Как найти силу пропорционально

Содержание

  1. Законы Ньютона
  2. Что такое сила
  3. Смысл законов Ньютона
  4. Первый закон Ньютона
  5. Второй закон Ньютона
  6. Формула второго закона Ньютона с пояснениями
  7. Третий закон Ньютона
  8. Прямая и обратная пропорциональность
  9. Основные определения
  10. Прямо пропорциональные величины
  11. Обратно пропорциональные величины
  12. Потренируемся
  13. Законы Ньютона для «чайников»: объяснение 1, 2, 3 закона, пример с формулами
  14. Первый закон Ньютона
  15. Второй закон Ньютона
  16. Третий закон Ньютона
  17. Пример задачи на законы Ньютона
  18. Исаак Ньютон: мифы и факты из жизни

Законы Ньютона

Ньютон первым обратил внимание на силу, как причину, по которой тела приходят в движение и меняют свою скорость.

Раздел механики, изучающий силы, называется динамикой. По-гречески «динамис», значит «сила».

Что такое сила

Тела действуют друг на друга с помощью сил.

Сила – это мера взаимодействия тел. Измеряя силу, мы измеряем величину взаимного действия тел. В обыденной жизни мы говорим: «как сильно» одно тело действует на другое тело.

Смысл законов Ньютона

Ньютон, в своих законах динамики, хотел сказать следующее:

  • В I законе: Если сила не действует, скорость не меняется. Импульс тела тоже не меняется.
  • Во II законе: Если сила действует, скорость меняется. Импульс тела, также, меняется, появляется ускорение.
  • В III законе: Взаимодействуют два тела — возникают две силы. Они по модулю равны, а по направлению противоположны.

Примечание:

Выражение «векторы равны по модулю», понимаем так: «длины векторов одинаковые».

Перед изучением законов Ньютона рекомендую вспомнить, что такое инерциальные системы отсчета (откроется в новой вкладке).

Первый закон Ньютона

Словесная формулировка первого закона Ньютона:

В инерциальной системе отсчета тело свою скорость не меняет, если на него не действуют другие тела (или действие других тел скомпенсировано).

Формула:

( F = 0 ) – сила на тело не действует (Может быть и так: на тело действуют несколько сил, но их действие компенсируется);

( a = 0 ) – ускорение отсутствует;

( v = const ) – скорость тела не изменяется (остается одной и той же);

( p = const ) – импульс тела не изменяется (остается одним и тем же);

Важно! По первому закону Ньютона, «двигаться с одной и той же скоростью по прямой» и «покоиться» — это равнозначные виды движения.

Значит, если на тело не действуют другие тела (силы), то

  • тело будет двигаться с одной и той же скоростью по прямой, если оно так двигалось до этого,
  • или будет продолжать покоиться, если покоилось в прошлом.

Второй закон Ньютона

Сформулируем словами второй закон Ньютона:

Ускорение, приобретаемое телом,
прямо пропорционально
приложенной силе
и обратно пропорционально
массе этого тела.

Формула второго закона Ньютона с пояснениями

( a left( frac<text<м>>> right) ) – ускорение тела

( m left( text <кг>right) ) – масса тела

( F left( H right) ) – сила, которую приложили к телу

Примечание: Ускорение отвечает на вопрос: «Как быстро меняется скорость тела?». Значит, если изменяется хотя бы одна из характеристик вектора скорости, ускорение есть. А если скорость не изменяется, ускорения нет ( vec < a >= 0 )

Ускорение прямо пропорционально силе:

Чем больше сила, тем больше ускорение тела, тем быстрее тело меняет скорость.

Ускорение обратно пропорционально массе:

Чем больше месса тела, тем труднее изменить его скорость.

Формулу второго закона часто записывают в векторном виде:

Мы можем заменить местами правую и левую части, в таком случае получим:

Расшифруем эту запись: Возьмем вектор «F», умножим его на скаляр (1/m) и получим новый вектор «a».

Дробь ( displaystyle frac<1> ) – это скалярная величина.

Примечания:

  1. Вместо слов «направлены в одну и ту же сторону» физики пользуются термином «сонаправлены». Лично мне удобнее пользоваться первой формулировкой.
  2. Часто применяют еще один вид записи, его называют так: «Второй закон Ньютона в импульсной форме».

Третий закон Ньютона

Пусть одно тело действует на второе тело. Тогда это второе тело будет в ответ действовать на первое.

Словами третий закона Ньютона можно сформулировать так:

Силы взаимного действия по модулю равны, а направлены противоположно. Они лежат на прямой, которая соединяет центры тел, действующих друг на друга.

( F_ <12>left( H right) ) – сила, с которой первое тело действует на второе тело.

( F_ <21>left( H right) ) – сила, с которой второе тело отвечает первому.

Пояснить формулу можно с помощью такого рисунка:

Обратите внимание, что длины красного и черного векторов равны.

Не важно, перед каким из векторов находится знак «минус». Этот знак показывает, что векторы направлены в противоположные стороны. Поэтому, формулу третьего закона Ньютона можно записать и так:

Примечания:

  1. Если перед каким-либо вектором записан знак «минус», то этот вектор развернут в противоположную от выбранной нами сторону.
  2. Между векторами находится знак равенства. Это значит, что длины векторов одинаковые (векторы по модулю равны).

Советую прочитать еще две статьи. Так как для решения задач кроме знания трех законов Ньютона нужно дополнительно уметь:

  • находить проекции вектора на оси и
  • составлять векторные силовые уравнения (ссылки открываются в новых вкладках).

Источник

Прямая и обратная пропорциональность

О чем эта статья:

Основные определения

Математическая зависимость — это соответствие между элементами двух множеств, при котором каждому элементу одного множества ставится в соответствие элемент из другого множества.

  • Прямая зависимость. Чем больше одна величина, тем больше вторая. Чем меньше одна величина, тем меньше вторая величина.
  • Обратная зависимость. Чем больше одна величина, тем меньше вторая. Чем меньше одна величина, тем больше вторая.

Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин. Пропорциональными называются две взаимно-зависимые величины, если отношение их значений остается неизменным.

Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз. Проще говоря — это зависимость одного числа от другого.

Есть две разновидности пропорциональностей:

  • Прямая пропорциональность. Это зависимость, при которой увеличение одного числа ведет к увеличению другого во столько же раз. А уменьшение одного числа ведет к уменьшению другого во столько же раз.
  • Обратная пропорциональность. Это зависимость, при которой уменьшение одного числа ведет к увеличению другого во столько же раз. А увеличение числа наоборот ведет к уменьшению другого во столько же раз.

Коэффициент пропорциональности — это неизменное отношение пропорциональных величин. Он показывает, сколько единиц одной величины приходится на единицу другой. Коэффициент пропорциональности обозначается латинской буквой k.

Прямо пропорциональные величины

Две величины называются прямо пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз — другая увеличивается (или уменьшается) во столько же раз.

Прямая пропорциональность в виде схемы: «больше — больше» или «меньше — меньше».

a и d называются крайними членами, b и c — средними.

Свойство прямо пропорциональной зависимости:

Если две величины прямо пропорциональны, то отношения соответствующих значений этих величин равны.

Примеры прямо пропорциональной зависимости:

  • при постоянной скорости пройденный маршрут прямо-пропорционально зависит от времени;
  • периметр квадрата и его сторона — прямо-пропорциональные величины;
  • стоимость конфет, купленных по одной цене, прямо-пропорционально зависит от их количества.

Если говорить метафорами, то прямую пропорциональную зависимость можно отличить от обратной по пословице: «Чем дальше в лес, тем больше дров». Что значит, чем дольше ты идешь по лесу, тем больше дров можно собрать.

Формула прямой пропорциональности

y = kx,

где y и x — переменные величины, k — постоянная величина, которую называют коэффициентом прямой пропорциональности.

Коэффициент прямой пропорциональности — это отношение любых соответствующих значений пропорциональных переменных y и x, равное одному и тому же числу.

Формула коэффициента прямой пропорциональности:

Пример 1.

В одно и то же путешествие поехали два автомобиля. Один двигался со скоростью 70 км/ч и за 2 часа проделал тот же путь, что другой за 7 часов. Найти скорость второго автомобиля.

  1. Вспомним формулу для определения пути через скорость и время: S = V * t.
  2. Так как оба автомобиля проделали одинаковый путь, можно составить пропорцию из двух выражений: 70 * 2 = V * 7
  3. Найдем скорость второго автомобиля: V = 70 * 2/7 = 20

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Пример 2.

Блогер за 8 дней может написать 14 постов. Сколько помощников ему понадобится, чтобы написать 420 постов за 12 дней?

Количество человек (блогер и помощники) увеличивается с увеличением объема работы, если ее нужно сделать за то же количество времени.

Если разделить 420 на 14, узнаем, что объем увеличивается в 30 раз.

Но так как по условию задачи на работу дается больше времени, то количество помощников увеличивается не в 30 раз. Таким образом:

  • х = 1 (блогер) * 30 (раз) : 12/8 (дней).
  • х = 1 * 30 : 12/8
  • х = 20

Ответ: 20 человек напишут 420 постов за 12 дней.

Обратно пропорциональные величины

Две величины называют обратно пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз — другая уменьшается (или увеличивается) во столько же раз.

Объясним, что значит обратно пропорционально в виде схемы: «больше — меньше» или «меньше — больше».

Свойство обратной пропорциональности величин:

Если две величины находятся в обратно пропорциональной зависимости, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

Примеры обратно пропорциональной зависимости:

  • время на маршрут и скорость, с которой путь был пройден — обратно пропорциональные величины;
  • при одинаковой продуктивности количество школьников, решающих конкретную задачу, обратно пропорционально времени выполнения этой задачи;
  • количество конфет, купленных на определенную сумму денег, обратно пропорционально их цене.

Формула обратной пропорциональности

где y и x — это переменные величины,

k — постоянная величина, которую называют коэффициентом обратной пропорциональности.

Коэффициент обратной пропорциональности — это произведение любых соответствующих значений обратно пропорциональных переменных y и x, равное одному и тому же числу.

Формула коэффициента обратной пропорциональности:

Потренируемся

Пример 1. 24 человека за 5 дней раскрутили канальчик в ютубе. За сколько дней выполнят ту же работу 30 человек, если будут работать с той же эффективностью?

  1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.
  2. Чем больше людей, тем меньше времени нужно для выполнения определенной работы (раскрутки канала). Значит, это обратно пропорциональная зависимость.
  3. Поэтому направим вторую стрелку в противоположную сторону. Обратная пропорция выглядит так:

  1. Пусть за х дней могут раскрутить канал 30 человек. Составляем пропорцию: 30 : 24 = 5 : х
  2. Чтобы найти неизвестный член пропорции, нужно произведение средних членов разделить на известный крайний член: х = 24 * 5 : 30; х = 4
  3. Значит, 30 человек раскрутят канал за 4 дня.

Пример 2. Автомобиль проезжает от одного города до другого за 13 часов со скоростью 75 км/ч. Сколько времени ему понадобится, если он будет ехать со скоростью 52 км/ч?

Скорость и время связаны обратно пропорциональной зависимостью: чем больше скорость, тем меньше времени понадобится.

    Составим пропорцию: v1/v2 = t2/t1.

Соотношения равны, но перевернуты относительно друг друга.

  • Подставим известные значения: 75/52 = t2/13
  • Источник

    Законы Ньютона для «чайников»: объяснение 1, 2, 3 закона, пример с формулами

    • 22 февраля 2021 г.
    • 13 минут
    • 783 302

    Мы уже говорили об основах классической механики. Настала пора поговорить о них подробнее и затронуть в обсуждении чуть больше, чем просто основу. В этой статье мы подробно разберем основные законы классической механики. Как вы уже догадались, речь пойдет о законах Ньютона.

    Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

    Основные законы классической механики Исаак Ньютон (1642-1727) собрал и опубликовал в 1687 году. Три знаменитых закона были включены в труд, который назывался «Математические начала натуральной философии».

    Был долго этот мир глубокой тьмой окутан
    Да будет свет, и тут явился Ньютон.

    (Эпиграмма 18-го века)

    Но сатана недолго ждал реванша —
    Пришел Эйнштейн, и стало все как раньше.

    (Эпиграмма 20-го века)

    Что стало, когда пришел Эйнштейн, читайте в отдельном материале про релятивистскую динамику. А мы пока приведем формулировки и примеры решения задач на каждый закон Ньютона.

    Первый закон Ньютона

    Первый закон Ньютона гласит:

    Существуют такие системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно, если на них не действуют никакие силы или действие других сил скомпенсировано.

    Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

    Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

    До Ньютона закон инерции был сформулирован в менее четкой форме Галилео Галилеем. Инерцию ученый называл «неистребимо запечатленным движением». Закон инерции Галилея гласит: при отсутствии внешних сил тело либо покоится, либо движется равномерно. Огромная заслуга Ньютона в том, что он сумел объединить принцип относительности Галилея, собственные труды и работы других ученых в своих «Математических началах натуральной философии».

    Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает. На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

    Например, все на Земле находится в постоянном поле силы тяжести. Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса.

    Второй закон Ньютона

    Помните пример про тележку? В этот момент мы приложили к ней силу! Интуитивно понятно, что тележка покатится и вскоре остановится. Это значит, ее скорость изменится.

    В реальном мире скорость тела чаще всего изменяется, а не остается постоянной. Другими словами, тело движется с ускорением. Если скорость нарастает или убывает равномерно, то говорят, что движение равноускоренное.

    Если рояль падает с крыши дома вниз, то он движется равноускоренно под действием постоянного ускорения свободного падения g. Причем любой дугой предмет, выброшенный из окна на нашей планете, будет двигаться с тем же ускорением свободного падения.

    Второй закон Ньютона устанавливает связь между массой, ускорением и силой, действующей на тело. Приведем формулировку второго закона Ньютона:

    Ускорение тела (материальной точки) в инерциальной системе отсчета прямо пропорционально приложенной к нему силе и обратно пропорционально массе.

    Если на тело действует сразу несколько сил, то в данную формулу подставляется равнодействующая всех сил, то есть их векторная сумма.

    В такой формулировке второй закон Ньютона применим только для движения со скоростью, много меньшей, чем скорость света .

    Существует более универсальная формулировка данного закона, так называемый дифференциальный вид.

    В любой бесконечно малый промежуток времени dt сила, действующая на тело, равна производной импульса тела по времени.

    Третий закон Ньютона

    В чем состоит третий закон Ньютона? Этот закон описывает взаимодействие тел.

    3 закон Ньютона говорит нам о том, что на любое действие найдется противодействие. Причем, в прямом смысле:

    Два тела воздействуют друг на друга с силами, противоположными по направлению, но равными по модулю.

    Формула, выражающая третий закон Ньютона:

    Другими словами, третий закон Ньютона — это закон действия и противодействия.

    Пример задачи на законы Ньютона

    Вот типичная задачка на применение законов Ньютона. В ее решении используются первый и второй законы Ньютона.

    Десантник раскрыл парашют и опускается вниз с постоянной скоростью. Какова сила сопротивления воздуха? Масса десантника – 100 килограмм.

    Решение:

    Движение парашютиста – равномерное и прямолинейное, поэтому, по первому закону Ньютона, действие сил на него скомпенсировано.

    На десантника действуют сила тяжести и сила сопротивления воздуха. Силы направлены в противоположные стороны.

    По второму закону Ньютона, сила тяжести равна ускорению свободного падения, умноженному на массу десантника.

    Ответ: Сила сопротивления воздуха равна силе тяжести по модулю и противоположна направлена.

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

    А вот еще одна физическая задачка на понимание действия третьего закона Ньютона.

    Комар ударяется о лобовое стекло автомобиля. Сравните силы, действующие на автомобиль и комара.

    Решение:

    По третьему закону Ньютона, силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению. Сила, с которой комар действует на автомобиль, равна силе, с которой автомобиль действует на комара.

    Другое дело, что действие этих сил на тела сильно отличаются вследствие различия масс и ускорений.

    Исаак Ньютон: мифы и факты из жизни

    На момент публикации своего основного труда Ньютону было 45 лет. За свою долгую жизнь ученый внес огромный вклад в науку, заложив фундамент современной физики и определив ее развитие на годы вперед.

    Он занимался не только механикой, но и оптикой, химией и другими науками, неплохо рисовал и писал стихи. Неудивительно, что личность Ньютона окружена множеством легенд.

    Ниже приведены некоторые факты и мифы из жизни И. Ньютона. Сразу уточним, что миф – это не достоверная информация. Однако мы допускаем, что мифы и легенды не появляются сами по себе и что-то из перечисленного вполне может оказаться правдой.

    • Факт. Исаак Ньютон был очень скромным и застенчивым человеком. Он увековечил себя благодаря своим открытиям, однако сам никогда не стремился к славе и даже пытался ее избежать.
    • Миф. Существует легенда, согласно которой Ньютона осенило, когда на наго в саду упало яблоко. Это было время чумной эпидемии (1665-1667), и ученый был вынужден покинуть Кембридж, где постоянно трудился. Точно неизвестно, действительно ли падение яблока было таким роковым для науки событием, так как первые упоминания об этом появляются только в биографиях ученого уже после его смерти, а данные разных биографов расходятся.
    • Факт. Ньютон учился, а потом много работал в Кембридже. По долгу службы ему нужно было несколько часов в неделю вести занятия у студентов. Несмотря на признанные заслуги ученого, занятия Ньютона посещались плохо. Бывало, что на его лекции вообще никто не приходил. Скорее всего, это связано с тем, что ученый был полностью поглощен своими собственными исследованиями.
    • Миф. В 1689 году Ньютон был избран членом Кембриджского парламента. Согласно легенде, более чем за год заседания в парламенте вечно поглощенный своими мыслями ученый взял слово для выступления всего один раз. Он попросил закрыть окно, так как был сквозняк.
    • Факт. Неизвестно, как бы сложилась судьба ученого и всей современной науки, если бы он послушался матери и начал заниматься хозяйством на семейной ферме. Только благодаря уговорам учителей и своего дяди юный Исаак отправился учиться дальше вместо того, чтобы сажать свеклу, разбрасывать по полям навоз и по вечерам выпивать в местных пабах.

    Дорогие друзья, помните — любую задачу можно решить! Если у вас возникли проблемы с решением задачи по физике, посмотрите на основные физические формулы. Возможно, ответ перед глазами, и его нужно просто рассмотреть. Ну а если времени на самостоятельные занятия совершенно нет, специализированный студенческий сервис всегда к вашим услугам!

    В самом конце предлагаем посмотреть видеоурок на тему «Законы Ньютона».

    Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

    Источник

    Adblock
    detector

    Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.

    Основные понятия закона Ома

    Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

    Сила тока I

    Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

    Сила тока что такое

    Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

    Напряжение U, или разность потенциалов

    Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

    Напряжение, что такое

    Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

    Сопротивление R

    Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.

    Памятник Георгу Симону Ому

    Памятник Георгу Симону Ому

    Формулировка и объяснение закона Ома

    Закон немецкого учителя Георга Ома очень прост. Он гласит:

    Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

    Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

    закон Ома для новичков

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

    Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

    Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

    Пусть  у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

    Закон Ома для Чайников

    Закон запишется в следующем виде:

    закон Ома для чайников

    Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

    Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.

    Как понять закон Ома?

    Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

    Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе.  Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

    Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

    Сила тока прямо пропорциональна напряжению.

    Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

    Сила тока обратно пропорциональна сопротивлению.

    Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

    В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

    Ток в проводнике

    Ток в проводнике

    В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

    Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

    Ньютон первым обратил внимание на силу, как причину, по которой тела приходят в движение и меняют свою скорость.

    Раздел механики, изучающий силы, называется динамикой. По-гречески «динамис», значит «сила».

    Что такое сила

    Тела действуют друг на друга с помощью сил.

    Сила – это мера взаимодействия тел. Измеряя силу, мы измеряем величину взаимного действия тел. В обыденной жизни мы говорим: «как сильно» одно тело действует на другое тело.

    Смысл законов Ньютона

    Ньютон, в своих законах динамики, хотел сказать следующее:

    • В I законе: Если сила не действует, скорость не меняется. Импульс тела тоже не меняется.
    • Во II законе: Если сила действует, скорость меняется. Импульс тела, также, меняется, появляется ускорение.
    • В III законе: Взаимодействуют два тела — возникают две силы. Они по модулю равны, а по направлению противоположны.

    Примечание:

    Выражение «векторы равны по модулю», понимаем так: «длины векторов одинаковые».

    Перед изучением законов Ньютона рекомендую вспомнить, что такое инерциальные системы отсчета (откроется в новой вкладке).

    Первый закон Ньютона

    Словесная формулировка первого закона Ньютона:

    В инерциальной системе отсчета тело свою скорость не меняет, если на него не действуют другие тела (или действие других тел скомпенсировано).

    Формула:

    [ large boxed {   F = 0 \ a = 0 \ v = const \ p = const   } ]

    ( F = 0 ) – сила на тело не действует (Может быть и так: на тело действуют несколько сил, но их действие компенсируется);

    ( a = 0 ) – ускорение отсутствует;

    ( v = const ) – скорость тела не изменяется (остается одной и той же);

    ( p = const ) – импульс тела не изменяется (остается одним и тем же);

    Важно! По первому закону Ньютона, «двигаться с одной и той же скоростью по прямой» и «покоиться» — это равнозначные виды движения.

    Значит, если на тело не действуют другие тела (силы), то

    • тело будет двигаться с одной и той же скоростью по прямой, если оно так двигалось до этого,
    • или будет продолжать покоиться, если покоилось в прошлом.

    Второй закон Ньютона

    Сформулируем словами второй закон Ньютона:

    Ускорение, приобретаемое телом,
    прямо пропорционально
    приложенной силе
    и обратно пропорционально
    массе этого тела.

    Формула второго закона Ньютона с пояснениями

    [ large boxed { a = frac{F}{m}  } ]

    ( a left( frac{text{м}}{c^{2}} right) ) – ускорение тела

    ( m left( text{кг} right) ) – масса тела

    ( F left( H right) ) – сила, которую приложили к телу

    Примечание: Ускорение отвечает на вопрос: «Как быстро меняется скорость тела?». Значит, если изменяется хотя бы одна из характеристик вектора скорости, ускорение есть. А если скорость не изменяется, ускорения нет ( vec{ a } = 0 )

    Ускорение прямо пропорционально силе:

    [ a sim F ]

    Чем больше сила, тем больше ускорение тела, тем быстрее тело меняет скорость.

    Ускорение обратно пропорционально массе:

    [ a sim frac{1}{m} ]

    Чем больше месса тела, тем труднее изменить его скорость.

    Формулу второго закона часто записывают в векторном виде:

    [ vec{ a } = frac{1}{m} cdot vec{ F  }  ]

    Мы можем заменить местами правую и левую части, в таком случае получим:

    [ vec{ F  } cdot frac{1}{m}  = vec{ a }  ]

    Расшифруем эту запись: Возьмем вектор «F», умножим его на скаляр (1/m) и получим новый вектор «a».

    Простыми словами: Векторы ( vec{F} ) и ( vec{a} ) направлены в одну и ту же сторону, а длины у них отличаются.

    Дробь ( displaystyle frac{1}{m} ) – это скалярная величина.

    ( F ) – это вектор.

    Примечания:

    1. Вместо слов «направлены в одну и ту же сторону» физики пользуются термином «сонаправлены». Лично мне удобнее пользоваться первой формулировкой.
    2. Часто применяют еще один вид записи, его называют так: «Второй закон Ньютона в импульсной форме».

    Третий закон Ньютона

    Пусть одно тело действует на второе тело. Тогда это второе тело будет в ответ действовать на первое.

    Словами третий закона Ньютона можно сформулировать так:

    Силы взаимного действия по модулю равны, а направлены противоположно. Они лежат на прямой, которая соединяет центры тел, действующих друг на друга.

    Формула:

    [ large boxed { F_{12} = — F_{21} } ]

    ( F_{12} left( H right) ) – сила, с которой первое тело действует на второе тело.

    ( F_{21} left( H right) ) – сила, с которой второе тело отвечает первому.

    Пояснить формулу можно с помощью такого рисунка:

    Два шара притягиваются, силы направлены вдоль прямой, соединяющей центы шаров

    Рис. 1. Два шара притягиваются. Сила 12 принадлежит черному шару, а сила 21 – красному

    Обратите внимание, что длины красного и черного векторов равны.

    Не важно, перед каким из векторов находится знак «минус». Этот знак показывает, что векторы направлены в противоположные стороны. Поэтому, формулу третьего закона Ньютона можно записать и так:

    [ — F_{12} = F_{21} ]

    Примечания:

    1. Если перед каким-либо вектором записан знак «минус», то этот вектор развернут в противоположную от выбранной нами сторону.
    2. Между векторами находится знак равенства. Это значит, что длины векторов одинаковые (векторы по модулю равны).

    [ | vec{ F_{12} } | = | vec{ F_{21} } | ]

    Советую прочитать еще две статьи. Так как для решения задач кроме знания трех законов Ньютона нужно дополнительно уметь:

    • находить проекции вектора на оси и
    • составлять векторные силовые уравнения (ссылки открываются в новых вкладках).

    Содержание:

    Сила упругости:

    Мы уже знаем, что на все тела, которые находятся на Земле или вблизи неё, действует сила тяжести. Эта сила является причиной того, что тела, лишённые опор или подвесов, например капли дождя, брошенный вверх камень, листва, оторвавшаяся от ветви дерева, падают на Землю.

    Опыт 1. Положим на две опоры стальную пластину. Она будет находиться в горизонтальном положении (рис. 72, а). Когда на середину ее поставим гирю, то под действием силы тяжести гиря вместе со стальной пластиной будет двигаться вниз до тех пор, пока не остановится (рис. 72, б).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Прекращение движения можно объяснить тем, что кроме силы тяжести, действующей на гирю и направленной вертикально вниз, на неё начала действовать сила, направленная вверх, которая уравновесила силу тяжести. Откуда возникла эта вторая сила ?

    Изменение формы или размеров тела называют деформацией. Вследствие движения тела вниз стальная пластина прогибается — деформируется. В результате деформации в пластине возникает сила, с которой она действует на гирю, стоящую на ней. Эту силу назвали силой упругости, она направлена вверх, т. е. в сторону, противоположную силе тяжести. Когда сила упругости по значению сравняется с силой тяжести, опора и тело остановятся.

    Сила упругости — это сила, возникающая вследствие деформации тела, и направленная противоположно направлению перемещения частиц тела при деформации.

    Одним из видов деформации является прогиб. Чем больше прогибается опора, тем большей становится сила упругости, действующая со стороны опоры на тело. До того как тело поставили на пластину, деформация в ней отсутствовала, как и сила упругости. По мере перемещения гири прогиб пластины возрастал и увеличивалась сила упругости. Свойства упругих тел (пружин) всесторонне изучил более 300 лет назад английский естествоиспытатель Роберт Гук. Проделанные им опыты позволили установить закон, названный его именем — закон Гука, а именно:

    Сила упругости прямо пропорциональна деформации (удлинению) тела (пружины) и направлена противоположно направлению перемещения частиц тела при деформации.
    Если удлинение тела, т. е. изменение его длины, обозначить через х (рис. 73, б), а силу упругости — через Сила упругости в физике и закон Гука - формулы и определения с примерами

    где Сила упругости в физике и закон Гука - формулы и определения с примерами — коэффициент пропорциональности, который называют жёсткостью тела. У каждого тела свое значение жесткости.

    Чем больше жёсткость тела (пружины, провода, стержня и т. п.), тем меньше оно изменяет собственную длину под действием данной силы. Единицей жёсткости в СИ является один ньютон на метр Сила упругости в физике и закон Гука - формулы и определения с примерами. Закон Гука даёт возможность сравнивать между собой тела с разной массой, т. е. взвешивать их. Чем больше масса тела, которое подвешиваем к пружине, тем больше она растягивается. На этом принципе устроен прибор для измерения силы — динамометр.

    Опыт 2. Установим тело на опору (рис. 73, а). Вследствие взаимодействия деформируется не только опора, но и само тело, которое притягивается Землёй. Деформированное тело давит на опору с силой, которую называют весом тела Р. Если тело подвесить к пружине, то оно деформируется и при этом растягивает пружину, в результате чего возникает сила упругости (рис. 73, б). Сила упругости в физике и закон Гука - формулы и определения с примерами

    Тело действует на подвес с силой, которую называют весом тела Р.

    Вес тела — это сила, с которой тело вследствие притяжения к Земле действует на горизонтальную опору или подвес.

    Не следует путать силу тяжести с весом тела. Сила тяжести действует на само тело со стороны Земли, а вес этого тела — это сила упругости, которая действует на опору или подвес.

    Если горизонтальная опора или подвес с телом находится в состоянии покоя или движется прямолинейно и равномерно, то вес тела равен силе тяжести и определяется по формуле:Сила упругости в физике и закон Гука - формулы и определения с примерами

    где Р— вес тела; Сила упругости в физике и закон Гука - формулы и определения с примерами = 9,81 Сила упругости в физике и закон Гука - формулы и определения с примерамиСила упругости в физике и закон Гука - формулы и определения с примерами — масса тела.

    Иногда путают вес тела с его массой — это ошибка. Во-первых, это разные физические величины, из которых вес — направленная величина, вектор, а масса определяется только числовым значением. Они характеризуют разные свойства тел и имеют разные единицы: для веса — ньютон, для массы — килограмм. Во-вторых, каждое тело всегда имеет определённую неизменную массу, а вес тела может изменяться, если опора или подвес движется неравномерно. В этом случае вес тела может увеличиваться или уменьшаться по сравнению с весом тела на неподвижной опоре и даже исчезать, т. е. равняться нулю (состояние невесомости). Например, поднимая грузы с помощью подъёмного крана, нужно учитывать, что во время резких рывков вес груза возрастает, и трос может разорваться. Стоя на платформе медицинских весов, мы замечаем, что их показания изменяются, если мы приседаем или двигаем руками.

    Вес тела действует на любую опору: пол, по которому мы ходим, стул, на котором сидим, канат, за который ухватились. Назначение опоры — ограничивать движение тела под действием силы тяжести, отсюда и её название.

    Начиная с 4 октября 1957 г., когда космическая ракета вывела на орбиту первый искусственный спутник Земли, началась эра освоения человеком космического пространства. Человек побывал на Луне, готовится экспедиция на Марс. Мы часто слышим по радио и телевидению, читаем в газетах и журналах, что космонавты во время полёта в космическом корабле по орбите вокруг Земли находятся в особом состоянии, называемом невесомостью.

    Что это за состояние и можно ли его наблюдать на Зеше?

    Опыт 3. Верхний конец пружины с помощью нити прикрепим к неподвижной опоре, а к нижнему подвесим грузик (рис. 74, а). Под действием силы тяжести он начинает двигаться вниз. Пружина будет растягиваться до тех пор, пока возникшая в ней сила упругости не уравновесит силу тяжести. Перережем или пережжём нить, которая удерживает тело с пружиной. Пружина и тело начинают свободно падать, при этом растяжение у пружины исчезает, а это и означает, что тело потеряло вес и не действует на подвес (рис. 74, б).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Сила тяжести при этом никуда не исчезает и заставляет тело падать на Землю.

    Так же если скорости падения тела и опоры (подвеса) одинаковы, то тело не действует на них, и его вес равен нулю. Если искусственный спутник или космическая станция обращается вокруг Земли, то космонавты и все предметы внутри них двигаются с одинаковой скоростью относительно Земли. Вследствие этого тела, размещённые на подставках, не действуют на них, подвешенные к пружинам тела не растягивают их, разлитая из сосуда вода плавает в виде большой капли, маятниковые часы перестают работать, космонавты без особых усилий передвигаются, «летая» или «плавая» в корабле.

    Если бы сила тяжести внезапно исчезла, то космический корабль вследствие инерции удалялся бы от Земли в космическое пространство по прямой линии. В состоянии невесомости находится любое тело во время свободного, т. е. безопорного падения. Если при обычных условиях не учитывать сопротивление воздуха, то в невесомости находится спортсмен, прыгающий с вышки в бассейн или выполняющий упражнения на батуте; любой из нас кратковременно находится в состоянии невесомости во время бега, когда обе ноги отрываются от Земли.

    Кстати:

    В давние времена благодаря упругим свойствам некоторых материалов (в частности, такого дерева, как тисс) наши пращуры изобрели лук — ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы.

    Изобретённый приблизительно 12 тыс. лет тому назад, лук на протяжении многих столетий был основным оружием почти всех племён и народов мира. До изобретения огнестрельного оружия лук был наиболее эффективным боевым средством. Английские лучники могли выпускать до 14 стрел в минуту, что при массовом использовании луков в бою образовывало целую тучу стрел. Например, количество стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составляло приблизительно 6 миллионов!

    Широкое применение этого грозного оружия в средние века вызвало обоснований протест со стороны определённых слоёв общества. В 1139 г. Латеранский (церковный) собор, собравшийся в Риме, запретил применение этого оружия против христиан. Однако борьба за «лучное разоружение» не имела успеха, и лук как боевое оружие люди продолжали использовать ещё на протяжении 500 лет.

    Пример №1

    Назовите силы, которые действуют на груз, подвешенный к концу спиральной пружины.

    Ответ: на груз действуют сила тяжести, направленная вертикально вниз, и сила упругости, направленная противоположно удлинению пружины.

    Пример №2

    Каков вес космического аппарата массой 383 кг на поверхности планеты Марс? На МарсеСила упругости в физике и закон Гука - формулы и определения с примерами= 3,9 Сила упругости в физике и закон Гука - формулы и определения с примерами.

    Дано: 

    Сила упругости в физике и закон Гука - формулы и определения с примерами = 383 кг 

    Сила упругости в физике и закон Гука - формулы и определения с примерами= 3,9 Сила упругости в физике и закон Гука - формулы и определения с примерами 

    Р — ?

    Решение:

    Чтобы определить вес космического аппарата, используем формулу:

    Сила упругости в физике и закон Гука - формулы и определения с примерами.

    Сила упругости в физике и закон Гука - формулы и определения с примерами.

    Ответ: Р= 1493,7 Н.

    Пример №3

    Космонавту в условиях невесомости необходимо заниматься физическими упражнениями. Понадобятся ли ему гантели?

    Ответ: обычные упражнения на подъём веса в состоянии невесомости теряют смысл, но упражнения на преодоление инертности гантелей (махи, повороты, разведения рук и т. п.) выполнять вполне возможно. Тем не менее гантели как лишний груз скорее заменят на эспандер.

    Измерение силы

    Устройство динамометра (от греческих слов динамис — сила; метрео — измеряю) основано на том, что сила упругости пружины по закону Гука прямо пропорциональная удлинению (деформации) пружины.

    Простейший пружинный динамометр изготовляют так. На дощечке закрепляют пружину, которая заканчивается внизу стержнем с крючком (рис. 79, а). К верхней части стержня прикрепляют указатель. На дощечке отмечают положение указателя — это нулевой штрих. Потом к крючку подвешивают разновесы массой 102 г. На этот грузик действует сила тяжести 1 Н. Под действием силы 1 Н пружина растянется, указатель опустится вниз. Отмечают его новое положение и напротив метки ставят цифру 1 (рис. 79, б). Потом подвешивают разновесы массой 204 г и ставят метку 2, которая означает, что в этом положении сила упругости пружины равна 2 Н (рис. 79, в). С помощью разновесов массой 306 г наносят метку 3

    (рис. 79, г) и т. д.

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Можно нанести деления, соответствующие десятым долям ньютона: 0,2; 0,4; 0,6 и т. д. Для этого промежутки между соседними штрихами нужно поделить на пять одинаковых частей.

    Проградуировать прибор — это значит нанести на него шкалу с делениями.

    Проградуированная таким образом пружина и будет простейшим динамометром. Для измерения силы используют такие динамометры (рис. 80): а — школьный лабораторный динамометр; б — школьный демонстрационный динамометр: в — пружинные весы: г — медицинский динамометр-силомер, предназначенный для измерения силы мышц руки человека; д — динамометр-тягомер. Основной частью такого динамометра являются упругие стальные рессоры. Этот прибор используют для измерения силы тяги автомобилей, тракторов и т. п.

    Деформация тел

    Одним из признаков твердых тел является их свойство сохранять свою форму длительное время. Однако такое свойство наблюдается только тогда, когда на тело не действуют другие тела. Взаимодействуя с другими телами, оно изменяет свою форму. Это изменение не всегда заметно, однако оно всегда существует.

    Что такое деформация

    Изменение форм или размеров тела называют деформацией.

    Явление деформации подчиняется действию определенных законов. Один из таких законов можно проиллюстрировать опытом. Повесим на штативе резиновую нить и измерим ее длину. Подвесим к нити груз определенной массы и увидим, что он начнет опускаться вниз, растягивая нить. Скорость его будет уменьшаться, и он в конце концов остановится, а длина нити будет больше начальной. По результатам опыта можно сделать вывод, что при деформации нити возникла сила, направленная в сторону, противоположную деформации.

    Эту силу назвали силой упругости.

    Силу, возникающую при деформации называют силой упругости.

    Как рассчитать силу упругости

    Силу упругости можно рассчитать, если известна деформация тела. Если начальную длину нити обозначить буквой Сила упругости в физике и закон Гука - формулы и определения с примерами а длину после растяжения — Сила упругости в физике и закон Гука - формулы и определения с примерами то изменение длины нити будет равно

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    В предыдущем опыте добавим еще одну гирьку. Нить растянется больше. Если измерим изменение длины нити для этого случая, то увидим, что она стала в два раза большей, чем до этого. Такая закономерность характерна для всех случаев незначительной деформации тел и отображает действие закона Гука.

    В чем суть закона Гука

    Математически эта зависимость записывается так:

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Здесь Сила упругости в физике и закон Гука - формулы и определения с примерами — сила упругости; Сила упругости в физике и закон Гука - формулы и определения с примерами — деформация тела; Сила упругости в физике и закон Гука - формулы и определения с примерами — коэффициент упругости.

    Сила упругости пропорциональна деформации тела и направлена всегда в противоположном деформации направлении.

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Закон Гука можно проиллюстрировать с помощью графика (рис. 46). На нем зависимость силы упругости от деформации изображена прямой линией, поскольку сила пропорциональна деформации. На рисунке показана зависимость силы упругости от деформации для двух различных тел. Графики являются прямыми линиями, но имеют различный наклон, что свидетельствует о различном значении коэффициента упругости для различных тел.

    Закон Гука выполняется для таких деформаций, после снятия которых тело приобретает предыдущие размеры и форму. Такие деформации называют упругими.   

    • Заказать решение задач по физике

    В чем природа сил упругости

    Возникновение силы упругости связано с силами взаимодействия между молекулами. При деформации изменяется расстояние между молекулами, а поэтому преобладают или силы притяжения (при растяжении тела), или силы отталкивания (при сжатии тела).

    Силы упругости учитывают и используют в различных приспособлениях и машинах. Автомобили, железнодорожные вагоны и другие транспортные средства имеют рессоры. Их использование делает движение более мягким, так как наезд колеса на камень или другое препятствие вызывает только деформацию рессоры и ощутимо не изменяет положения самого транспортного средства.

    В странах, где часто бывают землетрясения, дома ставят на специальные пружины, которые во время толчка деформируются, а здание остается практически неподвижным.

    Что такое сила упругости

    Как известно, взаимодействие тел является не только причиной изменения их скоростей, но и деформации. Сила, вызывающая это явление, называется силой упругости.

    Английский естествоиспытатель, ученый и экспериментатор Роберт Гук установил закон, названный его именем. Исследуя упругие деформации различных тел, Гук установил, что при деформации упругих тел их растяжение или сжатие прямо пропорционально силе, которая их растягивает или сжимает (рис. 2.16):

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    где k — коэффициент пропорциональности, который называется жесткостью, характеризующий способность тела противостоять деформации; х — абсолютная деформация (линейное растяжение или сжатие тела).
    Знак «-» показывает, что направление силы упругости противоположно направлению изменения края деформированного тела.
    Сила упругости в физике и закон Гука - формулы и определения с примерами
    На рисунке 2.17 отображены результаты опыта по определению зависимости растяжения пружины от действующих на 69 нее сил, если к ней подвешен груз массой 100 г, 200 г … в гравитационном поле Земли.

    Во время решения задач по расчету силы упругости необходимо четко представлять ее направление и к какому именно телу она приложена. Следует помнить, что деформация тела под действием любой внешней силы вызывает силу упругости, которую определяют по закону Гука.

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Если в поле силы тяготения к пружине подвесить тело (рис. 2.18), то под действием этой силы оно будет опускаться.

    В пружине возникнет сила упругости, которая будет постепенно возрастать.

    Когда сила упругости сравняется с силой тяготения (Сила упругости в физике и закон Гука - формулы и определения с примерами = mg), тело будет находиться в состоянии покоя. Обе рассмотренные силы приложены к одному телу и направлены в противоположных направлениях. В состоянии равновесия тела их равнодействующая равна нулю.

    Силу упругости, действующую на тело со стороны подвеса или опоры, называют силой реакции опоры.

    Природа сил упругости — электромагнитная. Она обусловлена взаимодействием молекул и атомов, из которых и состоят тела (положительно заряженные протоны, которые входят в состав ядер атомов, и электроны, движущиеся вокруг ядер).

    Силы взаимодействия между молекулами и атомами имеют такую особенность: при увеличении расстояния между ними они являются силами притяжения, а при уменьшении — силами отталкивания. Этим и объясняется возникновение сил упругости и направление их действия.

    Сила упругости направлена перпендикулярно (нормально) к поверхности столкновения тел, а в случае с деформированными телами (стержнями, пружинами, нитками, тросами и т. п.) — вдоль их осей.

    Пример №4

    К проволоке подвесили груз массой 10 кг (рис. 2.19). Длина проволоки увеличилась на 0,5 мм. Какова ее жесткость, если ускорение силы тяжести 10 Сила упругости в физике и закон Гука - формулы и определения с примерами
    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Дано:

    m = 10 кг,

    х = 0,5мм,

    g =10 Сила упругости в физике и закон Гука - формулы и определения с примерами

    Груз, подвешенный на пружине, -находится в состоянии покоя. Сила упругости Сила упругости в физике и закон Гука - формулы и определения с примерами по модулю равна силе тяжести Сила упругости в физике и закон Гука - формулы и определения с примерами Одинаковы и модули их проекций на ось ОХ (направлена вертикально вниз):

    Сила упругости в физике и закон Гука - формулы и определения с примерами или Сила упругости в физике и закон Гука - формулы и определения с примерами
    Таким образом, mg = kx, отсюда Сила упругости в физике и закон Гука - формулы и определения с примерами
    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Ответ: Сила упругости в физике и закон Гука - формулы и определения с примерами

    Работа силы упругости

    Как известно, сила упругости — это сила, возникающая при деформации тела внешними воздействиями. Наиболее удобно изучать действие этой силы на примере пружин или резинового шнура, поскольку достаточно малые внешние силы вызывают значительное изменение их длины, которое легко можно измерить.

    Рассмотрим систему, состоящую из пружины и тела некоторой массы, лежащего на достаточно гладкой горизонтальной поверхности (рис. 137, а). Правый конец пружины прикреплен к стене, а левый — к телу. Направим ось Ох, как показано на рисунке 137. Если тело сместить на расстояние х1 от положения равновесия, то пружина будет действовать на него с силой упругости (рис. 137, б), направленной влево. Модуль проекции этой силы на ось Ox равен kx1, где k — жесткость пружины.

    Теперь отпустим тело. Тогда под действием силы упругости пружины тело будет смещаться влево. При этом движении сила упругости совершает работу.

    Предположим, что тело переместилось из положения А в положение В (рис. 137, в) так, что расстояние от положения равновесия стало х2. Модуль перемещения тела равен x1-x2. Направления действия силы и перемещения тела совпадают.

    Сила упругости в физике и закон Гука - формулы и определения с примерами
    Рис. 137

    Для нахождения работы, совершенной пружиной по перемещению тела, необходимо учесть, что сила упругости меняется, так как ее величина зависит от удлинения пружины. Воспользуемся графиком зависимости модуля силы от удлинения пружины (рис. 138). Как нам уже известно, работа силы численно равна площади под графиком силы. В нашем случае площади трапеции. Нетрудно сообразить, что
    Сила упругости в физике и закон Гука - формулы и определения с примерами 

    Сила упругости в физике и закон Гука - формулы и определения с примерами
    Рис. 138

    Из полученной формулы следует, что работа силы упругости пружины зависит только от координат xи х2 начального и конечного положений. Из рисунка 137 видно, что x1 и х2 — это и удлинение пружины, и координаты ее конца в выбранной системе координат. Следовательно, работа силы упругости не зависит от формы траектории. А если траектория замкнута, то работа равна нулю. Итак, сила упругости является потенциальной силой. Удлинение пружины или резинового шнура часто обозначают через Δl, поэтому
    Сила упругости в физике и закон Гука - формулы и определения с примерами       (2)

    где ∆l1 и Δl2 — удлинения пружины в начальном и конечном положениях.
    Формулу (1) для работы силы упругости можно записать и в таком виде:

    Сила упругости в физике и закон Гука - формулы и определения с примерами       (3)

    В правой части полученного равенства стоит изменение величиныСила упругости в физике и закон Гука - формулы и определения с примерами со знаком «минус». Поэтому, как и в случае силы тяжести, величина Сила упругости в физике и закон Гука - формулы и определения с примерами представляет собой потенциальную энергию упруго деформированного тела:

    Сила упругости в физике и закон Гука - формулы и определения с примерами       (4)

    Сила упругости в физике и закон Гука - формулы и определения с примерами       (5)

    Таким образом, работа силы упругости равна изменению потенциальной энергии упруго деформированного тела (пружины), взятому с противоположным знаком.

    Если в конечном состоянии удлинение пружины равно нулю, то формула (5) с учетом (1) принимает вид:
    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Отсюда следует, что потенциальная энергия упруго деформированной пружины равна работе сил упругости при переходе тела (пружины) в состояние, в котором его деформация равна нулю. Например, растянутая пружина закрывает дверь подъезда (рис. 139).

    Сила упругости в физике и закон Гука - формулы и определения с примерами
    Рис. 139

    О потенциальной энергии тела, на которое действует сила тяжести, мы говорили, что это энергия взаимодействия тела с Землей. Потенциальная энергия упруго деформированного тела — это тоже энергия взаимодействия. Однако в этом случае речь идет о взаимодействии частиц, из которых состоит тело.

    Главные выводы:

    1. Работа силы упругости не зависит от формы траектории тела, а определяется положением тела в начальном и конечном состояниях.
    2. Сила упругости является потенциальной силой.
    3. Потенциальная энергия упруго деформированного тела равна работе сил упругости при переходе в недеформированное состояние.

    Силы электромагнитной природы

    Известно, что наэлектризованные электрическим зарядом тела притягиваются или отталкиваются силами электрического характера. Если же электрические заряды в телах будут двигаться друг относительно друга, то дополнительно к электрическим силам между телами возникают магнитные силы. Эти силы, прочно связанные между собой, невозможно отделить друг от друга, потому что они действуют одновременно. Поэтому говорят, что взаимодействие между наэлектризованными телами происходит в результате действия сил электромагнитной природы. Силы упругости и трения, являющиеся причиной изменения скорости механического движения тела, также являются силами электромагнитной природы.

    Сила упругости — это сила электромагнитной природы.

    Как вы знаете, любое твердое тело под действием внешней силы испытывает деформацию.

    Деформацией называется изменение формы и размеров тела под действием внешней силы. В результате деформации происходит смещение атомов и молекул относительно друг друга: расстояние между атомами или увеличивается, или уменьшается. Такое смещение вызывает соответствующее увеличение или уменьшение действия сил электростатического взаимодействия зарядов внутри атомов (положительных ядер и отрицательных электронов). В результате, в деформированной части тела возникает сила электромагнитной природы, «старающаяся» вернуть тело в первоначальное состояние — силой упругости.

    Сила упругости — это сила, возникающая при деформациях твердого тела и действующая в направлении восстановления тела в первоначальном состоянии.

    Если после прекращения действия на тело внешней силы оно под действием силы упругости полностью восстанавливает свою форму и размеры, то такая деформация называется упругой деформацией, если же это не происходит, пластической деформацией.

    Различают следующие виды деформации: растяжение-сжатие, изгиб, кручение и сдвиг. При деформации растяжение-сжатие изменяется расстояние между частями тела, а при деформации сдвига части тела сдвигаются параллельно друг другу. Деформация изгиб состоит из комбинации деформации сжатия и растяжения частей твердого тела, а деформация кручения из комбинации деформации сдвига (b).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Закон Гука

    Деформация растяжение-сжатие твердого тела характеризуется величинами, называемыми абсолютным удлинением и относительным удлинением.

    Здесь Сила упругости в физике и закон Гука - формулы и определения с примерами — начальная, а Сила упругости в физике и закон Гука - формулы и определения с примерами — конечная длина твердого тела, Сила упругости в физике и закон Гука - формулы и определения с примерами — его абсолютное удлинение, а Сила упругости в физике и закон Гука - формулы и определения с примерами — относительное удлинение (если Сила упругости в физике и закон Гука - формулы и определения с примерами то наблюдается упругая деформация). В СИ Сила упругости в физике и закон Гука - формулы и определения с примерами — безразмерная величина.

    Твердое тело, находящееся в деформированном состоянии, характеризуется механическим напряжением.

    Механическое напряжение — это физическая величина, равная отношению модуля силы упругости Сила упругости в физике и закон Гука - формулы и определения с примерами возникшей во время деформации, к площади поперечного сечения тела Сила упругости в физике и закон Гука - формулы и определения с примерами

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Единица измерения механического напряжения в СИ — паскаль (Па): 

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Закон Гука: При малых деформациях механическое напряжение прямо пропорционально относительному удлинению:

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Сила упругости в физике и закон Гука - формулы и определения с примерами — коэффициент пропорциональности, называемый модулем Юнга.

    Модуль Юнга — это физическая величина, численно равная механическому напряжению, необходимому для увеличения длины тонкого стержня в два раза. Модуль Юнга зависит от материала, из которого изготовлено тело, единица его измерения в СИ — паскаль: Сила упругости в физике и закон Гука - формулы и определения с примерами

    Приняв во внимание уравнения (2.24) и (2.25) в законе Гука (2.26), получим:

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Здесь

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    называется коэффициентом упругости или жесткостью стержня.

    Жесткость, являясь коэффициентом пропорциональности между силой упругости и абсолютным удлинением, зависит от материала, из которого изготовлено тело, и его геометрических размеров.

    Приняв во внимание формулу (2.28) в формуле (2.27), закон Гука можно записать следующим образом:

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Обычно закон Гука имеет вид:

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Где Сила упругости в физике и закон Гука - формулы и определения с примерами выражает абсолютное удлинение, а знак минус показывает, что сила упругости направлена против направления смещения частиц тела (против удлинения).

    Единица измерения жесткости в СИ: Сила упругости в физике и закон Гука - формулы и определения с примерами

    Диаграмма растяжения

    Диаграмма растяжения — это график зависимости механического напряжения от относительного удлинения твердого тела. На диаграмме (с):

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    a) участок 0-1 — это участок, на котором при малых деформациях механическое напряжение прямо пропорционально относительному удлинению, то есть выполняется закон Гука.

    Максимальное значение механического спряжения, при котором еще выполняется закон Гука, называется пределом пропорциональности Сила упругости в физике и закон Гука - формулы и определения с примерами

    На участке графика выше цифры 1 закон Гука нарушается, наблюдается нелинейная деформация;

    b) участок 1-2 — соответствует участку, на котором упругая деформация сохраняется, то есть после прекращения внешнего воздействия образец возвращается к своим первоначальным размерам.

    Максимальное напряжение, при котором еще возникает упругая деформация, называется пределом упругости Сила упругости в физике и закон Гука - формулы и определения с примерами Механическое напряжение больше предела упругости вызывает пластическую деформацию;

    c) участок 2-3 — механическое напряжение, соответствующее пластической деформации;

    d) участок 3-4 — это участок «текучести» образца. Механическое напряжение Сила упругости в физике и закон Гука - формулы и определения с примерами имеет постоянное значение, относительное удлинение увеличивается;

    e) участок 4—5 — это участок с резким увеличением механического напряжения, соответствует разрушению тела.

    Максимальное механическое напряжение, приводящее к разрушению тела, называется пределом прочности Сила упругости в физике и закон Гука - формулы и определения с примерами

    Силы упругости и упругие деформации

    Сила упругости (реакции) возникает в ответ на действие деформирующей силы. Она противоположна по направлению и равна по модулю деформирующей силе. Сила упругости приложена к телу, находящемуся на опоре или подвесе.

    Силы упругости обусловлены взаимодействиями между атомами и, как и силы трения, являются по своей природе электромагнитными силами. Они возникают при смещении атомов вещества из положений равновесия. В результате деформации силы электрических взаимодействий стремятся возвратить атомы в первоначальные положения.

    Деформация — изменение формы или размеров тела, обусловленное изменением взаимного расположения атомов тела под действием внешних сил или при изменении температуры тела.

    Если после прекращения действия сил размер и форма тела полностью восстанавливаются, то деформация называется упругой, а если нет — пластической.

    Деформации бывают нескольких видов: растяжение или сжатие (рис. 40); сдвиг (рис. 41); кручение (рис. 42); изгиб (рис. 43).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Упругое тело — одна из механических моделей физических тел, используемая для описания в тех случаях, когда деформацией тела пренебречь нельзя.

    Силы упругости возникают между телами только в том случае, если тела деформированы. Движение упругого тела или его взаимодействие с другими телами сопровождается такими изменениями формы, что при прекращении взаимодействия или возврате к исходному механическому состоянию его первоначальная форма восстанавливается. Это означает, что в упругом теле можно пренебречь остаточной деформацией, т. е. изменениями формы и размеров тел после прекращения их взаимодействия.

    Особенности сил упругости:

    • возникают вследствие деформации одновременно у двух взаимодействующих тел;
    • перпендикулярны поверхностям взаимодействующих тел;
    • по направлению противоположны смещению частиц деформируемого тела;
    • при упругих деформациях выполняется закон Гука:

    модуль силы упругости Сила упругости в физике и закон Гука - формулы и определения с примерами возникающей в теле при упругих деформациях, прямо пропорционален его абсолютному удлинению (сжатию) Сила упругости в физике и закон Гука - формулы и определения с примерами

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    где k — жесткость тела, Сила упругости в физике и закон Гука - формулы и определения с примерами — длина недеформированного тела, l — длина деформированного тела.

    Из соотношения (1) определим жесткость тела:

    Сила упругости в физике и закон Гука - формулы и определения с примерами
    Единицей жесткости в СИ является ньютон на метр Сила упругости в физике и закон Гука - формулы и определения с примерами

    Жесткость k не зависит от приложенных сил и величины деформации и определяется только размером деформируемого тела и веществом, из которого оно состоит.
    Впервые свой закон Роберт Гук опубликовал в 1676 г. в виде анаграммы ut tension sic vis — как напряжение, так сила.
    Деформации характеризуют двумя величинами: абсолютное удлинение (сжатие) Сила упругости в физике и закон Гука - формулы и определения с примерами и относительное удлинение (сжатие) Сила упругости в физике и закон Гука - формулы и определения с примерами

    Пружина является моделью деформируемого тела, деформации которого подчиняются закону Гука. Она обладает пренебрежимо малой массой и описывается двумя параметрами — длиной в недеформированном состоянии Сила упругости в физике и закон Гука - формулы и определения с примерами и жесткостью k.

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Со стороны опоры на тело действует сила нормальной реакции опоры Сила упругости в физике и закон Гука - формулы и определения с примерами (рис. 44), которая возникает вследствие деформации опоры. Со стороны тела на опору действует сила давления Сила упругости в физике и закон Гука - формулы и определения с примерами Со стороны подвеса на тело действует сила упругости нити Сила упругости в физике и закон Гука - формулы и определения с примерами Со стороны тела на подвес действует сила натяжения подвеса Сила упругости в физике и закон Гука - формулы и определения с примерами направленная вниз.

    Для тонкого однородного упругого стержня, деформированного некоторой силой Сила упругости в физике и закон Гука - формулы и определения с примерами направленной вдоль него, модуль абсолютного удлинения (сжатия) Сила упругости в физике и закон Гука - формулы и определения с примерами прямо пропорционален длине стержня Сила упругости в физике и закон Гука - формулы и определения с примерами обратно пропорционален площади его поперечного сечения S и определяется упругими свойствами вещества, задаваемыми модулем упругости или модулем Юнга E:

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Для выяснения физического смысла модуля Юнга и определения единицы его измерения выразим Е из приведенной формулы:

    Сила упругости в физике и закон Гука - формулы и определения с примерами
    Если предположить, что в этом соотношении Сила упругости в физике и закон Гука - формулы и определения с примерами то модуль Юнга численно равен силе, способной увеличить длину образца вдвое, если площадь его поперечного сечения равна единице. На практике такое удлинение возможно только для резины или искусственно создаваемых материалов.
    Единицей модуля упругости Е в СИ является ньютон на метр квадратный  Сила упругости в физике и закон Гука - формулы и определения с примерами

    Модули Юнга некоторых веществ приведены в таблице 1.

    Таблица 1

    Модули Юнга Е некоторых веществ

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Еще одной из основных величин, характеризующих механические свойства тел, является механическое напряжениеСила упругости в физике и закон Гука - формулы и определения с примерами которое позволяет записать закон

    Гука с использованием модуля Юнга и относительного удлинения. Из формулы для модуля упругости следует, что Сила упругости в физике и закон Гука - формулы и определения с примерами

    Откуда, с учетом определения относительного удлинения и напряжения, находим Сила упругости в физике и закон Гука - формулы и определения с примерами
    Жесткость стержня k определяется через модуль упругости (модуль Юнга) Е, его длину Сила упругости в физике и закон Гука - формулы и определения с примерами и площадь поперечного сечения S соотношением

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Сила упругости и  вес тела

    Первый в мире космонавт Ю. А. Гагарин вспоминал: «я почувствовал, что какая-то непреодолимая сила все больше вжимает меня в кресло. И хотя оно было расположено так, чтобы минимизировать влияние гигантского веса, который навалился на мое тело, было трудно пошевелить рукой и ногой».

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Нажмем на кнопку авторучки — пружина в корпусе сожмется, и ее длина уменьшится; помнем в руке кусочек пластилина — изменится его форма; надавим пальцем на губку — одновременно изменятся и форма, и размеры губки.

    Изменение формы и (или) размеров тела называют деформацией.

    Если прекратить сжимать пружину, давить на губку, то есть устранить действие внешних сил, и пружина, и губка полностью восстановят свои форму и размеры, то есть перестанут быть деформированными (рис. 12.1). А вот форма кусочка пластилина не восстановится — пластилин ее «не помнит» и останется деформированным.

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Рис. 12.1. После прекращения действия силы упругие тела восстанавливают свои форму и размеры

    Деформации, которые полностью исчезают после прекращения действия на тело внешних сил, называют упругими; деформации, которые сохраняются, называют пластическими.

    Причина возникновения и упругой, и пластической деформаций в том, что под действием сил, приложенных к телу, его различные части смещаются относительно друг друга. По характеру смещения частей различают деформации сжатия, растяжения, сдвига, изгиба, кручения. Остановимся на упругой деформации сжатия и растяжения. Для этого воспользуемся механической моделью твердого тела (рис. 12.2).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Рис. 12.2. Механическая модель твердого тела: параллельные пластины (1), имитирующие слои молекул, соединены пружинами (2), имитирующими взаимодействия между молекулами

    Нажмем на модель твердого тела сверху рукой: верхние пластины начнут смещаться вниз, нижние же останутся почти неподвижными, и в результате модель изменит размеры — деформируется. Примерно так же при сдавливании твердого тела смещаются в направлении действия силы слои его молекул, в результате чего размеры тела уменьшаются. Такую деформацию называют деформацией сжатия — ее испытывают ножки столов и стульев, фундаменты домов и т. п. (см. рис. 12.3, а).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Если же тело растягивать, слои молекул раздвинутся и тело также изменит свои размеры. Такую деформацию называют деформацией растяжения — ее испытывают тросы, цепи в подъемных устройствах, стяжки между вагонами и т. д. (см. рис. 12.3, б).

    Физическую величину, равную изменению длины тела при деформации растяжения или сжатия, называют удлинением ∆l (или x):

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    где l — длина деформированного тела; Сила упругости в физике и закон Гука - формулы и определения с примерами — начальная длина тела (рис. 12.4).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Когда возникает сила упругости

    Если вы сгибаете ветку дерева, сжимаете эспандер, натягиваете тетиву лука, то есть деформируете эти тела, вы чувствуете их сопротивление: со стороны тел начинает действовать сила, стремящаяся восстановить то состояние тела, в котором тело находилось до деформации. Эту силу называют силой упругости (рис. 12.5).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Сила упругости Сила упругости в физике и закон Гука - формулы и определения с примерами — это сила, которая возникает при деформации тела и стремится вернуть тело в недеформированное состояние. Изучая деформацию тонких длинных стержней, английский естествоиспытатель Роберт Гук (1635–1703) установил закон, позже получивший название закон Гука:

    При малых упругих деформациях растяжения или сжатия сила упругости прямо пропорциональна удлинению тела:

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Знак «–» показывает, что сила упругости направлена в сторону, противоположную удлинению.

    Закон Гука можно записать и для модулей: Сила упругости в физике и закон Гука - формулы и определения с примерами, где x = ∆l — удлинение. Поскольку сила упругости прямо пропорциональна удлинению тела, график зависимости Сила упругости в физике и закон Гука - формулы и определения с примерами — прямая (рис. 12.6).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Коэффициент пропорциональности k называют жесткостью тела (стержня, балки, шнура, пружины). Жесткость тела можно определить, воспользовавшись законом Гука:

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Единица жесткости в СИ — ньютон на метр: Сила упругости в физике и закон Гука - формулы и определения с примерами.

    • Жесткость — это характеристика тела, поэтому она не зависит ни от силы упругости, ни от удлинения тела.
    • Жесткость зависит от упругих свойств материала, из которого изготовлено тело; от формы тела и его размеров.

    Какова природа силы упругости

    Известно, что все тела состоят из атомов (молекул, ионов), а те, в свою очередь, — из ядра, имеющего положительный заряд, и электронного облака, заряд которого отрицательный. Между заряженными составляющими частиц вещества существуют силы электромагнитного притяжения и отталкивания.

    Если тело не деформировано, силы притяжения равны силам отталкивания. При деформации взаимное расположение частиц в теле изменяется. Если расстояние между частицами увеличивается, то электромагнитные силы притяжения становятся больше, чем силы отталкивания, и частицы начинают притягиваться друг к другу. Если расстояние между частицами уменьшается, то больше становятся силы отталкивания. Другими словами, частицы вещества «стремятся» вернуться к состоянию равновесия. Таким образом, сила упругости — результат электромагнитного взаимодействия частиц вещества.

    Некоторые виды сил упругости

    Обычно силу упругости обозначают символом Сила упругости в физике и закон Гука - формулы и определения с примерами. Однако есть силы упругости, для обозначения которых используются отдельные символы. Если тело расположено на опоре, то опора деформируется (прогибается).

    Деформация опоры вызывает появление силы упругости, действующей на тело перпендикулярно поверхности опоры. Эту силу называют силой нормальной реакции опоры и обозначают символом Сила упругости в физике и закон Гука - формулы и определения с примерами (рис. 12.7).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Если тело закрепить на подвесе (нити, жгуте, шнуре), то подвес деформируется (растягивается) и будет действовать на тело с определенной силой упругости, направленной вдоль подвеса, — силой натяжения подвеса Сила упругости в физике и закон Гука - формулы и определения с примерами (рис. 12.8).

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Все тела вследствие гравитационного притяжения сдавливают или прогибают опору либо растягивают подвес. Силу, характеризующую такое действие тел, называют весом и обозначают символом Сила упругости в физике и закон Гука - формулы и определения с примерами.

    На рис. 12.9, 12.10 показано, как возникает эта сила, если тело находится вблизи поверхности Земли и действует на горизонтальную опору или вертикальный подвес. В таких случаях согласно третьему закону Ньютона вес тела по модулю равен силе нормальной реакции опоры или силе натяжения подвеса и направлен противоположно им: Сила упругости в физике и закон Гука - формулы и определения с примерами.

    Сила упругости в физике и закон Гука - формулы и определения с примерамиСила упругости в физике и закон Гука - формулы и определения с примерами

    Именно такие случаи возникновения веса тела мы будем рассматривать далее. Обратите внимание! Если тело находится в состоянии покоя или равномерного прямолинейного движения, то вес тела по модулю равен силе тяжести ( Сила упругости в физике и закон Гука - формулы и определения с примерами ) и совпадает с ней по направлению.

    Действительно, в таком случае сила тяжести и сила нормальной реакции опоры (или сила натяжения подвеса) скомпенсированы, поэтому они равны по модулю и противоположны по направлению:Сила упругости в физике и закон Гука - формулы и определения с примерами; так какСила упругости в физике и закон Гука - формулы и определения с примерами Но, в отличие от силы тяжести, которая приложена к телу, вес приложен к опоре или подвесу.

    Вес тела и сила тяжести различаются и по своей природе: сила тяжести — это гравитационная сила, а природа веса тела — электромагнитная.

    При каких условиях вес тела изменяется

    Нам кажется, что в невесомости находятся только космонавты на орбите, а перегрузки испытывают только летчики при выполнении фигур высшего пилотажа и космонавты. Но это не так.

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Увеличение веса (перегрузка) Увеличение веса (перегрузка) Уменьшение веса
    Рассмотрим тело, которое находится на опоре и вместе с ней движется в гравитационном поле Земли с ускорением Сила упругости в физике и закон Гука - формулы и определения с примерами. На тело действуют две силы: сила тяжести Сила упругости в физике и закон Гука - формулы и определения с примерами и сила нормальной реакции опоры Сила упругости в физике и закон Гука - формулы и определения с примерами. Свяжем систему координат с Землей и направим ось ОY вертикально вверх. Согласно второму закону Ньютона: Сила упругости в физике и закон Гука - формулы и определения с примерами. Запишем это уравнение в проекциях на ось ОY для двух случаев.
    Сила упругости в физике и закон Гука - формулы и определения с примерами Сила упругости в физике и закон Гука - формулы и определения с примерами
    Вес тела, которое движется с ускорением, направленным вертикально вверх, больше, чем вес этого же тела в состоянии покоя. Когда есть перегрузки, не только тело сильнее давит на опору, но и части тела сильнее давят друг на друга. Вес тела, которое движется с ускорением, направленным вертикально вниз, меньше, чем вес этого же тела в состоянии покоя. Если в этом случае ускорение движения тела равно ускорению свободного падения Сила упругости в физике и закон Гука - формулы и определения с примерами вес тела равен нулю.

    Как испытать состояние невесомости

    Состояние тела, при котором вес тела равен нулю, называют состоянием невесомости. В состоянии невесомости на тело действует только сила тяжести (тело свободно падает), и наоборот: если тело движется только под действием силы тяжести, оно находится в состоянии невесомости. В состоянии невесомости тело не давит на опору и части тела не давят друг на друга; космонавт на орбите (вспомните: на орбите космический корабль движется только под действием силы тяжести) не чувствует своего веса, предмет, выпущенный из его рук, не падает. Дело в том, что сила тяжести сообщает каждому телу и любой части тела одинаковое ускорение.

    Чтобы испытать состояние невесомости, достаточно подпрыгнуть. А вот для тренировки космонавтов используют тот факт, что из-за действия силы тяжести траектория тела, брошенного под углом к горизонту, — параболическая. Если в верхних слоях атмосферы самолет направить по восходящей траектории («бросить» под углом к горизонту) и существенно уменьшить тягу двигателей, то некоторое время все тела в самолете будут находиться в состоянии невесомости.

    Пример №5

    Самолет делает «мертвую петлю», описывая в вертикальной плоскости окружность радиусом 250 м. Во сколько раз вес летчика в нижний части траектории больше силы тяжести, если скорость движения самолета 100 м/с?

    Анализ физической проблемы. Самолет движется по окружности, а значит, летчик имеет центростремительное ускорение. На пояснительном рисунке изобразим силы, действующие на летчика, и направление его ускорения. Выберем одномерную систему координат, которую свяжем с точкой на поверхности Земли, ось ОY направим вертикально вверх.

    Сила упругости в физике и закон Гука - формулы и определения с примерамиСила упругости в физике и закон Гука - формулы и определения с примерамиСила упругости в физике и закон Гука - формулы и определения с примерами

    Решение:

    По второму закону Ньютона: Сила упругости в физике и закон Гука - формулы и определения с примерами.

    В проекциях на ось ОY: Сила упругости в физике и закон Гука - формулы и определения с примерами

    По третьему закону Ньютона P N= , поэтому Сила упругости в физике и закон Гука - формулы и определения с примерами

    Окончательно: Сила упругости в физике и закон Гука - формулы и определения с примерами

    Найдем значения искомых величин:

    Сила упругости в физике и закон Гука - формулы и определения с примерами

    Анализ результата. Вес летчика в 5 раз больше силы тяжести — это реальный результат.

    Ответ: Сила упругости в физике и закон Гука - формулы и определения с примерами = 5.

    Алгоритм решения задач на движение тела под действием нескольких сил

    1. Прочитайте условие задачи. Выясните, какие силы действуют на тело, движется тело с ускорением или равномерно прямолинейно.
    2. Запишите краткое условие задачи. При необходимости переведите значения физических величин в единицы СИ.
    3. Выполните рисунок, на котором укажите силы, действующие на тело, и направление ускорения движения тела.
    4. Выберите инерциальную СО. Количество осей координат и их направление выберите, исходя из условия задачи.
    5. Проверьте единицу, найдите числовое значение искомой величины
    6. Проанализируйте результат. Запишите ответ.
    7. Запишите уравнение второго закона Ньютона в векторном виде и в проекциях на оси координат. Запишите формулы для вычисления сил. Получив систему уравнений, решите ее. Если в задаче есть дополнительные условия, используйте их.

    Выводы:

    • Деформацией называют изменение формы или (и) размеров тела. Если после прекращения действия на тело внешних сил деформация полностью исчезает, это упругая деформация; если деформация сохраняется, это пластическая деформация.
    • Силу, которая возникает в теле при его деформации и стремится вернуть тело в недеформированное состояние, называют силой упругости. Сила упругости имеет электромагнитную природу, ее можно рассчитать по закону Гука: Сила упругости в физике и закон Гука - формулы и определения с примерами, где k — жесткость тела. Закон Гука выполняется только при малых упругих деформациях.
    • Вес тела Сила упругости в физике и закон Гука - формулы и определения с примерами — это сила, с которой вследствие гравитационного притяжения тело давит на опору или растягивает подвес. Если опора горизонтальная или подвес вертикальный, согласно третьему закону Ньютона вес тела равен по модулю и противоположен по направлению силе нормальной реакции опоры (силе натяжения подвеса): Сила упругости в физике и закон Гука - формулы и определения с примерами.
    • Если тело находится в состоянии покоя или движется равномерно прямолинейно, вес тела по модулю равен силе тяжести: Сила упругости в физике и закон Гука - формулы и определения с примерами.
    • Если тело движется с ускорением, направленным вертикально вверх, это тело испытывает перегрузки (вес тела больше, чем его вес в состоянии покоя): Сила упругости в физике и закон Гука - формулы и определения с примерами.
    • Если тело движется с ускорением, направленным вертикально вниз, вес тела меньше, чем его вес в состоянии покоя: Сила упругости в физике и закон Гука - формулы и определения с примерами

    Физика в цифрах:

    • P= 0 — отсутствие нагрузки (состояние невесомости).
    • P=mg — «нормальная» нагрузка (на поверхности Земли).
    • P= 3 mg — максимальная нагрузка, которая ощущается на «американских горках».
    • P= 4,3 mg — максимальная нагрузка, на которую рассчитаны пассажирские самолеты.
    • P= 5 mg — нагрузка, при которой большинство людей теряют сознание.
    • P= 9 mg — нагрузка, которую может испытывать человек за штурвалом истребителя при крутых виражах.
    • Деформация в физике
    • Плотность вещества в физике
    • Сила трения в физике
    • Вес тела в физике
    • Масса тела в физике
    • Сила в физике
    • Силы в механике
    • Сила тяжести в физике

    Закон Ома для участка цепи

    Со школьного курса физики всем хорошо известна классическая трактовка Закона Ома:

    Сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

    I = U/R

    Это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер.

    Отсюда следуют ещё два полезных соотношения:

    Если в проводнике, сопротивлением 1 Ом, протекает ток 1 Ампер, значит на концах проводника напряжение 1 Вольт (падение напряжения).

    U = IR

    Если на концах проводника есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.

    R = U/I

    Вышеописанные формулы в таком виде могут быть применимы для переменного тока лишь в том случае, если цепь состоит только из активного сопротивления R. Кроме того, следует помнить, что Закон Ома справедлив только для линейных элементов цепи.

    Как понять Закон Ома: простое объяснение для чайников с формулой и понятиями

    Как звучит закон Ома для участка цепи

    Есть говорить об официальной формулировке, то закон Ома можно озвучить так:

    Сила тока имеет прямую зависимость от напряжения и обратную от сопротивления. Это высказывание справедливо для участка цепи с каким-то определенным и стабильным сопротивлением.

    Формула этой зависимости на рисунке. Тут I — это сила тока, U — напряжение, R — сопротивление.

    Формула закона Ома

    Формула закона Ома

    • Чем больше напряжение, тем больше ток.
    • Чем больше сопротивление, тем ток меньше.

    Не так легко представить себе смысл этого выражения. Ведь электричество нельзя увидеть. Мы только приблизительно знаем что это такое. Попытаемся уяснить себе смысл этого закона при помощи аналогий.

    Закон Ома для замкнутой цепи

    Если к источнику питания подключить внешнюю цепь сопротивлением R, в цепи пойдёт ток с учётом внутреннего сопротивления источника:

    I — Сила тока в цепи.

    — Электродвижущая сила (ЭДС) — величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника. r — Внутреннее сопротивление источника питания. Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .

    Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR. Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания. С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы.

    По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = — I*r. Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U. Если ток в цепи равен нулю, следовательно,
    = U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах.

    В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС (≈ U ) независимо от сопротивления внешней цепи R. Такой источник питания называют источником напряжения.

    Закон Ома для переменного тока

    При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление.
    В таком случае запись Закона Ома будет иметь вид:

    I = U/Z

    Здесь Z — полное (комплексное) сопротивление цепи — импеданс. В него входит активная R и реактивная X составляющие. Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи. Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс.

    С учётом сдвига фаз φ, созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме:

    — комплексная амплитуда тока. = Iampe jφ
    — комплексная амплитуда напряжения. = Uampe jφ
    — комплексное сопротивление. Импеданс.
    φ — угол сдвига фаз между током и напряжением.
    e — константа, основание натурального логарифма.
    j — мнимая единица.
    Iamp , Uamp — амплитудные значения синусоидального тока и напряжения.

    Для ЭДС

    Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:
    Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.

    Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

    Для полной цепи

    Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

    Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

    Закон Ома для полной цепи наглядно

    Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:

    I = U / (R + r)

    Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.

    Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.

    Нелинейные элементы и цепи

    Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников.

    Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ). К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы.

    Такие элементы и цепи, в которых они используются, называют нелинейными.

    Напряжение, ток и сопротивление

    Электрическая цепь образуется, когда создается проводящий путь, позволяющий электрическому заряду непрерывно перемещаться. Это непрерывное движение электрического заряда по проводникам цепи называется током, и о нем часто говорят как о «потоке», как о потоке жидкости через полую трубу.

    Сила, побуждающая носители заряда «течь» по цепи, называется напряжением. Напряжение – это особая мера потенциальной энергии, которая всегда относительна между двумя точками. Когда мы говорим об определенной величине напряжения, присутствующего в цепи, мы имеем в виду измерение потенциальной энергии для перемещения носителей заряда из одной конкретной точки этой цепи в другую конкретную точку. Без упоминания двух конкретных точек термин «напряжение» не имеет значения.

    Ток, как правило, проходит через проводники с некоторой степенью трения или противодействия движению. Это противодействие движению правильнее называть сопротивлением. Величина тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующего прохождению тока. Как и напряжение, сопротивление – это величина, измеряемая между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как «между» двумя точками в цепи.

    Единицы измерения: вольт, ампер и ом

    Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:

    Ток I Ампер А
    Напряжение V Вольт В
    Сопротивление R Ом Ом

    «Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах. Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.

    Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.

    Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I».

    Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.

    Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени.

    Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.

    Кулон и электрический заряд

    Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.

    Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении).

    В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

    Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.

    Формула Закона Ома

    В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.

    Портрет Георга Симона Ома

    Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.

    Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.

    Формула Закона Ома

    где I – сила тока, измеряется в амперах и обозначается буквой А;U – напряжение, измеряется в вольтах и обозначается буквой В;R – сопротивление, измеряется в омах и обозначается Oм.

    Если известны напряжение питания U и сопротивление электроприбора R, то с помощью вышеприведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I.

    С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.

    Анализ простых схем с помощью закона Ома

    Давайте посмотрим, как эти формулы работают, чтобы помочь нам анализировать простые схемы:

    Рисунок 1 Пример простой схемы
    Рисунок 1 – Пример простой схемы

    В приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа). Это позволяет очень легко применить закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

    В этом первом примере мы вычислим величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

    Рисунок 2 Пример 1. Известны напряжение источника и сопротивление лампы
    Рисунок 2 – Пример 1. Известны напряжение источника и сопротивление лампы

    Какая величина тока (I) в этой цепи?

    [I = frac{E}{R} = frac{12 В}{3 Ом} = 4 А]

    Во втором примере мы вычислим величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

    Рисунок 3 Пример 2. Известны напряжение источника и ток в цепи
    Рисунок 3 – Пример 2. Известны напряжение источника и ток в цепи

    Какое сопротивление (R) оказывает лампа?

    [R = frac{E}{I} = frac{36 В}{4 А} = 9 Ом]

    В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

    Рисунок 4 Пример 3. Известны ток в цепи и сопротивление лампы
    Рисунок 4 – Пример 3. Известны ток в цепи и сопротивление лампы

    Какое напряжение обеспечивает батарея?

    [E = IR = (2 А)(7 Ом) = 14 В]

    Метода треугольника закона Ома

    Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

    Рисунок 5 Треугольник закона Ома
    Рисунок 5 – Треугольник закона Ома

    Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

    Рисунок 6 Закон Ома для определения R
    Рисунок 6 – Закон Ома для определения R

    Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

    Рисунок 7 Закон Ома для определения I
    Рисунок 7 – Закон Ома для определения I

    Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

    Рисунок 8 Закон Ома для определения E
    Рисунок 8 – Закон Ома для определения E

    В конце концов, вам придется научиться работать с формуми, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!

    Формула Закона Джоуля-Ленца

    Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца.

    Фотографии Джеймса Прескотта Джоуля и Эмилия Христианова Ленца

    Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

    Закон Джоуля – Ленца
    где P – мощность, измеряется в ваттах и обозначается Вт;U – напряжение, измеряется в вольтах и обозначается буквой В;I – сила ток, измеряется в амперах и обозначается буквой А.

    Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

    Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала.

    Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

    Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

    Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

    Преобразованные формулы Закона Ома и Джоуля-Ленца

    Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой не связанные между собой четыре сектора и очень удобна для практического применения

    Закон Ома и Джоуля-Ленца в таблице

    По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

    А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

    Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.Рейтинг@Mail.ru

    Применение закона Ома на практике

    На практике часто приходится определять не силу тока I, а величину сопротивления R. Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R, зная протекающий ток I и величину напряжения U.

    Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

    Значение Закона Ома

    Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении. Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

    Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

    Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

    Закон ома простыми словами

    Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

    Задача 1.1

    Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 0,5 мм2, если к концам провода приложено напряжение 12 B.

    Задачка простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.

    Задача на закон Ома для участка цепи

    Параллельное и последовательное соединение

    В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

    Закон Ома для параллельного и последовательного соединения

    Закон Ома для параллельного и последовательного соединения

    Последовательное соединение

    Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.

    При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

    Последовательное соединение и параметры этого участка цепи

    Последовательное соединение и параметры этого участка цепи.

    Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

    Параллельное соединение

    Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

    Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

    Законы для параллельного соединения

    Законы для параллельного соединения

    Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

    Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

    Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.

    Что нам дает параллельное и последовательное соединение?

    Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

    • Если в наличии нет резистора большого номинала, но есть несколько более «мелких», нужное сопротивление можно получить соединив последовательно несколько резисторов. Как видите, это полезный прием.
    • Для продления срока жизни батареек, их можно соединять параллельно. Напряжение при этом, согласно закону Ома, останется прежним (можно убедиться, измерив напряжение мультиметром). А «срок жизни» сдвоенного элемента питания будет значительно больше, нежели у двух элементов, которые сменят друг друга. Только обратите внимание: параллельно соединять можно только источники питания с одинаковым потенциалом. То есть, севшую и новую батарейки соединять нельзя. Если все-таки соединить, та батарейка которая имеет больший заряд, будет стремиться зарядить менее заряженную. В результате общий их заряд упадет до низкого значения. Практическое применение закона Ома: можно создавать источники питания с нужным напряжением и силой тока
      Практическое применение закона Ома: можно создавать источники питания с нужным напряжением и силой тока

    В общем, это наиболее распространенные варианты использования этих соединений.

    Интегральная и дифференциальная формы закона

    Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры. Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.

    Закон Ома

    Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.

    Под дифференциальный расчет берется формула: J = ό * E. Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.

    Видеоурок: Закон Ома простыми словами

    Понравилась статья? Поделить с друзьями:
  • Как найти изменение плотности
  • Как найти скрытую информацию в интернете
  • Как найти среднюю точку попадания пули
  • Как найти предел последовательности с бесконечностью
  • Как составить режим дня для мамы в декрете