Как найти силу свободного падения в физике

Скорость свободного падения

Общие сведения

Основоположником создания учения о движении стал Аристотель. Он утверждал, что скорость падения тела зависит от его веса. Значит, тяжёлый предмет сможет долететь до Земли быстрее, чем лёгкий. Если же на объект не будут воздействовать какие-либо силы, его движение невозможно.

Галилео галилей

Но Галилео Галилей, известный итальянский изобретатель и физик, изучая падение различных предметов и их инерцию, смог опровергнуть догадки Аристотеля. Результаты его исследований были революционными в науке. При этом даже была выпущена книга «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению», в которой были изложены основные размышления Галилея.

За дату рождения кинематики как науки можно принять 20 января 1700 года. В это время проходило заседание Академии наук, на котором Пьер Вариньона не только дал определения понятиям скорость, ускорение, но и описал их в дифференциальном виде. Уже после Ампер использовал для изучения процессов вариационное исчисление. Наглядные опыты провёл Лейбниц, а потом. профессор МГУ Н. А. Любимов смог продемонстрировать появление невесомости при свободном падении.

Под невесомостью понимают состояние тела, при котором силы взаимодействия с опорой, существующие из-за гравитационного притяжения, не оказывают никакого влияния. Такое положение имеет место, когда воздействующие на тело внешние силы можно охарактеризовать массовостью, например, тяготения.

Свободное падение тел

В этом случае силы поля сообщают всем частицам предмета в любом из его положений равные по модулю и направлению ускорения, либо при движении возникают одинаковые по модулю скорости всех частиц тела. Например, поступательное движение. Состояние невесомости особо ярко проявляется в начальный момент при падении тела в атмосфере. Это связано с тем, что сопротивление воздуха ещё невелико.

Таким образом, для существования свободного падения нужно выполнение как минимум двух условий:

  • малость или отсутствие сопротивления среды;
  • действие лишь одной силы тяжести.

Что интересно, движение вверх тоже считается свободным падением, несмотря на обратное интуитивное восприятие, поэтому траектория движения может иметь форму как участка параболы, так и отрезка прямой. Например, камень, брошенный с небольшой высоты или поверхности под любым углом.

Опыт Галилея

Падение относится к реальному движению. Любое взаимодействие с Землёй приводит к изменению скорости из-за чего возникает ускорение. В 1553 году итальянец Джованни Бенедетти заявил, что 2 тела с разной массой, но одинаковой формы, брошенные в одной среде за одинаковое время пролетят равные расстояния. Это утверждение нуждалось в доказательстве, так как противоречило общепринятому на тот момент времени пониманию процессов. В частности, высказываниям Аристотеля.

Галилео галилей опыты

Одним из экспериментаторов стал Галилей. Для проведения опыта учёному понадобилось:

  • стофунтовое ядро;
  • однофунтовый шар.

Существует мнение, что вместо шара учёный использовал мушкетную пулю. Эксперимент заключался в следующем. Подняв 2 предмета на Пизанскую башню, Галилей сбросил их одновременно. Наблюдающие люди воочию смогли убедиться, что 2 тела упали на землю одновременно. Когда же один из учеников Аристотеля упрекнул итальянца, что на такой малой высоте невозможно оценить достоверно разницу, экспериментатор ответил: «Проделайте опыт самостоятельно, вы найдёте, что более тяжёлый предмет опередит тот, что легче на 2 пальца, поэтому, когда первый упадёт на землю, то второй будет от него на расстоянии толщины двух пальцев».

Свободное падение

В своих работах Галилей рассуждал, что если связать верёвкой 2 тела разной тяжести, то с большим весом, по мнению Аристотеля, предмет будет лететь быстрее. Причём лёгкий объект начнёт замедлять падение тяжёлого. Но так как система в целом тяжелее, чем отдельно взятые тела, падать она должна быстрее самого тяжёлого тела. Другими словами, возникает противоречие, значит, предположение о влиянии веса на скорость падения неверно.

Сегодня эксперимент, подтверждающий доводы Галилея, может провести самостоятельно, пожалуй, каждый интересующийся. Такой опыт часто демонстрируют в средних классах общеобразовательной школы. Для этого нужно взять 2 трубки, длиной более метра и поместить в них 2 шарика разной массы. Затем создать внутри вакуум и одновременно их перевернуть. Если все условия соблюдены верно, то 2 тела опустятся на дно ёмкостей одновременно.

Если же опыт повторить не в вакууме, на шары будет действовать сила сопротивления, поэтому время падения уже не будет совпадать. Причём зависеть оно будет от формы предмета и его плотности.

Закон ускорения

Формула для свободного падения была выведена из выражения, определяющего силу тяжести: F = m * g. В соответствии с законом, падение предметов выполняется с одним и тем же ускорением вне зависимости от массы тела. По сути, это частный случай равноускоренного движения, обусловленное силой тяжести.

Для количественного анализа нужно ввести систему координат, взяв начало у поверхности Земли. Тогда можно рассмотреть падение тела массой m с высоты y0. Причём вращением планеты и сопротивлением воздушной среды нужно пренебречь.

Ускорение свободного падения формула

Дифференциальное уравнение будет иметь вид: my = — mg, где: g — ускорение свободного падения. Само же дифференцирование выполняется по времени. При заданных начальных условиях y = y0 и беря во внимание проекцию скорости на вертикальную ось после интегрирования, зависимость переменных от t примет вид:

  • v = v0 + gt;
  • y = y0 + v0t — (gt2 / 2).

Из полученных формул становится понятно, почему свободное падение не зависит от массы тела. При этом если начальная скорость будет равна нулю, то есть при падении предмету не сообщается импульс, текущее движение пропорционально времени, а пройденный путь определяется его квадратом.

Как показали эксперименты, если сопротивления воздуха нет, ускорение для любых летящих предметов по отношению к Земле составит 9,8 м / с2. Формулы, которые используются при расчёте величин, совпадают с выражениями, справедливыми для любого равноускоренного движения. Например, если тело падает без начальной скорости, его скорость можно найти по формуле: V2 = g * t, а высоту падения определить так: h = (gt2 / 2).

Свободное падение формула

Следует отметить, что при удалении предмета от Земли значение свободного движения уменьшается. Причём из-за формы планеты на экваторе оно будет составлять 9,78 м / с2, а с противоположной стороны — 9,832 м / с2. Чтобы определить значение в любом месте, используют нитяной маятник. Его период колебаний определяется по формуле: T = 2p√(l / g), где l — длина нити.

Значения силы тяжести также зависит от строения земной коры и содержащихся в недрах полезных ископаемых. С учётом этого рассчитываются гравитационные аномалии: Δg = g — gср. Например, если g > gcp, то с большой вероятностью в земле содержатся залежи железной руды, в ином случае — нефти или газа.

Решение задач

Свободно двигаться, то есть не испытывать действие сторонних сил, могут любые тела в вакууме. Но в реальности на них оказывается воздействие как атмосферными явлениями, так и сопротивлением среды. При решении задач учитывается только сила тяжести, а вот остальными явлениями пренебрегают, считая их ничтожно малыми.

Вот некоторые из типовых задач, используемые при обучении в среднеобразовательных школах:

Свободное падение задача

  1. Деревянная бочка падает с 30 метров. Какова будет её скорость перед столкновением с Землёй? Так как рассматривается свободное падение, для решения нужно использовать формулу: v2 = 2 * g * h. Отсюда, v = √(2 * g * h) = (2 * 9,81 м / с2 * 30 м) = 24,26 м/с.
  2. Тело вылетает вертикально вверх со скоростью 45 м/с. Какой высоты оно достигнет перед изменением направления полёта и сколько для этого понадобится времени. Для начала следует записать формулу скорости: v = v0 — gt. Отсюда можно рассчитать время полёта: t = v0 / g = 45 / 9,8 = 4,6 c. Теперь можно определить максимальную высоту: h = vot — (gt 2 / 2) = 45 м / с * 4,6 с — 9,8 м / с2 * (4,6 c)2 / 2 = 207 м — 103,7 м = 103,3 м.

  3. Камень летит со скоростью 30 м/с. Найти время, за которое он достигнет 25 метров. Система уравнений, описывающая движение, будет выглядеть так: h = v0t — (gt2 / 2); 25 = 30t — 5t2. Полученные уравнения в системе называются квадратными, поэтому нужно выразить одно из другого и определить корни: t2 — 6t + 5 = 0. В результате должно получиться время, равное одной секунде.

Рассмотренные задания довольно простые. Но есть и повышенной сложности, требующие не только знания формул, но и умения выполнять анализ. Вот одно из таких.

Мяч бросили с горки под углом к горизонту. Через время, равное t = 0,5 c он достигнет наибольшей высоты, а t2 = 2,5 он упадёт. Определить высоту горки, ускорение падения принять равное g = 10 м / с2. Скорость движущегося предмета можно представить в координатной плоскости x и y. В горизонтальном направлении сил, оказывающих воздействие, нет. Движение равномерное. Наибольшая высота будет достигнута при h = H + v0y * t1 — (gt21 / 2).

Вертикальную составляющую можно вычислить, руководствуясь геометрическими принципами: v0y = v0 * sin (a). Учитывая, что h = (gt2 / 2), для высоты горки можно записать: H = (g * (t21 + t22) / 2) — t1 * v0 sin (a). Так как gt1 = v0 sin (a), то рабочая формула примет вид: H = (g * (t21 + t22) / 2) — gt21. После подстановки данных в ответе должна получиться высота равная 30 метров. Задача решена.

Ускорение свободного падения характеризует то, как быстро будет увеличиваться скорость тела при свободном падении. Свободным падением называется ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести. Из физики известно, что ускорение свободного падения на Земле составляет (9,8) 

мс2

.

Вопрос, почему эта величина именно такая, мы рассмотрим в этой теме.

Ускорение свободного падения в упрощённом виде можно рассчитать по формуле 

g=Fm

, которая получается из формулы 

F=m⋅g

, где (F) — сила тяжести либо вес тела в состоянии покоя или равномерного прямолинейного движения, (m) — масса тела, которое притягивает планета, (g) — ускорение свободного падения.

Сила тяжести, действующая на тело, зависит от массы тела, массы планеты, притягивающей тело, и от расстояния, на котором находится тело от центра массы планеты.

(F) — сила тяжести, Н;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

(R) — расстояние между центрами планеты и объекта в метрах. Если притягиваемое тело находится на поверхности планеты, тогда (R) равен радиусу планеты (если планета имеет сферическую форму);

m1 и 

m2

 — масса планеты и притягиваемого тела, выраженные в кг.

Обрати внимание!

Если мы объединим обе формулы, тогда получим формулу 

g=G⋅mR2

, с помощью которой можно вычислить ускорение свободного падения на любом космическом объекте — на планете или звезде.

Пример:

ускорение свободного падения у поверхности Земли вычисляют таким образом:

g=G⋅МЗRЗ2=6,6720⋅10−11⋅5,976⋅10246,371⋅1062=9,8мс2

, где

(g) — ускорение свободного падения;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

Практически на Земле ускорение свободного падения на полюсах немного больше ((9,832) 

мс2

), чем на экваторе ((9,78) 

мс2

), так как Земля не имеет форму идеального шара, а на экваторе скорость вращения больше, чем на полюсах. Среднее значение ускорения свободного падения у поверхности Земли равно (9,8) 

мс2

.

Ускорение свободного падения у поверхности любого космического тела — на планете или звезде — зависит от массы этого тела и квадрата его радиуса. Таким образом, чем больше масса звезды и чем меньше её размеры, тем больше значение ускорения свободного падения у её поверхности.

При помощи формулы расчёта ускорения свободного падения и измерений, проведённых для удалённых объектов, учёные-физики могут определить величину ускорения свободного падения на любой планете или звезде.

Рис. (1). Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун; и карликовые планеты: Церера, Плутон, Эрида ((2003) UB (313))

SolSys_IAU06.jpg

Таблица (1). Ускорение свободного падения и другие характеристики планет Солнечной системы и карликовых планет

Небесное

тело

Ускорение

свободного

падения, мс2

Диаметр,

км 

Расстояние

до Солнца,

миллионы км

Масса,

кг

Соотношение

 с массой

Земли

Меркурий

(3,7)

(4878)

(58)

(3,3*)

1023

(0,055)

Венера

(8,87)

(12103)

(108)

(4,9*)

1024

(0,82)

Земля

(9,8)

(12756,28)

(150)

(6,0*)

1024

(1)

Марс

(3,7)

(6794)

(228)

(6,4*)

1023

(0,11)

Юпитер

(24,8)

(142984)

(778)

(1,9*)

1027

(317,8)

Сатурн

(10,4)

(120536)

(1427)

(5,7*)

1026

(95,0)

Уран

(8,87)

(51118)

(2871)

(8,7*)

1025

(14,4)

Нептун

(10,15)

(49532)

(4498)

(1,02*)

1026

(17,1)

Плутон

(0,66)

(2390)

(5906)

(1,3*)

1022

(0,0022)

Луна

(1,62)

(3473,8)

(0,3844 )

(до Земли)

(7,35*)

1022

(0,0123)

Солнце

(274,0)

(1391000)

(2,0*)

1030

(332900)

Нейтронные звёзды имеют малый диаметр — порядка десятков километров, — а масса их сопоставима с массой Солнца. Поэтому гравитационное поле у них очень сильное.

Пример:

если диаметр нейтронной звезды равен (20) км, а масса её в (1,4) раза больше массы Солнца, тогда ускорение свободного падения будет в (200000000000) раз больше, чем у поверхности Земли.

Его величина приблизительно равна 

2⋅1012 мс2

. Значение ускорения свободного падения для нейтронной звезды может достигать значения 

7⋅1012 мс2

.

Свободное падение тела — это его равнопеременное движение, которое происходит под действием силы тяжести. В этот момент другие силы, которые могут воздействовать на тело либо отсутствуют, либо настолько малы, что их влияние не учитывается. Например, когда парашютист прыгает из самолета, первые несколько секунд после прыжка он падает в свободном состоянии. Этот короткий отрезок времени характеризуется ощущением невесомости, сходным с тедж.м, что испытывают космонавты на борту космического корабля.

История открытия явления

О свободном падении тела ученые узнали еще в Средневековье: Альберт Саксонский и Николай Орем изучали это явление, но некоторые их выводы были ошибочными. Например, они утверждали, что скорость падающего тяжелого предмета возрастает прямо пропорционально пройденному расстоянию. В 1545 году поправку этой ошибки сделал испанский ученый Д. Сото, установивший факт, что скорость падающего тела увеличивается пропорционально времени, которое проходит от начала падения этого предмета.

Как определить скорость падения

В 1590 г. итальянский физик Галилео Галилей сформулировал закон, который устанавливает четкую зависимость пройденного падающим предметом пути от времени. Также ученым было доказано, что при отсутствии воздушного сопротивления все предметы на Земле падают с одинаковым ускорением, хотя до его открытия было принято считать, что тяжелые предметы падают быстрее.

Была открыта новая величина — ускорение свободного падения, которое состоит из двух составляющих: гравитационного и центробежного ускорений. Обозначается ускорение свободного падения буквой g и имеет различное значение для разных точек земного шара: от 9,78 м/с2 (показатель для экватора) до 9,83 м/с2 (значение ускорения на полюсах). На точность показателей влияют долгота, широта, время суток и некоторые другие факторы.

Стандартное значение g принято считать равным 9,80665 м/с2. В физических расчетах, которые не требуют соблюдения высокой точности, значение ускорения принимают за 9,81 м/с2. Для облегчения расчетов допускается принимать значение g равным 10 м/с2.

Для того чтобы продемонстрировать, как предмет падает в соответствии с открытием Галилея, ученые устраивают такой опыт: в длинную стеклянную трубку помещают предметы с различной массой, из трубки выкачивают воздух. После этого трубку переворачивают, все предметы под действием силы тяжести падают одновременно на дно трубки, независимо от их массы.

Когда эти же предметы помещены в какую-либо среду, одновременно с силой тяжести на них действует сила сопротивления, поэтому предметы в зависимости от своей массы, формы и плотности будут падать в разное время.

Формулы для расчетов

Существуют формулы, с помощью которых можно рассчитывать различные показатели, связанные со свободным падением. В них используются такие условные обозначения:

  1. u — конечная скорость, с которой перемещается исследуемое тело, м/с;
  2. h — высота, с которой перемещается исследуемое тело, м;
  3. t — время перемещения исследуемого тела, с;
  4. g — ускорение (постоянная величина, равная 9,8 м/с2).

Формула для определения расстояния, пройденного падающим предметом при известной конечной скорости и времени падения: h = ut /2.

Формула для расчета расстояния, пройденного падающим предметом по постоянной величине g и времени: h = gt 2/2.

Формула для определения скорости падающего предмета в конце падения при известном времени падения: u = gt .

Формула для расчета скорости предмета в конце падения, если известна высота, с которой падает исследуемый предмет: u = √2 gh.

Нахождение скорости свободного падения

Интересные факты

Если не углубляться в научные знания, бытовое определение свободного перемещения подразумевает передвижение какого-либо тела в земной атмосфере, когда на него не воздействуют никакие посторонние факторы, кроме сопротивления окружающего воздуха и силы тяжести.

В различное время добровольцы соревнуются между собой, пытаясь установить личный рекорд. В 1962 г. испытатель-парашютист из СССР Евгений Андреев установил рекорд, который был занесен в Книгу рекордов Гиннеса: при прыжке с парашютом в свободном падении он преодолел расстояние в 24500 м, во время прыжка не был использован тормозной парашют.

В 1960 г. американец Д. Киттингер совершил парашютный прыжок с высоты 31 тыс. м, но с использованием парашютно-тормозной установки.

В 2005 г. была зафиксирована рекордная скорость при свободном падении — 553 км/ч, а через семь лет установлен новый рекорд — эта скорость была увеличена до 1342 км/ч. Этот рекорд принадлежит австрийскому парашютисту Феликсу Баумгартнеру, который известен во всем мире своими опасными трюками.

Видео

Посмотрите интересное и познавательное видео, которое расскажет вам о скорости падения тел.

Свободное падение — это движение тела под действием силы тяжести. В упрощенном виде расчет производится без учета сопротивления воздуха.
На поверхности Земли ускорение свободного падения имеет величину от 9,78 м/с2 на экваторе до 9,82 м/с2 на полюсах.
Кроме того, на планете существуют места с экстремальными значениями, которые не вписываются в математическую модель. Минимум составляет
9,76 м/с2, максимум — 9,83 м/с2. Для расчетов в физике используется усредненная величина — 9,8 м/с2

Формула ускорения свободного падения:

Ускорение свободного падения вычисляется по следующей формуле:

Формула ускорения свободного падения

где

G — гравитационная постоянная (постоянная Ньютона), равная 6,6743015·10-11 м3/(кг*с2), или Н*м2/кг2

R — расстояние, на котором находится тело от центра планеты

M — масса планеты

Как видно из вышеприведенной формулы, значение ускорения свободного падения обратно пропорционально квадрату расстояния от центра планеты,
т.е. зависит не только от радиуса самой планеты, но от того, на какой высоте над ее поверхностью находится тело.
Поэтому для расчёта величины «g» на определенной высоте формулу можно скорректировать вот таким образом:

Формула ускорения свободного падения на разной высоте над поверхностью планеты

где

G — гравитационная постоянная

R — радиус планеты

h — высота над поверхностью планеты, на которой находится тело

M — масса планеты

Для расчёта можно воспользоваться калькулятором, который приведен ниже.

Калькулятор ускорения свободного падения

Другие формулы

Калькулятор космических скоростей

Формулы свободного падения в физике

Формулы свободного падения

Определение и формулы свободного падения

Если тело около поверхности Земли движется только под воздействием силы тяжести ($overline{F}$), говорят, что оно свободно падает. Обычно в задачах, рассматривающих свободное падение тела, сопротивление воздуха не учитывают.

Модуль ускорения свободного падения на расстоянии $h$ от поверхности Земли вычисляется при помощи формулы:

[g=gamma frac{M}{({R+h)}^2}left(1right),]

где $gamma $- гравитационная постоянная; $M$ — масса Земли; $R$ — радиус Земли.

Величина ускорения свободного падения около поверхности Земли ($ при hll R$) равна:

[g=gamma frac{M}{R^2}left(2right).]

Направлено ускорение свободного падения к центру Земли. В задачах о движении тел около поверхности Земли ускорение свободного падения считают постоянной величиной, которую вычисляют с помощью формулы (2), так как в сравнении с радиусом Земли рассматриваемые расстояния много меньше, чем $R$. Обычно, ускорение свободного падения на Земле считают равным $g=9,8 frac{м}{с^2}$.

Кинематические уравнения движения материальной точки в поле тяжести

Свободное падение происходит с постоянным ускорением, что было установлено еще Галилеем, поэтому в кинематике это движение описывают при помощи уравнений:

[left{ begin{array}{c}
overline{s}left(tright)={overline{s}}_0+{overline{v}}_0t+frac{overline{g}t^2}{2} \
overline{v}left(tright)={overline{v}}_0+overline{g}t end{array}
right.left(3right).]

Первое уравнение системы (3) записано для перемещения тела в поле тяжести Земли (${overline{s}}_0$ — смещение тела из начала отсчета в момент начала наблюдения ($t=0c$)). Второе уравнение системы (3) показывает изменение вектора скорости (${overline{v}}_0$ — начальная скорость движения тела).

Используя эти уравнения, и зная начальные условия движения тела можно найти скорость и положение тела относительно избранной системы отсчета для любого момента времени.

Тело, брошенное под углом к горизонту

Так, если нам заданы начальные условия в виде и сказано, что тело свободно движется в поле силы тяжести Земли:

[left{ begin{array}{c}
xleft(t=0 right)=0, \
yleft(t=0 right)=h, \
v_xleft(t=0 right){=v}_{0x}=v_0{cos alpha , } \
v_yleft(t=0 right){=v}_{0y}=v_0{sin alpha . } end{array}
right.left(4right)]

это означает, что тело бросили под углом $alpha $ к горизонту с начальной скоростью ${overline{v}}_0$ с высоты $h$, оси координат выбраны так, что в момент броска смещения по оси X нет.

Из кинематических уравнений и начальных условий можно получить:

  1. уравнение траектории движения материальной точки:
  2. [y(x)=h_0 tg alpha -frac{g}{2}{left(frac{x}{v_0{cos б }}right)}^2left(5right).]

  3. время подъема тела до вершины ее траектории:
  4. [t_p=frac{v_0{sin alpha }}{g}left(6right)]

  5. время полета тела:
  6. [t_{pol}=frac{v_0{sin alpha +sqrt{v^2_0{sin}^2alpha +2gh_0} }}{g}left(7right).]

При$h=0$textit{ }мы видим, что $t_{pol}=2t_p.$

Свободное падение тела из состояния покоя

Начальные условия для тела, которое падает из состояния покоя с высоты $h$ (рис.1), запишем так:

[left{ begin{array}{c}
xleft(t=0 right)=0, \
yleft(t=0 right)=h, \
v_xleft(t=0 right)=0 \
v_yleft(t=0 right)=0 end{array}
right.left(8right).]

Кинематические уравнения движения в проекции на ось Y, которую выберем по движению тела (из векторных уравнений (3)) свободно падающего тела без начальной скорости будут выглядеть как:

[left{ begin{array}{c}
y=h-frac{gt^2}{2} \
v_y=-gt end{array}
right.(9)]

Формулы свободного падения, рисунок 1

Время падения тела равно:

[t_{pad}=sqrt{frac{2h}{g}}left(10right).]

Скорость тела в момент падения составляет:

[v_{pad}=-sqrt{2gh}left(11right).]

Знак минус в формуле (11) означает, что скорость падения направлена против нашей оси Y.

Примеры задач с решением

Пример 1

Задание. Какова глубина шахты, если камень, брошенный в нее, упал на дно спустя 1 секунду после начала движения по ней?

Решение. В этой задаче мы имеем свободное вертикальное падение тела без начальной скорости (рис.2). Систему отсчета свяжем с Землей. Начало отсчета пусть находится на дне шахты (точка 0).

Формулы свободного падения, пример 1

В качестве основы для решения задачи воспользуемся системой уравнений, полученной для подобного движения в теоретической части статьи:

[left{ begin{array}{c}
y=h-frac{gt^2}{2} \
v_y=-gt end{array}
right.(1.1)]

Нам достаточно для решения задачи только первого уравнения системы. В момент падения на дно координата камня будет равна нулю:

[y=0 left(1.2right).]

Используя уравнения (1.1) и условие (1.2), выразим глубину шахты:

[h=frac{gt^2}{2} left(1.3right).]

Имея в виду, что $g=9,8 frac{м}{с^2} $, проведем вычисления искомой величины:

[h=frac{9,8cdot 1^2}{2}=4,9 left(мright).]

Ответ. $h=4,9$ м

Пример 2

Задание. Покажите, что тело, брошенное вертикально вверх движется до максимальной высоты подъема столько же времени, сколько оно потом падает с этой высоты до точки бросания.

Решение. Пусть тело бросили вертикально вверх со скоростью $v_0.$ Основой для решения задачи является уравнение для скорости и уравнение перемещения:

[overline{v}left(tright)={overline{v}}_0+overline{g}t ;; overline{s}left(tright)={overline{s}}_0+{overline{v}}_0t+frac{overline{g}t^2}{2}(2.1)]

Формулы свободного падения, пример 2

Рассмотрим движение тела вверх. В проекции на ось Y выражения (2.1) мы имеем:

[v=v_0-gt left(2.2right).]

В точке максимального подъема тело имеет скорость движения равную нулю, из этого условия и формулы (2.2) получим время подъема тела:$ $

[0=v_0-gt_{pod}to t_{pod}=frac{v_0}{g}left(2.3right).]

Высота, на которую тело поднялось равна:

[h=v_0t-frac{gt^2}{2}=v_0frac{v_0}{g}-frac{g}{2}{left(frac{v_0}{g}right)}^2=frac{{v_0}^2}{2g}(2.4)]

Рассмотрим движение тела вниз с некоторой высоты. Основой будет служить уравнение для перемещения из системы (2.1).Это уравнение для нашего случая, в проекции на ось Y примет вид:

[y=h-frac{gt^2}{2}left(2.5right).]

В момент падения координата тела $y=0$:

[h=frac{g{t_{pad}}^2}{2}left(2.6right).]

Высота, на которую поднялось тело, мы нашли в (2.4), подставим ее, выразим время падения тела:

[frac{{v_0}^2}{2g}=frac{g{t_{pad}}^2}{2}to {t_{pad}}^2=frac{{v_0}^2}{g^2}to t_{pad}=frac{v_0}{g} left(2.7right).]

Сравниваем выражения (2.3) и (2.7), получаем:

[t_{pad}=t_{pod}.]

Время подъема равно времени падения.

Читать дальше: формулы эффекта Доплера.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Понравилась статья? Поделить с друзьями:
  • Как найти что то в вордовском документе
  • Как мне найти мужа я вдова
  • Как найти пароль аккаунта гугл на андроиде
  • Как найти своего кармического партнера
  • Как по номеру постановления найти его текст