Как найти силу поднятия тяжести

Формула силы тяжести

ОПРЕДЕЛЕНИЕ

Сила тяжести, действующая на тело, расположенную на поверхности Земли, равна массе тела, умноженной на константу

Здесь F — сила тяжести, m — масса, g — ускорение силы тяжести.

Единицей измерения силы является Н (Ньютон).

Для тела, которое находится на определенной высоте над Землей, силу тяжести можно найти по формуле:

Здесь G – сила тяжести постоянная, m — масса тела, M — масса Земли , r — высота тела над Землей, R — радиус Земли

Из-за того, что Земля имеет сплюснутую форму, т. Е. Ее радиус не везде одинаковый, ускорение силы тяжести изменяется в зависимости от географической широты, от 9,832 на экваторе до 9,78 у полюсов. 9.8 — его среднее значение.

Сила тяжести действует на тело, имеющее опору или подвеску. Если тело их не имеет, то есть оно находится в состоянии свободного падения, тогда они говорят, что тело находится в невесомости. Сила тяжести всегда направлена к центру Земли.

Примеры решения проблем на тему «Гравитация»

ПРИМЕР 1

Задача

Найти силу тяжести тел весом 1 кг и 10 кг, расположенных на поверхности Земли.

Решение.

Подставим массы в формулу

Ответ

Силы тяжести — 9,8 и 98 ньютонов.

ПРИМЕР 2

Задача

Тело массы m расположено на высоте r над Землей. Сколько раз сила притяжения изменяется, когда она поднимается до высоты

Решение

На высоте сила тяжести была:

На высоте сила тяжестистала:

Найти соотношение сил:

Ответ.

Сила тяжести изменится раз.

Содержание:

Сила тяжести:

Почему все подброшенные вверх тела падают на Землю ? Почему на санках легко съезжать с горки, а вверх их нужно тянуть?

Подбросьте вверх мяч. Поднявшись на некоторую высоту, он начнёт двигаться вниз и упадёт на Землю. Парашютист, выпрыгнувший из самолёта, падает вниз и после раскрытия парашюта. С появлением дождевой тучи на Землю падает густой дождь. Как бы высоко мы не прыгали вверх, всегда опускаемся на Землю.

Все тела, находящиеся на Земле или вблизи неё, взаимодействуют с ней: Земля притягивает тела, а они притягивают Землю.

Поскольку масса у Земли очень большая, то в результате взаимодействия с нею заметно изменяют свои скорости и положения именно тела, а Земля практически остаётся на месте.

Силу, с которой Земля притягивает к себе любое тело, называют силой тяжести.

От чего зависит сила тяжести

Из опыта с яблоками, выполненного ранее, можем сделать вывод, что на два яблока, подвешенных на пружине, действует сила тяжести больше, чем на одно, так как масса двух яблок больше массы одного. Силу тяжести обозначают Сила тяжести в физике - формулы и определения с примерами

Единицей силы тяжести, как и любой другой, в СИ является один ньютон (1Н). Эта единица названа в честь английского учёного Исаака Ньютона, впервые сформулировавшего основные законы движения тел и законы тяготения. 1 ньютон (1 Н) равен силе тяжести, которая действует на тело массой приблизительно 102 г.

Тогда на тело массой 1кг действует сила тяжести 9,81 Н, т. е. Сила тяжести в физике - формулы и определения с примерами

Как, пользуясь единицей силы 1 Н, определить силу тяжести, которая действует на тело любой массы?

Поскольку на тело массой 1 кг действует сила тяжести 9,81 Н, то на тело массой т будет действовать сила тяжести, в т раз большая.

Чтобы определить силу тяжести Сила тяжести в физике - формулы и определения с примерами, действующую на тело, нужно постоянную для данной местности величину Сила тяжести в физике - формулы и определения с примерами = 9,81 Сила тяжести в физике - формулы и определения с примерами умножить на массу тела Сила тяжести в физике - формулы и определения с примерами, выраженную в килограммах: Сила тяжести в физике - формулы и определения с примерами

Но притяжение существует не только между Землёй и телами на ней или вблизи неё. Все тела притягиваются друг к другу. Например, притягиваются между собой Земля и Луна, Солнце и Земля или другие планеты, корабли в море, предметы в комнате. Вследствие притяжения Земли к Луне на Земле возникают приливы и отливы (рис. 69).

Сила тяжести в физике - формулы и определения с примерами

Вода в океанах поднимается дважды в сутки на несколько метров.

Благодаря силе тяжести атмосфера удерживается возле Земли, реки текут сверху вниз, Луна удерживается возле Земли, планеты двигаются по орбитам вокруг Солнца.

Явление притяжения всех тел Вселенной друг к другу называют всемирным тяготением.

Исаак Ньютон доказал, что сила притяжения между телами тем больше, чем больше массы этих тел и чем меньше расстояние между телами. Если бы сила тяжести на Земле вдруг исчезла, то все незакреплённые на ее поверхности тела от любого небольшого толчка разлетелись бы во все стороны в космическом пространстве.

Каково направление силы тяжести

Опыт. Если взять отвес или привязанный к нити какой-либо предмет (рис. 70), то увидим, что нить с грузиком вследствие действия на него силы тяжести всегда направлена к Земли вдоль прямой, которую называют вертикалью.

Сила тяжести в физике - формулы и определения с примерами

Выполнив этот опыт во всех точках Земли, учёные убедились, что сила тяжести всегда направлена к центру Земли.

Силу тяжести изображают в виде вертикальной стрелки, направленной вниз и приложенной к определённой точке тела (рис. 71 а, б).

Кстати:

Кроме планет с их спутниками вокруг Солнца двигаются малые планеты, которые еще называют астероидами. Наибольшая из них — Церера — имеет статус карликовой планеты и радиусом почти в 20 раз, а по массе в 7500 раз меньше Земли. Сила тяжести на ней настолько мала, что человек, оттолкнувшись от поверхности планеты, мог бы улететь с нее.

Вот как описывает основатель теории космонавтики К,Э. Циолковский в рассказе «Путь к звездам» условия пребывания человека на этом астероиде: «На Земле я могу свободно нести еще одного человека такого же веса, как я. На Весте так же легко могу нести в 30 раз больше. На Земле я могу подпрыгнуть на 50см. На Весте такое же усилие дает прыжок в 30м. Это высота десятиэтажного дома или огромной сосны. Там легко перепрыгивать через рвы и ямы шириной с крупную реку. Можно перепрыгнуть через 15-метровые деревья и дома. И это без разгона».

Сила тяготения

Все тела возле Земли падают на ее поверхность, если их ничто не удерживает. В чем причина этого явления?

Как тела падают на Землю

Рассмотрим фотографию падения шарика, на которой положение шарика фиксировалось на пленке через равные интервалы времени (рис. 45). Если линейкой отмерить расстояние между изображениями шарика в различные моменты времени, то можно заметить, что эти расстояния постепенно увеличиваются. Это свидетельствует о том, что скорость шарика при падении постепенно увеличивается.

Сила тяжести в физике - формулы и определения с примерами

Как увеличивается скорость падающего тела

Если вспомнить определение силы, по которому сила изменяет скорость тела, то можно сделать вывод, что на шарик действует сила, направленная к Земле.

Силу, действующую на каждое тело со стороны Земли, называют силой тяготения.

Измерения показывают, что скорость тела, падающего на поверхность Земли при отсутствии сопротивления воздуха, каждую секунду увеличивается на 9,8 Сила тяжести в физике - формулы и определения с примерами.

Как рассчитать силу тяготения

Если знать массу тела, то можно рассчитать силу тяготения. Способ таких расчетов подсказывают результаты опытов.

Возьмем динамометр и подвесим к нему гирьку массой 102 г, стрелка динамометра остановится на отметке 1 Н. Если подвесить два таких груза, то динамометр покажет силу 2 Н и т. д. С этого опыта можно сделать вывод, что сила тяжести пропорциональна массе тела.

Сила тяготения пропорциональна массе тела:Сила тяжести в физике - формулы и определения с примерами

Коэффициент пропорциональности Сила тяжести в физике - формулы и определения с примерами равен приблизительноСила тяжести в физике - формулы и определения с примерами

Для расчетов при решении задач иногда принимают, чтоСила тяжести в физике - формулы и определения с примерами

Если знать такую зависимость силы тяготения от массы, то можно заранее рассчитать ее значение.

Например, необходимо определить, что покажет динамометр, если на его крючок повесить гирю массой 500 г.

Дано:

Сила тяжести в физике - формулы и определения с примерами

Решение

Сила тяжести в физике - формулы и определения с примерами

Ответ. Стрелка динамометра покажет 4,9 Н.

Какая природа силы тяготения

Сила тяготения является проявлением общего закона природы, действующего во всей Вселенной закона всемирного тяготения. Открытый и сформулированный в XVII в. английским физиком Ньютоном, он утверждает, что сила гравитационного притяжения во Вселенной пропорциональна массам взаимодействующих тел и зависит от расстояния между ними.

Сила тяжести в физике - формулы и определения с примерами

где R — расстояние между телами, m1 и m2 — массы взаимодействующих тел, Сила тяжести в физике - формулы и определения с примерами — гравитационная постоянная.

Сила тяготения, как проявление гравитационного взаимодействия Земли, является следствием взаимодействия всех тел с Землей. Поэтому в расчетах силы тяготения пользуются только массой данного тела. Характеристики Земли отображены в обобщенной форме в коэффициенте Сила тяжести в физике - формулы и определения с примерами

Работа силы тяжести

Каждая сила, действующая на движущееся тело, совершает работу. Проанализируем более подробно работу, совершаемую силой тяжести. При небольших расстояниях от поверхности Земли сила тяжести постоянна и по модулю равна mg. Пусть тело массой m падает с высоты h1 до высоты h(рис. 132). Модуль перемещения Сила тяжести в физике - формулы и определения с примерами равен при этом h1h. Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:
Сила тяжести в физике - формулы и определения с примерами    (1)

Сила тяжести в физике - формулы и определения с примерами
Рис. 132

Высоты h1 и h можно отсчитывать от любого уровня. Это может быть уровень поверхности Земли, пола класса или поверхности стола и т. д. Высоту выбранного уровня принимают равной пулю. Поэтому этот уровень называют нулевым.

Если тело падает с высоты h до нулевого уровня, то работа силы тяжести:

Сила тяжести в физике - формулы и определения с примерами   (2)

Теперь выясним, какую работу совершает сила тяжести, если тело движется не по вертикали. Для этого рассмотрим движение тела по наклонной плоскости. Пусть тело массой m совершило перемещение Сила тяжести в физике - формулы и определения с примерами, равное по модулю длине наклонной плоскости (рис. 133). Работа силы тяжести в этом случае равна: Сила тяжести в физике - формулы и определения с примерами, где Сила тяжести в физике - формулы и определения с примерами — угол между вектором перемещения и вектором силы тяжести. Из рисунка видно, что Сила тяжести в физике - формулы и определения с примерами. Поэтому
Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами
Рис. 133

Мы получили для работы силы тяжести такое же выражение, как и в случае движения тела по вертикали (см. формулу (2)). Отсюда следует, что работа силы тяжести не зависит от того, движется ли тело по вертикали или проходит более длинный путь по наклонной плоскости. Работа силы тяжести определяется только изменением высоты относительно некоторого уровня.

Теперь докажем, что работа силы тяжести определяется формулой (2) при движении по любой траектории. Например, некоторое тело бросили горизонтально с высоты h (рис. 134). Как известно, траекторией такого движения является парабола. Мысленно разобьем траекторию на маленькие участки Сила тяжести в физике - формулы и определения с примерами, такие, что их можно считать прямыми линиями. Каждый из них можно считать маленькой наклонной плоскостью, а движение по траектории AB рассматривать как движение по множеству наклонных плоскостей. Работа силы тяжести на каждой из них равна произведению силы тяжести на изменение высоты. Например, на участке А2А3 работа равна mg(h2-h3). Полную же работу силы тяжести на всем пути найдем, сложив работу на каждом участке:

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами
Рис. 134

Таким образом, работа силы тяжести не зависит от формы траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях тела, т. е. вычисляется но формуле (1). Отсюда следует, что если тело движется по замкнутой траектории, где начальное и конечное положения тела совпадают, то работа силы тяжести равна нулю. Такие силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным положениями тела в пространстве, называются потенциальными или консервативными. Другое определение потенциальных сил: это такие силы, работа которых по замкнутой траектории равна нулю.

Для потенциальных сил можно ввести понятие потенциальной энергии. Действительно, формула (I) может быть переписана следующим образом:

A = mg(hl — h2)= -(mgh2— mgh1).    (3)

Правая часть этого равенства представляет собой изменение величины mgh, взятое с противоположным знаком.

Понятие кинетической энергии, изменение которой равно работе сил, действующих на тело. Теперь мы встретились еще с одной величиной, изменение которой (но с противоположным знаком) тоже равно работе силы — в данном случае работе силы тяжести. Величину, равную mgh, называют потенциальной энергией П тела в гравитационном поле. Тогда формулу (3) можно записать в виде:
Сила тяжести в физике - формулы и определения с примерами    (4)

Говорят, что работа силы тяжести равна убыли потенциальной энергии тела в гравитационном поле Земли.
Если тело падает с высоты h до нулевого уровня, то работа силы тяжести равна его начальной потенциальной энергии:
Сила тяжести в физике - формулы и определения с примерами

Следовательно, потенциальная энергия тела, поднятого на некоторую высоту, равна работе силы тяжести при падении тела с этой высоты. Например, этим пользуются при забивании свай на строительных площадках (рис. 135). Чтобы поднять тело с нулевого уровня на эту же высоту, должна быть совершена работа другой силой, направленной против силы тяжести.

Сила тяжести в физике - формулы и определения с примерами
Рис. 135

Потенциальная энергия зависит от положения тела относительно нулевого уровня и, следовательно, от координат тела. Так как пулевой уровень может быть выбран произвольно, то и потенциальная энергия определяется неоднозначно. Однако физический смысл имеет разность потенциальных энергий тела ΔП, а эта разность не зависит от выбора нулевого уровня.

Сила тяжести является силой, с которой Земля притягивает тело. Тело обладает потенциальной энергией, потому что оно взаимодействует с Землей. Не было бы Земли, не было бы и силы притяжения, а следовательно, и потенциальной энергии тела. Поэтому потенциальная энергия — это энергия взаимодействия, в данном случае тела и Земли.

Главные выводы:

  1. Работа силы тяжести не зависит от формы траектории, а определяется начальным и конечным положениями тела.
  2. Работа силы тяжести равна нулю, если тело возвращается в исходное положение.
  3. Сила тяжести является потенциальной силой.
  4. Потенциальная энергия тела, поднятого на некоторую высоту, равна работе силы тяжести при падении тела с этой высоты.
  5. Потенциальная энергия — это энергия взаимодействия тел.

Сила тяжести и напряженность гравитационного поля

Как вы знаете, по современным научным представлениям взаимное притяжение между телами осуществляется посредством особого вида материи — гравитационного поля. Каждое тело вокруг себя создает гравитационное поле. Как и другие физические поля, гравитационное поле имеет свою силовую характеристику — напряженность гравитационного поля.

Напряженность гравитационного поля — это векторная физическая величина, равная отношению силы притяжения, действующей на материальную точку (тело) в гравитационном поле, к его массе:

Сила тяжести в физике - формулы и определения с примерами

Где Сила тяжести в физике - формулы и определения с примерами — напряженность гравитационного поля, Сила тяжести в физике - формулы и определения с примерами — масса материальной точки (тела), Сила тяжести в физике - формулы и определения с примерами — сила притяжения, действующая на материальную точку в гравитационном поле.

От чего зависит модуль напряженности гравитационного поля

Чтобы ответить на этот вопрос, определим модуль напряженности гравитационного поля для произвольной точки на поверхности Земли и на высоте Сила тяжести в физике - формулы и определения с примерами от поверхности Земли:

Сила тяжести в физике - формулы и определения с примерами

Здесь Сила тяжести в физике - формулы и определения с примерами и Сила тяжести в физике - формулы и определения с примерами — силы притяжения на поверхности Земли и на высоте h соответственно, Сила тяжести в физике - формулы и определения с примерами — масса Земли, Сила тяжести в физике - формулы и определения с примерами — радиус Земли.

  • Заказать решение задач по физике

Модуль напряженности гравитационного поля в некоторой точке прямо пропорционален массе источника данного поля и обратно пропорционален

квадрату расстояния до этой точки. Модуль напряженности гравитационного поля не зависит от массы тела, помещенного в это поле. Вектор напряженности гравитационного поля в произвольной точке поля направлен вдоль радиуса к центру источника поля (b). В данной точке гравитационного поля модуль и направление напряженности гравитационного поля совпадают с модулем и направлением ускорения свободного падения.

Сила тяжести в физике - формулы и определения с примерами

Являются ли напряженность гравитационного поля и ускорение свободного падения одной и той же величиной

На помещенное в гравитационное поле произвольное тело действует сила притяжения со стороны источника поля. В результате тело получает ускорение (ускорение свободного падения), направленное к центру источника поля (например, центру Земли). Это ускорение сообщается телу действующей на него силой тяжести гравитационного поля.

Сила тяжести — это сила, с которой Земля (планета) притягивает тела. Сила тяжести равна произведению массы тела, помещенного в гравитационное поле Земли (планеты), на ускорение свободного падения:

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести всегда приложена к центру массы тела и направлена вертикально вниз (перпендикулярно к горизонтальной поверхности) к центру Земли (планеты) (с).

Сила тяжести в физике - формулы и определения с примерами

Из вышесказанного ясно, что понятия «напряженность гравитационного поля» и «ускорение свободного падения» имеют разный физический смысл. Так, напряженность гравитационного поля появляется в случае возникновения поля, а ускорение свободного падения возникает в результате действия силы тяжести при помещении в это поле произвольного тела (пробное тело).

Сила тяжести и вес тела

Если выпустить из рук карандаш, он обязательно упадет. Если поставить рюкзак на скамейку, она (хоть и незаметно для глаз) прогнется. Если подвесить к резиновому шнуру какое-нибудь тело, шнур растянется. Все это — следствия притяжения Земли. При этом репортажи с космических станций демонстрируют нам вроде бы «исчезновение» земного притяжения — космонавты и все вещи на борту находятся в состоянии невесомости.

Гравитационное взаимодействие:

Почему любой предмет, например выпущенный из руки карандаш, капля дождя, лист дерева и т. д., падает вниз? Почему стрела, выпущенная из лука, не летит все время прямо, а в конце концов падает на землю? Почему Луна движется вокруг Земли? Причина всех этих явлений в том, что Земля притягивает к себе все тела (рис. 20.1).

При этом все тела притягивают к себе Землю. Например, притяжение к Луне вызывает на Земле приливы и отливы (рис. 20.2). В результате притяжения к Солнцу наша планета и все другие планеты Солнечной системы движутся вокруг Солнца по определенным орбитам. В 1687 г. Исаак Ньютон сформулировал закон, согласно которому между всеми телами Вселенной существует взаимное притяжение. Такое взаимное притяжение объектов называют гравитационным взаимодействием или всемирным тяготением. Опираясь на опыты и математические расчеты, Ньютон доказал, что интенсивность гравитационного взаимодействия увеличивается с увеличением масс взаимодействующих тел. Именно поэтому легко убедиться в том, что всех нас притягивает Земля, и при этом мы совсем не ощущаем притяжение соседа по парте.

В физике силу гравитационного притяжения Земли, действующую на тела вблизи ее поверхности*, называют силой тяжести.

Сила тяжести Сила тяжести в физике - формулы и определения с примерами — это сила, с которой Земля притягивает к себе тела, находящиеся на ее поверхности или вблизи нее.

Сила тяжести приложена к телу, которое притягивается Землей, и направлена вертикально вниз, к центру Земли (рис. 20.3).

Многочисленными опытами доказано, что сила тяжести, действующая на тело, прямо пропорциональна массе этого тела: Сила тяжести в физике - формулы и определения с примерами где Сила тяжести в физике - формулы и определения с примерами— значение силы тяжести; m — масса тела; g — коэффициент пропорциональности, который называют ускорением свободного падения.

Будем считать, что, когда говорят «вблизи поверхности Земли», имеют в виду расстояние, не превышающее нескольких десятков километров.

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами

Вблизи поверхности Земли ускорение свободного падения равно приблизительно 9,8 ньютона на килограмм: Сила тяжести в физике - формулы и определения с примерами Значение ускорения свободного падения несущественно изменяется на экваторе и полюсах Земли (рис. 20.4), при подъеме над поверхностью Земли и при спуске в шахту. Используя рис. 20.4, определите, на сколько сила тяжести, действующая на вас, на экваторе меньше, чем на полюсе.

Сила тяжести в физике - формулы и определения с примерами

Что физики называют весом тела

Из-за притяжения к Земле все тела сжимают или прогибают опору либо растягивают подвес. Сила, которая характеризует такое действие тел, называется весом тела (рис. 20.5).

Сила тяжести в физике - формулы и определения с примерами

Вес тела Сила тяжести в физике - формулы и определения с примерами — это сила, с которой вследствие притяжения к Земле тело давит на горизонтальную опору или растягивает вертикальный подвес. Единица веса в СИ, как и любой другой силы,— ньютон Сила тяжести в физике - формулы и определения с примерами Если тело находится в состоянии покоя или прямолинейного равномерного движения, то его вес совпадает по направлению с силой тяжести и равен ей по значению: P=mg. Однако в отличие от силы тяжести, которая приложена к телу, вес приложен к опоре или подвесу (рис. 20.6).

Для упрощения расчетов в случаях, когда большая точность не существенна, можно считать, что g= 10 Н/кг.

Сила тяжести в физике - формулы и определения с примерами

Состояние невесомости

Вы наверняка хорошо знаете термин «невесомость», но его значение многие понимают неправильно. Например, считают, что невесомость — это состояние, которое наблюдается только в космосе, где нет воздуха, или там, где отсутствует гравитация. Но это не так! Отсутствие воздуха само по себе не вызывает невесомости, а от гравитации вообще не спрячешься — во Вселенной нет ни одного уголка, где бы не действовали силы всемирного тяготения*. На самом деле невесомость — это отсутствие веса. Уберите у тела опору или подвес — и оно окажется в состоянии невесомости. (Обратите внимание: сопротивление воздуха тоже является своего рода опорой!)

Невесомость — это такое состояние тела, при котором тело не действует на опору или подвес. Тело вблизи поверхности Земли находится в состоянии невесомости, если на него действует только одна сила — сила тяжести. На короткое время невесомость легко создать и дома. Можно, например, подпрыгнуть — и вы на мгновение окажетесь в состоянии невесомости: в данном случае, пока выдвигаетесь вниз, сопротивление воздуха пренебрежимо мало и можно считать, что на вас действует только сила тяжести. Постоянно в состоянии невесомости находятся космические орбитальные станции и все, что на них находится (рис. 20.7). Это связано с тем, что космические корабли «постоянно падают» на Землю из-за ее притяжения и в то же время остаются на орбите благодаря своей огромной скорости. У нетренированного человека длительное пребывание в состоянии невесомости, как правило, сопровождается тошнотой, нарушением работы мышц, вестибулярного аппарата**, нервными расстройствами, именно поэтому космонавты проходят серьезную физическую подготовку (рис. 20.8).

Плотность материи в нашей Вселенной очень мала (2-3 атома Гидрогена на 1 м3), потому во Вселенной в среднем очень мала и гравитация. Ее называют микрогравитацией. Вестибулярный аппарат — орган чувств у людей и позвоночных животных, воспринимающий изменение положения тела в пространстве и направление движения. Этот орган отвечает, например, за способность человека различать в темноте, где верх, а где низ.

Сила тяжести в физике - формулы и определения с примерами

Итоги:

Во Вселенной все тела притягиваются друг к другу. Такое взаимное притяжение тел называют всемирным тяготением. Сила тяжести — сила, с которой Земля притягивает к себе тела, находящиеся на ее поверхности или вблизи нее. Сила тяжести вычисляется по формуле Сила тяжести в физике - формулы и определения с примерами и направлена вертикально вниз, к центру Земли. Вес Сила тяжести в физике - формулы и определения с примерами тела — это сила, с которой вследствие притяжения к Земле тело действует на горизонтальную опору или вертикальный подвес. Следует различать силу тяжести и вес тела: сила тяжести приложена к самому телу, а вес — к опоре или подвесу; вес тела равен по значению силе тяжести (P=mg) только в состоянии покоя тела или его равномерного прямолинейного движения. Когда тело движется под действием только силы тяжести, то оно находится в состоянии невесомости (его вес равен нулю).

  • Сила упругости в физике и закон Гука
  • Деформация в физике
  • Плотность вещества в физике
  • Сила трения в физике
  • Инерция в физике
  • Масса тела в физике
  • Сила в физике
  • Силы в механике


Загрузить PDF


Загрузить PDF

В физике, сила натяжения — это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.

  1. Изображение с названием Calculate Tension in Physics Step 1

    1

    Определите силы на каждом из концов нити. Сила натяжения данной нити, веревки является результатом сил, натягивающих веревку с каждого конца. Напоминаем, сила = масса × ускорение. Предполагая, что веревка натянута туго, любое изменение ускорения или массы объекта, подвешенного на веревке, приведет к изменению силы натяжения в самой веревке. Не забывайте о постоянном ускорении силы тяжести — даже если система находится в покое, ее составляющие являются объектами действия силы тяжести. Мы можем предположить, что сила натяжения данной веревки это T = (m × g) + (m × a), где «g» — это ускорение силы тяжести любого из объектов, поддерживаемых веревкой, и «а» — это любое другое ускорение, действующее на объекты.

    • Для решения множества физических задач, мы предполагаем идеальную веревку — другими словами, наша веревка тонкая, не обладает массой и не может растягиваться или рваться.
    • Для примера, давайте рассмотрим систему, в которой груз подвешен к деревянной балке с помощью одной веревки (смотрите на изображение). Ни сам груз, ни веревка не двигаются — система находится в покое. Вследствие этого, нам известно, чтобы груз находился в равновесии, сила натяжения должна быть равна силе тяжести. Другими словами, Сила натяжения (Ft) = Сила тяжести (Fg) = m × g.
      • Предположим, что груз имеет массу 10 кг, следовательно, сила натяжения равна 10 кг × 9,8 м/с2 = 98 Ньютонов.
  2. Изображение с названием Calculate Tension in Physics Step 2

    2

    Учитывайте ускорение. Сила тяжести — не единственная сила, что может влиять на силу натяжения веревки — такое же действие производит любая сила, приложенная к объекту на веревке с ускорением. Если, к примеру, подвешенный на веревке или кабеле объект ускоряется под действием силы, то сила ускорения (масса × ускорение) добавляется к силе натяжения, образованной весом этого объекта.

    • Предположим, что в нашем примере на веревку подвешен груз 10 кг, и вместо того, чтобы быть прикрепленным к деревянной балке, его тянут вверх с ускорением 1 м/с2. В этом случае, нам необходимо учесть ускорение груза, также как и ускорение силы тяжести, следующим образом:
      • Ft = Fg + m × a
      • Ft = 98 + 10 кг × 1 м/с2
      • Ft = 108 Ньютонов.
  3. Изображение с названием Calculate Tension in Physics Step 3

    3

    Учитывайте угловое ускорение. Объект на веревке, вращающийся вокруг точки, которая считается центром (как маятник), оказывает натяжение на веревку посредством центробежной силы. Центробежная сила — дополнительная сила натяжения, которую вызывает веревка, «толкая» ее внутрь так, чтобы груз продолжал двигаться по дуге, а не по прямой. Чем быстрее движется объект, тем больше центробежная сила. Центробежная сила (Fc) равна m × v2/r где «m»– это масса, «v» — это скорость, и «r» — радиус окружности, по которой движется груз.

    • Так как направление и значение центробежной силы меняются в зависимости от того, как объект движется и меняет свою скорость, то полное натяжение веревки всегда параллельно веревке в центральной точке. Запомните, что сила притяжения постоянно действует на объект и тянет его вниз. Так что, если объект раскачивается вертикально, полное натяжение сильнее всего в нижней точке дуги (для маятника это называется точкой равновесия), когда объект достигает максимальной скорости, и слабее всего в верхней точке дуги, когда объект замедляется.
    • Давайте предположим, что в нашем примере объект больше не ускоряется вверх, а раскачивается как маятник. Пусть наша веревка будет длиной 1,5 м, а наш груз движется со скоростью 2 м/с, при прохождении через нижнюю точку размаха. Если нам нужно рассчитать силу натяжения в нижней точке дуги, когда она наибольшая, то сначала надо выяснить равное ли давление силы тяжести испытывает груз в этой точке, как и при состоянии покоя — 98 Ньютонов. Чтобы найти дополнительную центробежную силу, нам необходимо решить следующее:
      • Fc = m × v2/r
      • Fc = 10 × 22/1.5
      • Fc =10 × 2,67 = 26,7 Ньютонов.
      • Таким образом, полное натяжение будет 98 + 26,7 = 124,7 Ньютона.
  4. Изображение с названием Calculate Tension in Physics Step 4

    4

    Учтите, что сила натяжения благодаря силе тяжести меняется по мере прохождения груза по дуге. Как было отмечено выше, направление и величина центробежной силы меняются по мере того, как качается объект. В любом случае, хотя сила тяжести и остается постоянной, результирующая сила натяжения в результате тяжести тоже меняется. Когда качающийся объект находится не в нижней точке дуги (точке равновесия), сила тяжести тянет его вниз, но сила натяжения тянет его вверх под углом. По этой причине сила натяжения должна противодействовать части силы тяжести, а не всей ее полноте.

    • Разделение силы гравитации на два вектора сможет помочь вам визуально изобразить это состояние. В любой точке дуги вертикально раскачивающегося объекта, веревка составляет угол «θ» с линией, проходящей через точку равновесия и центр вращения. Как только маятник начинает раскачиваться, сила гравитации (m × g) разбивается на 2 вектора — mgsin(θ), действуя по касательной к дуге в направлении точки равновесия и mgcos(θ), действуя параллельно силе натяжения, но в противоположном направлении. Натяжение может только противостоять mgcos(θ) — силе, направленной против нее — не всей силе тяготения (исключая точку равновесия, где все силы одинаковы).
    • Давайте предположим, что, когда маятник отклоняется на угол 15 градусов от вертикали, он движется со скоростью 1,5 м/с. Мы найдем силу натяжения следующими действиями:
      • Отношение силы натяжения к силе тяготения (Tg) = 98cos(15) = 98(0,96) = 94,08 Ньютона
      • Центробежная сила (Fc) = 10 × 1,52/1,5 = 10 × 1,5 = 15 Ньютонов
      • Полное натяжение = Tg + Fc = 94,08 + 15 = 109,08 Ньютонов.
  5. Изображение с названием Calculate Tension in Physics Step 5

    5

    Рассчитайте трение. Любой объект, который тянется веревкой и испытывает силу «торможения» от трения другого объекта (или жидкости), передает это воздействие натяжению в веревке. Сила трения между двумя объектами рассчитывается также, как и в любой другой ситуации — по следующему уравнению: Сила трения (обычно пишется как Fr) = (mu)N, где mu — это коэффициент силы трения между объектами и N — обычная сила взаимодействия между объектами, или та сила, с которой они давят друг на друга. Отметим, что трение покоя — это трение, которое возникает в результате попытки привести объект, находящийся в покое, в движение — отличается от трения движения — трения, возникающего в результате попытки заставить движущийся объект продолжать движение.

    • Давайте предположим, что наш груз в 10 кг больше не раскачивается, теперь его буксируют по горизонтальной плоскости с помощью веревки. Предположим, что коэффициент трения движения земли равен 0,5 и наш груз движется с постоянной скоростью, но нам нужно придать ему ускорение 1м/с2. Эта проблема представляет два важных изменения — первое, нам больше не нужно рассчитывать силу натяжения по отношению к силе тяжести, так как наша веревка не удерживает груз на весу. Второе, нам придется рассчитать натяжение, обусловленное трением, также как и вызванное ускорением массы груза. Нам нужно решить следующее:
      • Обычная сила (N) = 10 кг & × 9,8 (ускорение силы тяжести) = 98 N
      • Сила трения движения (Fr) = 0,5 × 98 N = 49 Ньютонов
      • Сила ускорения (Fa) = 10 kg × 1 м/с2 = 10 Ньютонов
      • Общее натяжение = Fr + Fa = 49 + 10 = 59 Ньютонов.

    Реклама

  1. Изображение с названием Calculate Tension in Physics Step 6

    1

    Поднимите вертикальные параллельные грузы с помощью блока. Блоки — это простые механизмы, состоящие из подвесного диска, что позволяет менять направление силы натяжения веревки. В простой конфигурации блока, веревка или кабель идет от подвешенного груза вверх к блоку, затем вниз к другому грузу, создавая тем самым два участка веревки или кабеля. В любом случае натяжение в каждом из участков будет одинаковым, даже если оба конца будут натягиваться силами разных величин. Для системы двух масс, подвешенных вертикально в блоке, сила натяжения равна 2g(m1)(m2)/(m2+m1), где «g» — ускорение силы тяжести, «m1» — масса первого объекта, «m2»– масса второго объекта.

    • Отметим следующее, физические задачи предполагают, что блоки идеальны — не имеют массы, трения, они не ломаются, не деформируются и не отделяются от веревки, которая их поддерживает.
    • Давайте предположим, что у нас есть два вертикально подвешенных на параллельных концах веревки груза. У одного груза масса 10 кг, а у второго — 5 кг. В этом случае, нам необходимо рассчитать следующее:
      • T = 2g(m1)(m2)/(m2+m1)
      • T = 2(9,8)(10)(5)/(5 + 10)
      • T = 19,6(50)/(15)
      • T = 980/15
      • T = 65,33 Ньютонов.
    • Отметим, что, так как один груз тяжелее, все остальные элементы равны, эта система начнет ускоряться, следовательно, груз 10 кг будет двигаться вниз, заставляя второй груз идти вверх.
  2. 2

    Подвесьте грузы, используя блоки с не параллельными вертикальными нитями. Блоки зачастую используются для того, чтобы направлять силу натяжения в направлении, отличном от направления вниз или вверх. Если, к примеру, груз подвешен вертикально к одному концу веревки, а другой конец держит груз в диагональной плоскости, то непараллельная система блоков принимает форму треугольника с углами в точках с первых грузом, вторым и самим блоком. В этом случае натяжение в веревке зависит как от силы тяжести, так и от составляющей силы натяжения, которая параллельна к диагональной части веревки.

    • Давайте предположим, что у нас есть система с грузом в 10 кг (m1), подвешенным вертикально, соединенный с грузом в 5 кг(m2), расположенным на наклонной плоскости в 60 градусов (считается, что этот уклон не дает трения). Чтобы найти натяжение в веревке, самым легким путем будет сначала составить уравнения для сил, ускоряющих грузы. Далее действуем так:
      • Подвешенный груз тяжелее, здесь нет трения, так что мы знаем, что он ускоряется вниз. Натяжение в веревке тянет вверх, так что он ускоряется по отношению к равнодействующей силе F = m1(g) — T, или 10(9,8) — T = 98 — T.
      • Мы знаем, что груз на наклонной плоскости ускоряется вверх. Так как она не имеет трения, мы знаем, что натяжение тянет груз вверх по плоскости, а вниз его тянет только свой собственный вес. Составляющая силы, тянущей вниз по наклонной, вычисляется как mgsin(θ), так что в нашем случае мы можем заключить, что он ускоряется по отношению к равнодействующей силе F = T — m2(g)sin(60) = T — 5(9,8)(0,87) = T — 42,14.
      • Если мы приравняем эти два уравнения, то получится 98 — T = T — 42,14. Находим Т и получаем 2T = 140,14, или T = 70,07 Ньютонов.
  3. Изображение с названием Calculate Tension in Physics Step 8

    3

    Используйте несколько нитей, чтобы подвесить объект. В заключение, давайте представим, что объект подвешен на «Y-образной» системе веревок — две веревки закреплены на потолке и встречаются в центральной точке, из которой идет третья веревка с грузом. Сила натяжения третьей веревки очевидна — простое натяжение в результате действия силы тяжести или m(g). Натяжения на двух остальных веревках различаются и должны составлять в сумме силу, равную силе тяжести вверх в вертикальном положении и равны нулю в обоих горизонтальных направлениях, если предположить, что система находится в состоянии покоя. Натяжение в веревке зависит от массы подвешенных грузов и от угла, на который отклоняется от потолка каждая из веревок.

    • Давайте предположим, что в нашей Y-образной системе нижний груз имеет массу 10 кг и подвешен на двух веревках, угол одной из которых составляет с потолком 30 градусов, а угол второй — 60 градусов. Если нам нужно найти натяжение в каждой из веревок, нам понадобится рассчитать горизонтальную и вертикальную составляющие натяжения. Чтобы найти T1 (натяжение в той веревке, наклон которой 30 градусов) и T2 (натяжение в той веревке, наклон которой 60 градусов), нужно решить:
      • Согласно законам тригонометрии, отношение между T = m(g) и T1 и T2 равно косинусу угла между каждой из веревок и потолком. Для T1, cos(30) = 0,87, как для T2, cos(60) = 0,5
      • Умножьте натяжение в нижней веревке (T=mg) на косинус каждого угла, чтобы найти T1 и T2.
      • T1 = 0,87 × m(g) = 0,87 × 10(9,8) = 85,26 Ньютонов.
      • T2 =0,5 × m(g) = 0,5 × 10(9,8) = 49 Ньютонов.

    Реклама

Об этой статье

Эту страницу просматривали 287 591 раз.

Была ли эта статья полезной?

В этой главе…

  • Приглядываемся к работе силы
  • Изучаем отрицательную работу
  • Оцениваем кинетическую энергию
  • Приобретаем потенциальную энергию
  • Постигаем консервативные и неконсервативные силы
  • Вычисляем механическую энергию и мощность

С работой в обыденном смысле мы сталкиваемся всякий раз, например, когда приходится решать задачи по физике. Нужно брать книги, калькулятор, бумагу с ручкой, а потом потеть и корпеть над задачей. После получения решения мы выполнили вполне определенную работу, но… совсем не в том смысле, в котором термин “работа” определяется в физике.

В физике работой называется произведение прилагаемой силы и перемещения, выполняемого этой силой. Помимо понятия “работа” в этой главе рассматриваются связанные с ней понятия потенциальной и кинетической энергии, консервативной и неконсервативной силы, а также механической энергии и мощности. Пора приступать к… работе!

Содержание

  • Работа: не совсем то, о чем вы подумали
  • Работаем в разных системах единиц измерения
  • Толкаем груз
  • Тянем груз под углом
  • Выполняем отрицательную работу
  • Получаем компенсацию в виде кинетической энергии
    • Запоминаем формулу кинетической энергии
    • Используем соотношение для кинетической энергии
    • Вычисляем кинетическую энергию объекта по результирующей силе
  • Сохраняем энергию: потенциальная энергия
    • Работа против силы тяжести
    • Преобразуем потенциальную энергию в кинетическую
  • Выбираем путь: консервативные и неконсервативные силы
  • Как ни крути, а энергия сохраняется
    • Определяем конечную скорость с помощью закона сохранения энергии
    • Определяем максимальную высоту подъема с помощью закона сохранения энергии
  • Мощность: ускоряем темп работы
    • Единицы измерения мощности
    • Вычисляем мощность другими способами

Работа: не совсем то, о чем вы подумали

Итак, работа( W )​ — это произведение прилагаемой силы ​( mathbf{F} )​ и перемещения ( mathbf{s} ), выполняемого этой силой. Точнее говоря речь идет о проекции прилагаемой силы на направление перемещения, т.е. ​( W=Fscostheta )​, где ​( theta )​ — угол между векторами силы ( mathbf{F} ) и перемещения ( mathbf{s} ). С точки зрения физика, работа равна произведению компоненты силы в направлении перемещения и величины перемещения.

Прежде чем переходить к подробному рассмотрению особенностей работы, познакомимся с единицами измерения работы в разных системах единиц измерения.

Работаем в разных системах единиц измерения

Работа является скалярной, а не векторной величиной, т.е. она имеет величину, но не имеет направления (подробнее скаляры и векторы рассматриваются в главе 4). Согласно формуле ( W=Fscostheta ), работа измеряется в единицах “Н·м” в системе СИ или в единицах “г·см22” — в системе СГС. Но с такими единицами не очень удобно работать, и физики для измерения работы используют специальную единицу измерения — джоуль (или сокращенно Дж) в системе СИ. Иначе говоря, в системе СИ 1 Дж = 1 Н · 1 м.

В системе СГС работа измеряется в единицах “г·см22”. Вместо нее для удобства физики также используют специальную единицу измерения — эрг (неплохое название для единицы работы, поскольку очень похоже на энергичное междометие, произнесенное во время подъема тяжелого груза). Иначе говоря, 1 эрг = 1 дин · 1 см. В системе фут-фунт-секунда работа измеряется в единицах “фунт-фут”. (Эти системы единиц подробно описываются в главе 2 .)

Толкаем груз

Не такая уж и легкая работа — держать тяжелый груз, например большие гантели, на вытянутых вверх руках. Однако с точки зрения физики, несмотря на приложенную силу, здесь нет никакого перемещения, а значит, нет и работы. Хотя с точки зрения биологии здесь выполняется огромная работа, но с точки зрения физики работы нет, если нет перемещения. Даже с точки зрения химии наше тело поставляет огромное количество энергии нашим мышцам для удержания груза. Но, несмотря на очевидную физическую усталость, работа с точки зрения физики не выполняется.

Для работы необходимо движение. Представьте, что вы нашли огромный слиток золота и толкаете его домой, как показано на рис. 8.1. Какую работу придется при этом выполнить? Во-первых, нужно определить силу, которую нужно приложить к слитку.

Пусть коэффициент трения скольжения, ​( mu_c )​ (подробнее об этом см. главу 6), между поверхностями слитка и дороги равен 0,25, а слиток имеет массу 1000 кг. Итак, какую силу нужно приложить к слитку, чтобы поддерживать его движение вопреки силе трения скольжения ​( F_{трение} )​? Начнем поиск ответа на этот вопрос со следующей формулы, известной нам из главы 6:

где ​( F_н )​ — это нормальная сила.

Предполагая, что поверхность дороги абсолютно плоская, получим, что нормальная сила ( F_н ) равна произведению массы слитка ​( m )​ на ускорение свободного падения ​( g )​ под действием силы гравитационного притяжения (силы тяжести) между слитком и Землей:

Подставляя численные значения, получим:

Итак, для преодоления силы кинетического трения нужно приложить силу 2450 Н. Допустим, что длина пути до вашего дома равна 3 км. Какую работу придется проделать, чтобы дотолкать этот слиток золота домой? Поскольку угол ​( theta )​ между направлением прилагаемой силы ​( mathbf{F} )​ и перемещением ( mathbf{s} ), выполняемым под действием этой силы, равен нулю, то формула работы ​( W=Fscostheta )​ упрощается, поскольку ​( costheta )​ = 1. Подставляя численные значения, получим:

Итак, потребуется выполнить работу, равную 7,35·106 Дж, чтобы дотолкать этот слиток золота домой. Насколько это много? Чтобы поднять груз массой 1 кг на высоту 1 м, требуется выполнить работу около 9,8 Дж. Теперь понятно: чтобы дотолкать слиток золота домой, потребуется выполнить приблизительно в 750 тыс. раз большую работу.

Работу измеряют также в калориях (или сокращенно кал), причем 1 кал = 4,186 Дж. Эту единицу измерения используют также для измерения энергии, и ее часто можно встретить на упаковках продуктов питания. Так вот, чтобы дотолкать слиток золота домой, вам потребуется потратить 1,755·106 калорий, или 1755 Ккал (т.е. килокалорий, где 1 килокалория = 1 Ккал). Забегая вперед, скажем, что в электротехнике для измерения работы и энергии используется единица “киловатт·час” (кВт·ч), которая равна 3,6·106 Дж. Итак, для выполнения этой работы потребуется около 2 кВт·ч. (Более подробно эти и другие единицы измерения описываются в конце этой главы и в главе 13.)

Тянем груз под углом

А может, попробовать не толкать, а тянуть слиток золота с помощью веревки, как показано на рис. 8.2?

Поскольку веревка направлена под углом ​( theta )​ к направлению перемещения, то нам для вычисления работы придется использовать формулу:

где ​( F_{натяжение} )​ — это сила натяжения веревки.

Допустим, что нить привязана к центру слитка. Поскольку вертикальная компонента силы натяжения веревки ​( F_{натяжение}sintheta )​ направлена вверх, то она частично компенсирует нормальную силу. В конечном итоге вертикальная компонента силы натяжения веревки ( F_{натяжение}sintheta ) уменьшает силу трения:

Для перемещения слитка в данном случае горизонтальная компонента силы натяжения ( F_{натяжение}costheta ) должна компенсировать силу трения:

Из двух последних соотношений получаем, что:

и необходимая сила натяжения веревки равна:

В предыдущем примере (где прилагаемая сила не имела наклона) прилагаемая сила компенсировала силу трения ​( F_{натяжение(прежнее)}=mu_cmg )​ и была равна 2450 Н.

Следовательно, теперь необходимая сила натяжения веревки равна:

(Обратите внимание на следующие интересные особенности использования веревки, которую тянут под углом к горизонтали. Во-первых, при наклоне 10° потребуется приложить меньшую силу, чем при толкании слитка без наклона. Во-вторых, минимальное значение силы натяжения веревки достигается при максимальном значении знаменателя ​( mu_csintheta+costheta )​, когда ​( mu_c=tg,theta )​, т.е. для ​( mu_c )​ = 0,25 при угле ​( theta )​ ≈ 14°, а сама минимальная сила натяжения веревки равна 2376 Н. — Примеч. ред.)

Выполняем отрицательную работу

Представьте себе, что вы купили огромный телевизор массой 100 кг, вам нужно поднять его с пола и занести его наверх по ступенькам, поднимая приблизительно на высоту около 0,5 м. Какую работу нужно выполнить, если предполагается, что ее придется выполнять для преодоления силы тяжести ​( F=mg )​, где ​( m )​ — это масса телевизора, a ​( g )​ — ускорение свободного падения?

В таком случае работа равна:

Допустим, что груз оказался слишком тяжелым (не удивительно, ведь телевизор весит 100 кг!) и его пришлось опустить снова на пол. Какую работу нужно выполнить, чтобы опустить телевизор? Верите или нет, но эта работа будет отрицательной! Действительно, теперь вектор силы направлен противоположно вектору перемещения, т.е. угол между этими векторами ​( theta )​ = 180°, a ​( cos )​180° = -1.

Поэтому в этом случае работа равна:

Общая работа ​( W=W_1+W_2=0 )​. Нулевая работа? Да, с точки зрения физики общая работа в этом случае равна нулю.

Если компонента вектора силы направлена в том же направлении, что и компонента вектора перемещения, то работа будет положительной. А если они направлены в противоположные стороны, то работа будет отрицательной.

Получаем компенсацию в виде кинетической энергии

Если сила, приложенная к объекту, больше силы сопротивления, например силы трения или силы тяжести, то результирующая сила приводит объект в движение. Соответствующая работа этой силы приводит к увеличению скорости объекта, т.е. увеличению его энергии движения или, иначе говоря — кинетической энергии. Здесь кинетической энергией называется способность объекта совершать некую работу за счет энергии его движения.

Представьте себе мячик для игры в гольф, который движется по окружности, как показано на рис. 8.3. Причем в самой нижней точке траектории скорость мячика максимальна, а в самой верхней точке — минимальна, например равна нулю. С точки зрения физики в самой нижней точке траектории мячик имеет бОльшую кинетическую энергию, чем в самой верхней точке, где она равна нулю. Куда пропадает и откуда снова берется кинетическая энергия при периодическом вращательном движении по этой траектории?

На самом деле энергия никуда не пропадает и ниоткуда не берется. Она просто переходит из одной формы в другую. В самой высокой точке энергия переходит из кинетической формы в потенциальную, а в самой нижней — наоборот, из потенциальной формы в кинетическую. Потенциальной энергией называется способность объекта совершить работу при изменении его координат под действием силы, т.е. в данном случае при перемещении вниз под действием силы тяжести. (Более подробно потенциальная энергия описывается далее в этой главе.)

Допустим, что в самой нижней точке траектории мячик имеет кинетическую энергию 20 Дж. В самой верхней точке кинетическая энергия равна 0 Дж. В таких случаях говорят, что 20 Дж кинетической энергии преобразуется в 20 Дж потенциальной энергии. А в самой нижней точке наоборот: 20 Дж потенциальной энергии преобразуется в 20 Дж кинетической энергии. Такое взаимное превращение энергии из одной формы в другую без потерь называется законом сохранения энергии. (Более подробно он описывается далее.)

А что происходит с кинетической энергией при наличии силы трения, как в предыдущем примере со слитком на горизонтальной плоскости? Если на движущийся слиток не действует никакая движущая сила, то его скорость постепенно уменьшается. Дело в том, что его кинетическая энергия рассеивается на нагрев соприкасающихся поверхностей объекта и плоскости.

Итак, после предварительного знакомства с превращениями энергии попробуем подсчитать ее величину.

Запоминаем формулу кинетической энергии

Работа по ускорению объекта тратится на увеличение его скорости или, как говорят физики, на увеличение кинетической энергии:

Кинетическую энергию ​( K )​ можно легко вычислить, зная массу ​( m )​ и скорость ​( v )​ объекта.

Как получить связь между кинетической энергией и работой? Как известно, связь между силой и ускорением имеет вид:

Работа силы при перемещении объекта равна:

Предположим, что сила прилагается в том же направлении, в котором происходит перемещение объекта (​( costheta )​ = 1), то есть:

Из главы 3 нам известно следующее соотношение между начальной ​( v_1 )​ и конечной ​( v_2 )​ скоростями объекта, перемещающегося с ускорением ​( a )​ на расстояние ​( s )​:

Иначе говоря, получаем:

Подставляя это соотношение для ускорения в формулу для работы, получим:

Используем соотношение для кинетической энергии

Попробуем определить кинетическую энергию пули с массой 10 г, которая вылетает из ствола пистолета со скоростью 600 м/с. Зная формулу кинетической энергии, подставим в нее численные значения (не забудьте преобразовать 10 грамм в 0,01 килограмма) и получим:

Маленькая пуля массой всего 10 г обладает очень большой энергией 1800 Дж.

Выражение для кинетической энергии можно применять для вычисления скорости, приобретенной объектом после выполнения некоторой работы по его ускорению. Предположим, что вы находитесь в космическом корабле на околоземной орбите и должны запустить искусственный спутник. Нужно открыть створки грузового отсека вашего космического корабля, выгрузить спутник массой 1000 кг и выполнить работу, прилагая силу 2000 Н на расстоянии 1 м. Какую скорость приобретет спутник в результате этой работы?

Как известно, работа определяется следующей формулой:

Поскольку сила прилагается в том же направлении, в котором происходит перемещение спутника (​( costheta )​ = 1), то:

Подставляя численные значения, получим:

Эта работа приводит к разгону спутника, т.е. работа преобразуется в кинетическую энергию спутника:

Отсюда легко можно определить искомую скорость спутника:

Такой будет скорость спутника относительно космического корабля.

Учтите, что работа может иметь и отрицательный знак, если, например, нужно затормозить движущийся спутник. Действительно, для этого придется приложить силу, направленную против перемещения. В этом случае приращение кинетической энергии спутника также будет иметь отрицательную величину.

В этом примере мы учли только одну силу, а в реальном мире на любой объект действует сразу несколько сил.

Вычисляем кинетическую энергию объекта по результирующей силе

Допустим, что вам нужно найти общую работу всех сил, приложенных к объекту, и определить полученную кинетическую энергию объекта. В примере из главы 6 со слитком на наклонной плоскости на слиток в направлении, перпендикулярном к наклонной плоскости, действуют нормальная сила и компонента силы тяжести. Обе эти силы компенсируют друг друга в этом направлении. Слиток не перемещается в направлении, перпендикулярном к наклонной плоскости. Это значит, что эти две силы не выполняют работу и не придают слитку кинетическую энергию.

На рис. 8.4 показан уже знакомый нам пример с холодильником на наклонной плоскости. Допустим, что холодильник нужно спустить по наклонной плоскости, удерживая его с помощью каната с силой натяжения ​( F_н )​. Попробуем с помощью формул работы результирующей силы и кинетической энергии определить скорость холодильника в самом конце наклонной плоскости.

Какова результирующая сила, которая действует на холодильник? Из главы 6 мы уже знаем, что компонента силы тяжести вдоль наклонной плоскости равна:

где ​( m )​ — это масса холодильника, a ​( g )​ — ускорение свободного падения. Нормальная сила (см. главу 6) равна:

А сила трения скольжения (см. главу 6) равна:

где ​( mu_c )​ — коэффициент трения скольжения. Результирующая сила ​( F_{рез} )​ направлена вдоль наклонной поверхности и равна:

Большая часть пути пройдена! Если угол наклона плоскости ​( theta )​ = 30°, а коэффициент трения скольжения ​( mu_c )​ = 0,15, то, подставляя численные значения, получим:

Итак, результирующая сила, которая действует на холодильник, равна 363 Н. Она действует на всем протяжении наклонной плоскости, т.е. 3 м, и совершаемая ею работу равна:

Если вся эта работа тратится на ускорение холодильника, то она преобразуется в кинетическую энергию, то есть:

Отсюда легко найти финальную скорость холодильника:

Итак, в конце наклонной плоскости холодильник будет иметь скорость 4,67 м/с.

Сохраняем энергию: потенциальная энергия

Объекты могут обладать не только энергией движения, т.е. кинетической энергией, но и энергией положения, т.е. потенциальной энергией. Эта энергия имеет такое название потому, что может быть преобразована (т.е. имеет потенциал преобразования) в кинетическую или другую энергию.

Представьте себе, что вы катаете с горки маленького ребенка. Для подъема на горку вам придется совершить определенную работу. Чем выше стартовая позиция малыша, тем большую скорость он приобретает в конце горки. Выше, еще выше, еще выше… Обычно на каком-то из этих этапов эксперименты решительно прекращается взволнованной мамой малыша.

Что же происходило на горке (до появления мамы)? Откуда возникла кинетическая скорость малыша? Она произошла от работы против силы тяжести, которую вы совершили по подъему малыша на горку. Действительно, малыш, сидя в стартовой позиции в верхней части горки, обладает нулевой скоростью и нулевой кинетической энергией. Выполнив работу против силы тяжести по подъему малыша наверх, вы тем самым увеличили его (и свою) потенциальную энергию. И только после спуска вниз под действием силы тяжести малыш приобретает кинетическую энергию в результате преобразования этой потенциальной энергии.

Работа против силы тяжести

Какую работу нужно выполнить против силы тяжести? Допустим, что вам нужно переместить тяжелое ядро с пола на верхнюю полку на высоту ​( h )​. Необходимая для этого работа ​( W )​ силы ​( mathbf{F} )​ при перемещении на расстояние ( mathbf{s} ) при угле между их векторами ​( theta )​ выражается формулой:

В данном случае сила тяжести ​( mathbf{F = mg} )​, а угол ( theta ) между векторами ( mathbf{F} ) и ( mathbf{s} ) можно выразить с помощью разности высот ​( h=scostheta )​ между полом и верхней полкой.

Таким образом, работа против силы тяжести по перемещению тяжелого ядра с пола на верхнюю полку на высоту ​( h )​ равна:

Если ядро упадет с верхней полки на пол, то какую скорость оно разовьет, т.е. какую кинетическую энергию приобретет ядро? Запомните: оно приобретет кинетическую энергию, равную разнице потенциальных энергий, т.е. ​( mgh )​. Это значит, что затраченная работа на подъем ядра преобразуется в кинетическую энергию в точке соприкосновения ядра с полом.

Вообще говоря, объект с массой ​( m )​ вблизи поверхности Земли, где ускорение свободного падения ​( g )​ постоянно, при перемещении вверх на высоту ​( h )​ приобретает потенциальную энергию ​( U )​, равную ​( mgh )​. Если вы перемещаете объект вертикально против силы тяжести с высоты ​( h_0 )​ на высоту ​( h_1 )​ то изменение его потенциальной энергии равно:

Работа по преодолению силы тяжести тратится на увеличение потенциальной энергии объекта.

Преобразуем потенциальную энергию в кинетическую

Объект может характеризоваться разными видами потенциальной энергии в зависимости от типа сил, которые действуют на него. Действительно, работа может выполняться не только против силы тяжести, но, например, и против силы упругости пружины. Однако в задачах по физике источником потенциальной энергии чаще всего является сила тяжести. В этом случае на поверхности Земли потенциальную энергию принято считать равной нулю, а этот уровень потенциальной энергии называют нулевым. Тогда говорят, что на высоте ​( h )​ объект с массой ​( m )​ обладает потенциальной энергией ​( mgh )​.

Допустим, что ядро с массой 40 кг падает с высоты 3 м на пол. Какую скорость оно приобретет при касании с полом? В данном случае его потенциальная энергия ​( U )​, равная

преобразуется в кинетическую ​( K )​, т.е.:

Поэтому, используя сведения из предыдущего раздела, можно вычислить финальную скорость в момент касания пола:

Подставляя численные значения, получим:

Падающее на пол ядро с массой 40 кг и скоростью 7,67 м/с — это впечатляющее зрелище, но не совсем приятное, если на пути ядра находится ваша нога. Учтите это и постарайтесь не допустить нежелательной встречи.

Выбираем путь: консервативные и неконсервативные силы

Если работа силы при перемещении объекта определяется только начальной и конечной координатами объекта и не зависит от траектории перемещения, то такая сила называется консервативной. Примером консервативной силы является сила гравитационного притяжения. А сила трения не является такой, поскольку совершаемая ею работа зависит от траектории перемещения. Сила трения является неконсервативной.

Допустим, что две группы друзей решили покорить небольшую гору высотой ​( h_1 )​ стартуя с места на высоте ​( h_0 )​. Одна группа пошла коротким и крутым путем, а другая — длинным, но более пологим и живописным. Обе группы встретились наверху и решили сравнить увеличение потенциальной энергии ​( Delta{U} )​. “Наша потенциальная энергия увеличилась на ​( mg(h_1-h_0) )​”, — сказали одни. “Наша потенциальная энергия тоже увеличилась на ( mg(h_1-h_0) )”, — ответили другие.

Действительно, согласно рассуждениям в прежнем разделе, изменение потенциальной энергии выражается следующей формулой:

Это уравнение фактически означает, что независимо от выбранного пути на вершину горы, на увеличение потенциальной энергии путников влияет только разница между высотой исходной точки ​( h_0 )​ и высотой вершины ( h_1 ). Именно потому, что работа против силы гравитационного притяжения не зависит от выбранного пути, эта сила является консервативной силой.

А вот еще один пример проявления консервативности силы тяжести. Предположим, что вы отдыхаете в отеле в одной из горных деревушек в Альпах и решили прогуляться на машине по долине, а затем по близлежащим перевалам и горным вершинам. За день вы множество раз совершали спуск и подъем, а к вечеру вернулись к исходному месту — к своему отелю. Чему в итоге равно изменение вашей потенциальной энергии? Иначе говоря, каков результат всей дневной работы против силы тяжести? Ответ прост: поскольку сила тяжести является консервативной и вы вернулись в исходную точку, то изменение потенциальной энергии равно 0. Результирующая работа против силы тяжести равна 0.

Конечно, на всем пути со стороны дороги на автомобиль действовала нормальная сила, но она всегда направлена перпендикулярно дороге и перемещению, а потому не совершает работы.

С консервативными силами удобно работать, поскольку они не допускают “утечки” энергии вдоль замкнутого пути перемещения, когда конечная точка перемещения совпадает с исходной (работа консервативных сил по замкнутому пути равна нулю). Однако все гораздо сложнее с такими силами, как сила трения скольжения или сила сопротивления воздуха. Если тянуть тяжелый груз по шершавой поверхности, то работа против сил трения будет очень сильно зависеть от выбранного пути и не будет равной нулю для замкнутого пути. В этом случае мы имеем дело с неконсервативной силой, работа против которой зависит от выбранного пути.

Рассмотрим подробнее силу трения, как типичный пример неконсервативной силы. При совершении работы против силы трения происходит “утечка” механической энергии объекта, которая объединяет кинетическую и потенциальную энергии. При совершении работы при перемещении объекта с трением часть работы рассеивается в виде тепла. Забегая вперед, следует сказать, что закон сохранения полной энергии при этом не нарушается, если учесть преобразование части работы в тепловую энергию.

Как ни крути, а энергия сохраняется

Механической энергией называется сумма потенциальной и кинетической энергии объекта. Благодаря закону сохранения этой полной механической энергии, процедура решения задач по физике существенно упрощается. Рассмотрим поподробнее этот закон.

Пусть тележка на аттракционе “Американские горки” в разных точках 1 и 2 на разных высотах ( h_1 ) и ( h_2 ) имеет разные скорости ( v_1 ) и ( v_2 ). Полная механическая энергия тележки ​( E_1 )​ в точке 1 равна:

а полная механическая энергия тележки ​( E_2 )​ в точке 2 равна:

Чему равна разница между величинами ( E_1 ) и ( E_2 ). При наличии неконсервативных сил эта разница должна быть равна работе ​( W_{неконс} )​ этих сил

С другой стороны, если неконсервативные силы отсутствуют, т.е. ( W_{неконс} ) = 0, то:

или:

или:

Именно эти равенства представляют собой закон сохранения механической энергии. Если работа неконсервативных сил равна нулю, то полная механическая энергия сохраняется. (Закон сохранения механической энергии гласит, что при наличии консервативных сил полная энергия остается неизменной, а могут происходить только превращения потенциальной энергии в кинетическую и обратно. — Примеч. ред.)

Иногда удобно сократить массу ​( m )​ в следующей формулировке закона сохранения энергии:

и использовать более простую формулировку:

Определяем конечную скорость с помощью закона сохранения энергии

Совсем непросто проводить физические эксперименты на аттракционе “Американские горки”. Но ведь кто-то должен их делать! Представьте себе, что вы находитесь в тележке, которая практически без трения скользит по рельсам вниз с высоты ​( h_1 )​ = 400 м. Предположим, что где-то на полпути вниз выходит из строя спидометр и уже нельзя определить скорость тележки по приборам. Как вычислить скорость ​( v_2 )​ в самой нижней точке спуска ( h_2 )? Нет проблем. Все, что нам нужно, это закон сохранения энергии. Согласно этому закону, полная механическая энергия объекта должна сохраняться, если равна нулю работа всех неконсервативных сил. Из предыдущего раздела нам уже знакома следующая сокращенная формулировка закона сохранения энергии:

Для простоты предположим, что начальная скорость ​( v_1 )​ = 0, а высота самой нижней точки спуска ​( h_2 )​ = 0. Тогда предыдущее уравнение существенно упрощается:

Откуда очень легко получить формулу для конечной скорости:

Подставляя численные значения, получим:

Итак, скорость тележки в самой нижней точке спуска на аттракционе “Американские горки” будет равна 89 м/с или около 320 км/ч. Довольно быстро: дух перехватит даже у самых отчаянных смельчаков!

Определяем максимальную высоту подъема с помощью закона сохранения энергии

Помимо определения конечной скорости, с помощью закона сохранения энергии можно также определить максимальную высоту подъема. Предположим, что Тарзан находится у кишащей крокодилами реки и хочет с помощью гибкой лианы перепрыгнуть с низкого берега на другой более высокий берег, высота которого на 9 м больше. Пусть максимальная скорость ​( v_1 )​, с которой он может разогнаться на низком берегу (т.е. в самой нижней точке траектории), равна 13 м/с. Достаточно ли этой скорости, чтобы запрыгнуть на противоположный высокий берег? Попробуем применить известную нам сокращенную формулировку закона сохранения энергии:

Предположим, что высота начального положения ​( h_1 )​ = 0. Чтобы определить максимально возможную высоту конечного положения на другом высоком берегу, следует предположить, что конечная скорость ​( v_2 )​ = 0. При таких условиях прежняя формула существенно упрощается:

Отсюда очень легко получить формулу для высоты конечного положения ​( h_2 )​ на другом берегу:

Подставляя численные значения, получим:

Итак, Тарзану не хватит 40 см, чтобы с максимальной скоростью разгона 13 м/с запрыгнуть на другой берег с помощью лианы.

Мощность: ускоряем темп работы

Иногда нужно знать не только объем работы, но и темп, с которым она выполняется. Скорость выполнения работы за единицу времени называется мощностью. Она выражается следующей простой формулой:

где ​( W )​ — это работа, выполненная за время ​( t )​.

В качестве примера рассмотрим два гоночных катера, способных развивать скорость до 200 км/ч. Какой из них обладает более мощным мотором? Конечно тот, который быстрее разгоняется до максимальной скорости, т.е. быстрее проделывает одинаковую работу по ускорению катера.

Если с течением времени скорость выполнения работы меняется, то в таких случаях часто используют понятие средней мощности, т.е. отношения всей выполненной работы ( W ) за все время ( t ):

Усредненные величины в физике принято обозначать знаком подчеркивания над соответствующей величиной. Прежде, чем приступать к применению понятии мощности, следует познакомиться с единицами измерения мощности.

Единицы измерения мощности

Поскольку мощность— это работа за единицу времени, то единицей измерения мощности является Дж/с, т.е. единица работы (джоуль), деленная на единицу времени (секунда), или ватт (Вт).

Обратите внимание, что поскольку работа и время являются скалярными величинами (подробнее о скалярах рассказывается в главе 4), то и мощность является скалярной величиной. Кроме ватта, для измерения мощности по историческим причинам часто используется единица “лошадиная сила” (л.с.), которая приблизительно равна 745,7 Вт. (Физики очень редко пользуются этой единицей из-за ее неоднозначного определения. Например, в метрической системе единиц измерения она равна 735,49875 Вт и получила название “метрической” лошадиной силы, а в английской системе единиц измерения — 745,6998 Вт и более известна под названием “механической” лошадиной силы. Кроме того, существуют “электрическая” (746 Вт) и даже “бойлерная” (9810 Вт) лошадиные силы. Однако, несмотря на эти различия, по историческим причинам единица “лошадиная сила” получила широкое распространение, особенно в автомобильной промышленности. — Примеч. ред.)

Предположим, что среднестатистическая лошадь массой ​( m_л )​ = 500 кг способна разогнать себя и санки массой ​( m_с )​ = 500 кг от скорости ​( v_1 )​ = 1 м/с до скорости ( v_2 ) = 2 м/с за время ( t ) = 2 с. Какой мощностью обладает эта лошадь? Берем формулу работы:

и, подставляя в нее эти значения, получим:

А теперь, зная работу, вычислим мощность лошади:

Совсем неплохо для среднестатистической лошади иметь мощность чуть больше 1 л.с.!

Вычисляем мощность другими способами

Поскольку работа равна произведению силы и времени, то формулу для мощности можно записать следующим образом:

Однако скорость ​( v = s/t )​, и потому:

Интересный результат, не так ли? Оказывается, что мощность равна произведению скорости и силы. Аналогичную формулу можно использовать и для вычисления средней мощности ​( overline{P} )​ , если прикладываемая сила ​( F )​ постоянна:

Глава 8. Выполняем работу

3.3 (66.43%) 28 votes


Download Article


Download Article

Gravity is one of the fundamental forces of physics. The most important aspect of gravity is that it is universal: all objects have a gravitational force that attracts other objects to them.[1]
The force of gravity acting on any object is dependent upon the masses of both objects and the distance between them.[2]

  1. Image titled Calculate Force of Gravity Step 1

    1

    Define the equation for the force of gravity that attracts an object, Fgrav = (Gm1m2)/d2.[3]
    In order to properly calculate the gravitational force on an object, this equation takes into account the masses of both objects and how far apart the objects are from each other. The variables are defined below.

    • Fgrav is the force due to gravity
    • G is the universal gravitation constant 6.673 x 10-11 Nm2/kg2[4]
    • m1 is the mass of the first object
    • m2 is the mass of the second object
    • d is the distance between the centers of two objects
    • Sometimes you will see the letter r instead of the letter d. Both symbols represent the distance between the two objects.
  2. Image titled Calculate Force of Gravity Step 2

    2

    Use the proper metric units. For this particular equation, you must use metric units. The masses of objects need to be in kilograms (kg) and the distance needs to be in meters (m). You must convert to these units before continuing with the calculation.

    Advertisement

  3. Image titled Calculate Force of Gravity Step 3

    3

    Determine the mass of the object in question. For smaller objects, you can weigh them on a scale or balance to determine their weight in grams. For larger objects, you will have to look-up the approximate mass in a table or online. In physics problems, the mass of the object will generally be provided to you.[5]

  4. Image titled Calculate Force of Gravity Step 4

    4

    Measure the distance between the two objects. If you are trying to calculate the force of gravity between an object and the earth, you need to determine how far away the object is from the center of the earth.[6]

    • The distance from the surface of the earth to the center is approximately 6.38 x 106 m.[7]
    • You can find tables and other resources online that will provide you with approximate distances of the center of the earth to objects at various elevations on the surface.[8]
  5. Image titled Calculate Force of Gravity Step 5

    5

    Solve the equation. Once you have defined the variables of your equation, you can plug them in and solve. Be sure that all of your units are in metric and on the right scale. Mass should be in kilograms and distance in meters. Solve the equation using the proper order of operations.[9]

    • For example: Determine the force of gravity on a 68 kg person on the surface of the earth. The mass of the earth is 5.98 x 1024 kg.[10]
    • Make sure all your variables have the proper units. m1 = 5.98 x 1024 kg, m2 = 68 kg, G = 6.673 x 10-11 Nm2/kg2, and d = 6.38 x 106 m
    • Write your equation: Fgrav = (Gm1m2)/d2 = [(6.67 x 10-11) x 68 x (5.98 x 1024)]/(6.38 x 106)2
    • Multiply the masses of the two objects together. 68 x (5.98 x 1024) = 4.06 x 1026
    • Multiply the product of m1 and m2 by the gravitational constant G. (4.06 x 1026) x (6.67 x 10-11) = 2.708 x 1016
    • Square the distance between the two objects. (6.38 x 106)2 = 4.07 x 1013
    • Divide the product of G x m1 x m2 by the distance squared to find the force of gravity in Newtons (N). 2.708 x 1016/4.07 x 1013 = 665 N
    • The force of gravity is 665 N.
  6. Advertisement

  1. Image titled Calculate Force of Gravity Step 6

    1

    Understand Newton’s Second Law of Motion, F = ma. Newton’s second law of motion states that any object will accelerate when acted upon by a net or unbalanced force.[11]
    In other words, if a force is acting upon an object that is greater than the forces acting in the opposite direction, the object will accelerate in the direction of the larger force.

    • This law can be summed up with the equation F = ma, where F is the force, m is the mass of the object, and a is acceleration.
    • Using this law, we can calculate the force of gravity of any object on the surface of the earth, using the known acceleration due to gravity.
  2. Image titled Calculate Force of Gravity Step 7

    2

    Know the acceleration due to gravity on earth. On earth, the force of gravity causes objects to accelerate at a rate of 9.8 m/s2. On the earth’s surface, we can use the simplified equation Fgrav = mg to calculate the force of gravity.

    • If you want a more exact approximation of force, you can still use the above equation, Fgrav = (GMearthm)/d2 to determine force of gravity.
  3. Image titled Calculate Force of Gravity Step 8

    3

    Use the proper metric units. For this particular equation, you must use metric units. The mass of the object needs to be in kilograms (kg) and the acceleration needs to be in meters per second squared (m/s2). You must convert to these units before continuing with the calculation.

  4. Image titled Calculate Force of Gravity Step 9

    4

    Determine the mass of the object in question. For smaller objects, you can weigh them on a scale or balance to determine its weight in kilograms (kg). For larger objects, you will have to look-up the approximate mass in a table or online. In physics problems, the mass of the object will generally be provided to you.[12]

  5. Image titled Calculate Force of Gravity Step 10

    5

    Solve the equation. Once you have defined the variables of your equation, you can plug them in and solve. Be sure that all of your units are in metric and on the right scale. Mass should be in kilograms and distance in meters. Solve the equation using the proper order of operations.[13]

    • Let’s use the same equation from above and see how close the approximation is. Determine the force of gravity on a 68 kg person on the surface of the earth.
    • Make sure all your variables have the proper units: m = 68 kg, g = 9.8 m/s2.
    • Write your equation. Fgrav = mg = 68*9.8 = 666 N.
    • With F = mg the force of gravity is 666 N, while using the more exact equation yields a force of 665 N. As you can see, these values are almost identical.
  6. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    How do I find the mass of the moon?

    Community Answer

    Check out same steps as mentioned below. But remember gravity on moon is 1/6th of gravity on earth.

  • Question

    A mass of 25 kg weighs 123 Newtons on another planet. What is the gravity on the planet?

    Community Answer

    The «gravity» on the surface of a planet is it’s acceleration (the rate of increase in speed as an object falls). Fg (the force of gravity) is m x g (acceleration of gravity), in m/(s squared), so g is Fg / m = 123 N / 25 kg ~= 4.92 m/(s squared).

  • Question

    How do I find the value of acceleration due to a gravity at a height of 2R from the surface of the earth?

    Community Answer

    If you want to know what the gravity would be when you are 3 earth-radii away from the center of earth, then the gravity would be 1/9th normal gravity. You’re multiplying by 3 on the bottom, so 1/3, but then it’s squared. Acceleration would then be 1.09 meters per second squared.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • These two formulas should give the same result, but the shorter formula is simpler to use when discussing objects on a planet’s surface.

  • You may round off 9.8m/s2 to 10m/s2, to make calculations easier.

  • Use the first formula if you don’t know the acceleration due to gravity on a planet or if you’re determining the force of gravity between two very large objects such as a moon and a planet.

Advertisement

References

About This Article

Article SummaryX

To calculate the force of gravity of an object, use the formula: force of gravity = mg, where m is the mass of the object and g is the acceleration of the object due to gravity. Since g is always 9.8 m/s^2, just multiply the object’s mass by 9.8 and you’ll get its force of gravity! If you want to learn how to calculate the force of gravity between 2 objects, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 622,960 times.

Reader Success Stories

  • Ezekiel Ishaya

    Ezekiel Ishaya

    Mar 1, 2019

    «It was great! It clears the doubt, and all those examples were very helpful.»

Did this article help you?

Понравилась статья? Поделить с друзьями:
  • Как исправить залипание клавиш на ноутбуке леново
  • Как найти одно неизвестное в уравнении
  • Как найти скоростное давление
  • Как найти волка оборотень
  • Как найти пернатого песенника геншин