроме того, обе этих силы пропорциональны величине заряда и его скорости движения.

Проявление магнитного поля заключается в появлении силы, действующей на проводник с током. Направление этой силы определяется мнемоническим правилом левой руки: если перпендикулярная составляющая индукции магнитного поля $B_{perp}$ входит в ладонь левой руки, а четыре пальца указывают направление электрического тока, то большой палец будет указывать направление силы Ампера. При этом имеется ввиду однородное магнитное поле. Расчет силы Ампера для неоднородного поля значительно сложнее, требует отдельного доклада и выходит за рамки школьной программы по физике.

Формула силы Ампера будет аналогичной, место заряда займет величина тока I (поскольку ток равен отношению заряда, проходящего по проводнику, ко времени прохождения), место скорости займет длина проводника (поскольку скорость равна отношению длины, которую прошел заряд, ко времени этого прохождения).

Рассмотрим случай, когда заряженная частица находится в движении в двух полях одновременно (в электрическом и магнитном), тогда на заряд подействуют две составляющие:

2 составляющие действующие на заряд

Тогда:

Формула силы Лоренца

Поскольку эту формулу вывел Лоренц, то её также называют именем учёного-физика.

Направление силы Ампера и силы Лоренца

В отличие от многих других сил, направление силы Лоренца (а значит, и силы Ампера) не совпадает с направлением движения носителя и не совпадает с направлением на источник магнитного поля. Для определения направления этих сил используется мнемоническое правило левой руки.

Если расположить левую руку так, чтобы четыре вытянутых пальца указывали на направление движения положительных зарядов (направление тока), а магнитные линии входили в ладонь, «прокалывая» ее, то отставленный большой палец укажет направление действия силы Лоренца (или Ампера).

Например, если линии магнитного поля направлены сверху вниз, то руку надо располагать ладонью вверх. Теперь, если проводник с током направлен вперед и мы расположим четыре вытянутых пальца вперед, то отставленный большой палец укажет направление справа налево. Это и будет направление силы Ампера, действующей на данный проводник, или силы Лоренца, если двигаются заряды.

Правило левой руки

Как определить направление силы Лоренца

Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости Сила Лоренца - основные понятия, формулы и определение с примерами составляющая вектора индукции Сила Лоренца - основные понятия, формулы и определение с примерами
магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца Сила Лоренца - основные понятия, формулы и определение с примерами действующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.

Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.

Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.

Ускорение частицы Сила Лоренца - основные понятия, формулы и определение с примерами
(R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности
Сила Лоренца - основные понятия, формулы и определение с примерами

и радиус окружности

Сила Лоренца - основные понятия, формулы и определение с примерами
описываемой частицей в магнитном поле.

Сила Лоренца - основные понятия, формулы и определение с примерами

Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):

В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле
Сила Лоренца - основные понятия, формулы и определение с примерами

Действие силы Лоренца широко применяется в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и дисплеев;
  2. ускорителях заряженных частиц (циклотронах);
  3. масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
  4. магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).

Применение силы Лоренца

Практическое значение работ Лоренца мы можем наблюдать в электронно-лучевых трубках. Там поток электронов движется в магнитном поле, изменением которого задаётся траектория электронного пучка.

Данный принцип управления траекторией электронного пучка использовался в старых моделях телевизоров. Электроны под воздействием магнитных полей очерчивали линии на люминофоре кинескопа, рисуя изображения на экране.

Приведенное снизу соотношение представляет собой формулу угловой скорости движения заряженной частицы, происходящего по круговой траектории:

ω=υR=υqBmυ=qBm.

Оно носит название циклотронной частоты. Данная физическая величина не имеет зависимости от скорости частицы, из чего можно сделать вывод, что и от ее кинетической энергии она не зависит.

Данное обстоятельство находит свое применение в циклотронах, а именно в ускорителях тяжелых частиц (протонов, ионов).

Дуант – это полый металлический полуцилиндр, помещенный в вакуумную камеру между полюсами электромагнита в качестве одного из двух ускоряющих D-образного электрода в циклотроне.

К дуантам приложено переменное электрическое напряжение, чья частота эквивалентна циклотронной частоте. Частицы, несущие некоторый заряд, инжектируются в центре вакуумной камеры. В промежутке между дуантами они испытывают ускорение, вызываемое электрическим полем. Частицы, находящиеся внутри дуантов, в процессе движения по полуокружностям испытывают на себе действие силы Лоренца. Радиус полуокружностей возрастает с увеличением энергии частиц. Как и во всех других ускорителях, в циклотронах ускорение заряженной частицы достигается путем применения электрического поля, а ее удержание на траектории с помощью магнитного поля. Циклотроны дают возможность ускорять протоны до энергии, приближенной к 20 МэВ.

Однородные магнитные поля используются во многих устройствах самых разных типов назначений. В частности, они нашли свое применение так называемых масс-спектрометрах.

Масс-спектрометры – это такие устройства, использование которых позволяет нам измерять массы заряженных частиц, то есть ионов или ядер различных атомов.

Данные приборы используются для разделения изотопов (ядер атомов с одинаковым зарядом, но разными массами, к примеру, Ne20 и Ne22).  Вылетающие из источника S ионы проходят через несколько малых отверстий, которые в совокупности формируют узкий пучок. После этого они попадают в селектор скоростей, где частицы движутся в скрещенных однородных электрическом, создающимся между пластинами плоского конденсатора, и магнитном, возникающим в зазоре между полюсами электромагнита, полях. Начальная скорость υ→ заряженных частиц направлена перпендикулярно векторам E→ и B→.

Частица, которая движется в скрещенных магнитном и электрическом полях, испытывает на себе воздействия электрической силы qE→ и магнитной силы Лоренца. В условиях, когда выполняется E=υB, данные силы полностью компенсируют воздействие друг друга. В таком случае частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, которые движутся со скоростью υ=EB.

После данных процессов частицы с одинаковыми значениями скорости попадают в однородное магнитное поле B→ камеры масс-спектрометра. Частицы под действием силы Лоренца движутся в камере перпендикулярной магнитному полю плоскости. Их траектории представляют собой окружности с радиусами R=mυqB’. В процессе измерения радиусов траекторий при известных значениях υ и B’, мы имеем возможность определить отношение qm. В случае изотопов, то есть при условии q1=q2, масс-спектрометр может разделить частицы с разными массами.

С помощью современных масс-спектрометров мы имеем возможность измерять массы заряженных частиц с точностью, превышающей 10–4.

Рамка с током в магнитном поле

В листках по термодинамике мы говорили о важности циклически работающих машин: они снабжают нас энергией. Понимание законов термодинамики позволило сконструировать тепловые двигатели, которые исправно служат нам и по сей день.

Понимание же законов электромагнетизма дало возможность создать циклическую машину другого типа — электродвигатель.

Мы рассмотрим один из элементов электродвигателя — рамку с током в магнитном поле. Разобравшись в её поведении, мы сможем уловить основную идею функционирования электродвигателя.

Пусть прямоугольная рамка 1234 может вращаться вокруг горизонтальной оси (рис. 4, слева). Рамка находится в вертикальном однородном магнитном поле vec{B}. Ток течёт по рамке в направлении 1 > 2 > 3 > 4 > 1

Сила Ампера и сила Лоренца

Рис. 4. Рамка с током в магнитном поле

Вектор vec{n}
называется вектором нормали; он перпендикулярен плоскости рамки и направлен туда, глядя откуда ток кажется циркулирующим против часовой стрелки. (Иными словами, вектор vec{n}
сонаправлен с вектором индукции магнитного поля, которое создаётся током в рамке.) Поворот рамки измеряется углом alpha  между векторами vec{n} и vec{B}.

Теперь определим направления сил Ампера, которые действуют на рамку со стороны магнитного поля. Эти силы расставлены на рисунке; вот вам ещё одно упражнение на правило часовой стрелки (левой руки) — обязательно проверьте правильность указанных направлений!

Силы vec{F_{12}} и vec{F_{34}} , приложенные к сторонам 12 и 34, действуют вдоль оси вращения. Они лишь растягивают рамку и не вызывают её вращение.

Куда более интересны силы vec{F_{23}} и vec{F_{14}} , приложеные соответственно к сторонам 23 и 14. Они лежат в горизонтальной плоскости и перпендикулярны оси вращения. Эти силы вращают рамку в направлении по часовой стрелке, если смотреть справа (рис. 4, правая часть). Вычислим момент этой пары сил относительно оси O
вращения рамки.

Пусть длина стороны 14 равна a Тогда

F_{14} = F_{23} = IB_a.

Пусть длина стороны 12 равна b. Плечо d силы F_{14} , как видно из рис. 4 (справа) равно:

d=OA=frac{displaystyle b}{displaystyle 2 vphantom{1^a}} sin varphi

Таким же будет плечо силы vec{F_{23}}. Отсюда получаем момент сил, вращающий рамку:

M=F_{14}d + F_{23}d=IB_a cdot frac{displaystyle b}{displaystyle 2 vphantom{1^a}} sin varphi + IB_a cdot frac{displaystyle b}{displaystyle 2 vphantom{1^a}} sin varphi=IBab sin varphi

Теперь заметим, что ab=S— площадь рамки. Окончательно имеем:

M = IBS sin varphi.
(3)

В этой формуле площадь служит единственной геометрической характеристикой рамки.Это наводит на мысль, что только площадь рамки и существенна в выражении для вращающего момента. И действительно, можно доказать (разбивая рамку на бесконечно узкие полоски, неотличимые от прямоугольников), что формула (3) справедлива для рамки любой формы с площадью S
.

Как видно из формулы (3), максимальный вращающий момент равен:

M_{max} = IBS.

Эта максимальная величина момента достигается при varphi = frac{displaystyle pi}{displaystyle 2 vphantom{1^a}}, то есть когда плоскость рамки параллельна магнитному полю.

Вращающий момент становится равным нулю при varphi = 0  и varphi = pi. Оба этих положения по-своему интересны.

При varphi = pi плоскость рамки перпендикулярна полю, а векторы n и B направлены в разные стороны. Данное положение является положением неустойчивого равновенсия: стоит хоть немного шевельнуть рамку, как силы Ампера начнут её вращать в том же направлении, поворачивая вектор vec{n} к вектору vec{B} (убедитесь!).

При varphi = 0 плоскость рамки также перпендикулярна полю, а векторы vec{n} и vec{B}
сонаправлены. Это — положение устойчивого равновенсия: при отклонении рамки возникает вращающий момент, стремящийся вернуть рамку назад (убедитесь!). Начнутся колебания рамки, постепенно затухающие из-за трения. В конце концов рамка остановится в положении varphi = 0 индукции внешнего магнитного поля (вот почему при намагничивании вещества элементарные токи ориентируются так, что их поля направлены в сторону внешнего магнитного поля). Полезное сопоставление: рамка занимает такое положение, что её положительная нормаль ориентируется в том же направлении, что и северный конец стрелки компаса, помещённой в это магнитное поле.

Таким образом, поведение рамки в магнитном поле становится ясным: если отклонить рамку от положения устойчивого равновесия и отпустить, то рамка будет совершать колебания. С точки зрения совершения механической работы это не очень хорошо: если намотать нить на ось вращения и подвесить к нити груз, то груз будет то подниматься, то опускаться.
Но вот если исхитриться и заставить ток менять направление в нужные моменты, то вместо колебаний рамки начнётся её непрерывное вращение и, соответственно, непрерывный подъём подвешенного груза. Тогда-то и получится полноценный электродвигатель; идея с переменой направления тока реализуется с помощью коллектора и щёток.

Явление электромагнитной индукции, магнитный поток, поток магнитной индукции

  • Электромагнитная индукция: это явление возникновения электрического тока в проводящем контуре, который либо покоится в переменном магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется
  • Магнитный поток (=поток магнитной индукции) [Вб]: через поверхность площадью S это величина равная произведению модуля вектора магнитной индукции В на площадь и косинус угла между вектром В и нормалью к плоскости S:
    • Магнитный поток (=поток магнитной индукции): через поверхность площадью S это величина равная произведению модуля вектора магнитной индукции В на площадь и косинус угла между вектром В и нормалью к плоскости S
    • при этом, очевидно, что если магнитная индукция перпендикулярна плоскости,
    • то cos α = 1, и формула принимает вид:
      • Ф=BS

Явление электромагнитной индукции, магнитный поток, поток магнитной индукции

Примеры задач в физике, электротехнике

Задача № 1

Исходные данные для выполнения: длина проводника – 20 см, сила тока, протекающая в нем – 300 мА, угол между проводником и вектором магнитной индукции – 45о. Величина магнитной индукции – 0,5 Тл.

Требуется найти силу однородного магнитного поля, воздействующую на проводник.

Решение: необходимо применять основную формулу – Fa = B x I x L x sinα.  Подставив нужные значения, получаем: Fa = 0,5 Тл х 0,3А х 0,2 м х (√2/2) = 0,03 Н.

Задача № 2

Исходные данные для решения: Проводник помещен в магнитное поле, индукция которого составляет 10 Тл. Сила действия магнитного поля перпендикулярна проводнику и составляет 20 Н. Сила тока, протекающего в проводнике – 5А.

Требуется вычислить длину отрезка проводника.

Решение: за основу берется формула Fa = B x I x L x sinα. Длина проводника определяется следующим образом: L = Fa/(B x I x sinα). Поскольку sinα = 1, получаем: L = Fa/(B x I). Остается подставить нужные значения и получить результат: L = 20Н/(10Тл х 5А) = 0,4 м.

Существуют аналогичные задачи с использованием силы Лоренца. Наглядно рассматрим два примера, которые решаются просто и понятно.

Задача № 3

Исходные данные для выполнения: в магнитном поле с индукцией 0,3 Тл передвигается заряд величиной 0,005 Кл со скоростью 200 м/с. Угол между направлением заряда и вектором магнитной индукции – 45º.

Определяется: величина силы, воздействующей на заряд.

Решение: используется основная формула FL = |q| x V x B x sinα. Подставляя исходные данные, получаем следующее: FL = 0,005Кл х 200м/с х 0,3Тл х sin 45о = (0,3 х √2)/2 = 0,21Н.

Задача № 4

Исходные данные для решения: заряженная частица величиной 0,5 мКл движется в магнитном поле с индукцией 2 Тл. Сила, действующая на заряд со стороны магнитного поля – 32 Н. Направление движения частицы и вектор магнитного поля расположены под углом 90º.

Требуется определить: скорость движения заряженной частицы.

Решение: изначально берется формула FL = |q| x V x B x sinα. Поскольку sinα = 1, она приобретает следующий вид: FL = |q| x V x B. Для определения скорости нужно: V = FL/(|q| x B). Остается вставить исходные данные: V = 32Н/(5*10-4Кл х 2Тл) = 32000 м/с.

Предыдущая

ТеорияЗакон сохранения электрического заряда

Следующая

ТеорияПочему в странах разные розетки?

Как определить силу магнитного поля

Сила Лоренца необходима для определения магнитного поля. Она представляет собой силу, действующую на заряженную частицу, которая движется в электромагнитном поле. Благодаря этой силе происходит перераспределение тока по сечению проводника. Подобный эффект используется в термомагнитных и гальваномагнитных устройствах.

Как определить силу магнитного поля

Вам понадобится

  • — калькулятор.

Инструкция

Определите направление силы магнитного поля (силы Лоренца). Используйте для этого правило левой руки, или правило буравчика. Ладонь левой руки расположите таким образом, чтобы линии магнитной индукции как бы входили в нее, а четыре вытянутых пальца, сложенных вместе параллельно друг другу, обозначали направление движения положительного заряда. В результате большой палец левой руки, отогнутый на угол в 90 градусов, укажет направление силы Лоренца. Если правило буравчика применяется для отрицательных зарядов, то четыре вытянутых пальца расположите против скорости движения заряженных частиц.

Индукцию магнитного поля, которая и является силовой характеристикой поля, образованного электрическим током, можно найти по приведенной формуле. Здесь rₒ — это радиус-вектор. Он указывает точку, в которой мы находим силу магнитного поля. Dl – длина участка, образующего магнитное поле, а I – соответственно, сила тока. В системе СИ µₒ — постоянная магнитная, равная произведения 4π на 10 в -7 степени.

Как определить силу магнитного поля

Модуль силы Лоренца определите как произведение следующих величин: модуля заряда носителя, скорости упорядоченного движения носителя по проводнику, модуля индукции магнитного поля, синуса угла между векторами указанной скорости и магнитной индукции. Эта формула справедлива при всех значениях скорости заряженной частицы.

Запишите выражение и сделайте необходимые расчеты.

Видео по теме

Обратите внимание

Если заряженная частица осуществляет движение в магнитном поле, характеризующемся однородностью, то при действии на нее силы Лоренца вектор скорости этой частицы будет лежать в плоскости, перпендикулярной вектору магнитной индукции. В результате заряженный объект станет двигаться по окружности. В таких случаях магнитная сила Лоренца становится центростремительной силой.

Полезный совет

Направление силы Лоренца перпендикулярно направлению векторов скорости и магнитной индукции. В момент движения в магнитном поле заряженной частицы эта сила никакой работы не совершает. Следовательно, модуль вектора скорости в это время сохраняется, а изменяется лишь направление этого вектора.

Источники:

  • Магнитное взаимодействие токов

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как найти владельца гугл таблицы
  • Как найти приложение в телефоне которые исчезли
  • Как найти площадь полной поверхности сферы
  • Как найти производителя ножа
  • Как найти нужного сотрудника на работу